A note on M. Soares’ bounds
Annales de l'Institut Fourier, Volume 56 (2006) no. 1, p. 269-276
We give an intersection theoretic proof of M. Soares’ bounds for the Poincaré-Hopf index of an isolated singularity of a foliation of ℂℙ n .
Nous employons des outils de la théorie d’intersection résiduelle pour donner une démonstration de l’inegalité obtenue par M. Soares pour l’indice de Poincaré-Hopf d’une singularité isolée d’un feuilletage de ℂℙ n .
DOI : https://doi.org/10.5802/aif.2180
Classification:  32S65,  14C17,  37F75
Keywords: intersection theory, singularities, foliations
@article{AIF_2006__56_1_269_0,
     author = {Esteves, Eduardo and Vainsencher, Israel},
     title = {A note on M. Soares' bounds},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {56},
     number = {1},
     year = {2006},
     pages = {269-276},
     doi = {10.5802/aif.2180},
     zbl = {1089.32025},
     mrnumber = {2228688},
     language = {en},
     url = {https://aif.centre-mersenne.org/item/AIF_2006__56_1_269_0}
}
A note on M. Soares’ bounds. Annales de l'Institut Fourier, Volume 56 (2006) no. 1, pp. 269-276. doi : 10.5802/aif.2180. https://aif.centre-mersenne.org/item/AIF_2006__56_1_269_0/

[1] Esteves, E. The Castelnuovo-Mumford regularity of an integral variety of a vector field on projective space, Math. Res. Lett., Tome 9 (2002), pp. 1-15 | MR 1892310 | Zbl 1037.14022

[2] Fulton, W. Intersection theory, Springer, New York (1985) | MR 732620 | Zbl 0541.14005

[3] Griffiths, P.; Harris, J. Principles of algebraic geometry, John Wiley & Sons, New York (1978) | MR 507725 | Zbl 0408.14001

[4] Soares, M. The Poincaré problem for hypersurfaces invariant by one-dimensional foliations, Invent. math., Tome 128 (1997), pp. 495-500 | Article | MR 1452431 | Zbl 0923.32025

[5] Soares, M. Bounding Poincaré-Hopf indices and Milnor numbers, Math. Nachrichten, Tome 278 (2005) no. 6, pp. 703-711 | Article | MR 2135502 | Zbl 02183902

[6] Suwa, T. Indices of vector fields and residues of singular holomorphic foliations, Hermann, Paris (1998) | MR 1649358 | Zbl 0910.32035

[7] Vainsencher, I. Classes características em geometria algébrica, IMPA, Rio de Janeiro (1985) | MR 812276