# ANNALES DE L'INSTITUT FOURIER

Exponential sums with coefficients $0$ or $1$ and concentrated ${L}^{p}$ norms
Annales de l'Institut Fourier, Volume 57 (2007) no. 5, p. 1377-1404
A sum of exponentials of the form $f\left(x\right)=exp\left(2\pi i{N}_{1}x\right)+exp\left(2\pi i{N}_{2}x\right)+\cdots +exp\left(2\pi i{N}_{m}x\right)$, where the ${N}_{k}$ are distinct integers is called an idempotent trigonometric polynomial (because the convolution of $f$ with itself is $f$) or, simply, an idempotent. We show that for every $p>1,\phantom{\rule{0.166667em}{0ex}}$ and every set $E$ of the torus $𝕋=ℝ/ℤ$ with $|E|>0,$ there are idempotents concentrated on $E$ in the ${L}^{p}$ sense. More precisely, for each $p>1,$ there is an explicitly calculated constant ${C}_{p}>0$ so that for each $E$ with $|E|>0$ and $ϵ>0$ one can find an idempotent $f$ such that the ratio ${\left({\int }_{E}{|f|}^{p}/{\int }_{𝕋}{|f|}^{p}\right)}^{1/p}$ is greater than ${C}_{p}-ϵ$. This is in fact a lower bound result and, though not optimal, it is close to the best that our method gives. We also give both heuristic and computational evidence for the still open problem of whether the ${L}^{p}$ concentration phenomenon fails to occur when $p=1.$
Une somme d’exponentielles de la forme $f\left(x\right)=exp\left(2\pi i{N}_{1}x\right)+exp\left(2\pi i{N}_{2}x\right)+···+exp\left(2\pi i{N}_{m}x\right)$, où les ${N}_{k}$ sont des entiers distincts, est appelée un polynôme trigonométrique idempotent (car $f*f=f$) ou, simplement, un idempotent. Nous prouvons que pour tout réel $p>1$, et tout $E\subset 𝕋=ℝ/ℤ$ avec $|E|>0,$ il existe des idempotents concentrés sur $E$ au sens de la norme ${L}^{p}$. Plus précisément, pour tout $p>1,$ nous calculons explicitement une constante ${C}_{p}>0$ telle que pour tout $E$ avec $|E|>0$, et tout réel $ϵ>0$, on puisse construire un idempotent $f$ tel que le quotient ${\left({\int }_{E}{|f|}^{p}/{\int }_{𝕋}{|f|}^{p}\right)}^{1/p}$ soit supérieur à ${C}_{p}-ϵ$. Ceci est en fait un théorème de minoration qui, bien que non optimal, est proche du meilleur résultat que notre méthode puisse fournir. Nous présentons également des considérations heuristiques et aussi numériques concernant le problème (toujours ouvert) de savoir si le phénomène de concentration ${L}^{p}$ a lieu ou non pour $p=1$.
DOI : https://doi.org/10.5802/aif.2298
Classification:  42A05,  42A10,  42A32
Keywords: Idempotents, idempotent trigonometric polynomials, ${L}^{p}$ norms, Dirichlet kernel, concentrating norms, sums of exponentials, ${L}^{1}$ concentration conjecture, weak restricted operators.
@article{AIF_2007__57_5_1377_0,
author = {Anderson, B. and Ash, J.~M. and Jones, R.~L. and Rider, D. G. and Saffari, B.},
title = {Exponential sums with coefficients $0$ or $1$ and concentrated $L^{p}$ norms},
journal = {Annales de l'Institut Fourier},
publisher = {Association des Annales de l'institut Fourier},
volume = {57},
number = {5},
year = {2007},
pages = {1377-1404},
doi = {10.5802/aif.2298},
zbl = {1133.42004},
mrnumber = {2364133},
language = {en},
url = {https://aif.centre-mersenne.org/item/AIF_2007__57_5_1377_0}
}

Exponential sums with coefficients $0$ or $1$ and concentrated $L^{p}$ norms. Annales de l'Institut Fourier, Volume 57 (2007) no. 5, pp. 1377-1404. doi : 10.5802/aif.2298. https://aif.centre-mersenne.org/item/AIF_2007__57_5_1377_0/

 Anderson, Bruce; Ash, J. Marshall; Jones, Roger L.; Rider, Daniel G.; Saffari, Bahman ${L}^{p}$ norm local estimates for exponential sums, C. R. Acad. Sci. Paris Sér. I Math., Tome 330 (2000) no. 9, pp. 765-769 | Article | MR 1769944 | Zbl 0971.11047

 Ash, J. Marshall Weak restricted and very restricted operators on ${L}^{2}$, Trans. Amer. Math. Soc., Tome 281 (1984) no. 2, pp. 675-689 | MR 722768 | Zbl 0537.42009

 Ash, J. Marshall Triangular Dirichlet kernels and growth of ${L}^{p}$ Lebesgue constants (2004) (preprint, http://condor.depaul.edu/~mash/YudinLp.pdf)

 Ash, J. Marshall; Jones, Roger L.; Saffari, Bahman Inégalités sur des sommes d’exponentielles, C. R. Acad. Sci. Paris Sér. I Math., Tome 296 (1983) no. 22, pp. 899-902 | Zbl 0537.42001

 Cowling, Michael Some applications of Grothendieck’s theory of topological tensor products in harmonic analysis, Math. Ann., Tome 232 (1978) no. 3, pp. 273-285 | Article | Zbl 0343.43012

 Déchamps, Myriam; Queffélec, Hervé; Piquard, Françoise Estimations locales de sommes d’exponentielles, Harmonic analysis: study group on translation-invariant Banach spaces, Univ. Paris XI, Orsay (Publ. Math. Orsay) Tome 84 (1984), pp. Exp. No. 1, 16 | Zbl 0562.42010

 Dechamps-Gondim, Myriam; Piquard-Lust, Françoise; Queffélec, Hervé Estimations locales de sommes d’exponentielles, C. R. Acad. Sci. Paris Sér. I Math., Tome 297 (1983) no. 3, pp. 153-156 | Zbl 0534.42001

 Harman, Glyn Metric number theory, The Clarendon Press Oxford University Press, New York, London Mathematical Society Monographs. New Series, Tome 18 (1998) | MR 1672558 | Zbl 1081.11057

 Kahane, Jean-Pierre (1982) (personal communication)

 Kahane, Jean-Pierre Some random series of functions, Cambridge University Press, Cambridge, Cambridge Studies in Advanced Mathematics, Tome 5 (1985) | MR 833073 | Zbl 0571.60002

 Körner, T. W. Fourier analysis, Cambridge University Press, Cambridge (1989) | MR 1035216 | Zbl 0649.42001

 Montgomery, H. L. (November 1980 and October 1982) (personal communications)

 Nazarov, F. L.; Podkorytov, A. N. The behavior of the Lebesgue constants of two-dimensional Fourier sums over polygons, St. Petersburg Math. J., Tome 7 (1996), pp. 663-680 | MR 1356537 | Zbl 0859.42011

 Pichorides, S. K. (1980) (personal communication)

 Yudin, A. A.; Yudin, V. A. Polygonal Dirichlet kernels and growth of Lebesgue constants, Mat. Zametki, Tome 37 (1985) no. 2, p. 220-236, 301 (English translation: Math. Notes, 37 (1985), no. 1-2, 124–135) | MR 784367 | Zbl 0575.42002

 Zygmund, A. Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York (1959) | MR 107776 | Zbl 0085.05601