En travaillant sur l’équation de Calabi-Yau généralisée proposée par Gromov pour des variétés presque-Kalhériennes fermées, nous étendons le résultat de la non-existence prouvé en dimension complexe 2, à des dimensions arbitraires.
Dealing with the generalized Calabi-Yau equation proposed by Gromov on closed almost-Kähler manifolds, we extend to arbitrary dimension a non-existence result proved in complex dimension .
Révisé le : 2009-06-28
Accepté le : 2009-09-20
DOI : https://doi.org/10.5802/aif.2566
Classification : 53C07, 53D05, 58J99
Mots clés : équation de Calabi-Yau, forme symplectique, structur presque complexe, métrique Hermitienne, tenseur de Nijenhuis, fonction speudo holomorphe
@article{AIF_2010__60_5_1595_0, author = {Wang, Hongyu and Zhu, Peng}, title = {On a generalized Calabi-Yau equation}, journal = {Annales de l'Institut Fourier}, pages = {1595--1615}, publisher = {Association des Annales de l'institut Fourier}, volume = {60}, number = {5}, year = {2010}, doi = {10.5802/aif.2566}, mrnumber = {2766224}, zbl = {1228.53090}, language = {en}, url = {aif.centre-mersenne.org/item/AIF_2010__60_5_1595_0/} }
Wang, Hongyu; Zhu, Peng. On a generalized Calabi-Yau equation. Annales de l'Institut Fourier, Tome 60 (2010) no. 5, pp. 1595-1615. doi : 10.5802/aif.2566. https://aif.centre-mersenne.org/item/AIF_2010__60_5_1595_0/
[1] Symplectic and almost complex manifolds, Progress in Math., Volume 117 (1994), pp. 41-76 | MR 1274926
[2] The space of Kähler metrics Volume 2 (1954), p. 206-207
[3] Sur l’analogue presque-complexe de l’équation de Calabi-Yau, Osaka J. Math., Volume 33 (1996), pp. 829-846 | MR 1435456 | Zbl 0878.53030
[4] Two forms on four manifolds and elliptic equations, in Inspired by S. S. Chern (2006), pp. 153-172 (in A memorial volume in honor of a great mathematician, Ed. by P. A. Griffiths) | MR 2313334 | Zbl 1140.58018
[5] Sur les structures presque hermitiennes isotropes, C. R. Acad. Sci. Paris, Volume 232 (1951), pp. 1281-1283 | MR 40790 | Zbl 0042.15904
[6] Hermitian connections and Dirac operators, Bull. Un. Mat. Ital., Volume B 11 (no. 2, suppl.) (1997), pp. 257-288 | MR 1456265 | Zbl 0876.53015
[7] Pseudoholomorphic curves in symplectic manifolds, Invent. Math., Volume 82 (1985), pp. 307-347 | Article | MR 809718 | Zbl 0592.53025
[8] Introduction to symplectic topology, Oxford University Press, 1998 | MR 1698616 | Zbl 0844.58029
[9] On the volume elements of a manifold, Trans. AMS, Volume 120 (1965), pp. 286-294 | Article | MR 182927 | Zbl 0141.19407
[10] Taming symplectic forms and the Calabi-Yau equation, Proc. London Math. Soc., Volume 97 (2008), pp. 401-424 | Article | MR 2439667 | Zbl 1153.53054
[11] Calabi-Yau equation on closed symplectic 4-manifolds (in preparation)
[12] The Calabi-Yau equation on almost Kähler four manifolds, J. Diff. Geom., Volume 76 (2007), pp. 317-349 | MR 2330417 | Zbl 1123.32015
[13] The Classical groups, Princeton Mathematical Series, Volume 1, Princeton University Press, 1973 | MR 1488158 | Zbl 1024.20502
[14] On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I, Comm. Pure Appl. Math., Volume 31 (1978) no. 3, pp. 339-411 | Article | MR 480350 | Zbl 0369.53059
[15] On almost Hermitian manifolds (2008) (Ph. D. Thesis) | Zbl 1199.53050