Exponents of Diophantine Approximation and Sturmian Continued Fractions
Annales de l'Institut Fourier, Volume 55 (2005) no. 3, p. 773-804
Let ξ be a real number and let n be a positive integer. We define four exponents of Diophantine approximation, which complement the exponents w n (ξ) and w n * (ξ) defined by Mahler and Koksma. We calculate their six values when n=2 and ξ is a real number whose continued fraction expansion coincides with some Sturmian sequence of positive integers, up to the initial terms. In particular, we obtain the exact exponent of approximation to such a continued fraction ξ by quadratic surds.
Soient ξ un nombre réel et n un entier strictement positif. Nous définissons quatre exposants d’approximation diophantienne, qui viennent compléter les exposants w n (ξ) et w n * (ξ) définis par Mahler et Koksma. Nous calculons leurs six valeurs lorsque n=2 et ξ est un nombre réel dont le développement en fraction continue est, aux premiers termes près, une suite sturmienne d’entiers positifs. En particulier, nous obtenons l’exposant exact d’approximation d’une telle fraction continue ξ par des nombres quadratiques
DOI : https://doi.org/10.5802/aif.2114
Classification:  11J13,  11J82
Keywords: Diophantine approximation, Sturmian sequence, simultaneous approximation, transcendence measure
@article{AIF_2005__55_3_773_0,
     author = {Bugeaud, Yann and Laurent, Michel},
     title = {Exponents of Diophantine Approximation and Sturmian Continued Fractions},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {55},
     number = {3},
     year = {2005},
     pages = {773-804},
     doi = {10.5802/aif.2114},
     mrnumber = {2149403},
     zbl = {02171525},
     zbl = {1155.11333},
     language = {en},
     url = {https://aif.centre-mersenne.org/item/AIF_2005__55_3_773_0}
}
Exponents of Diophantine Approximation and Sturmian Continued Fractions. Annales de l'Institut Fourier, Volume 55 (2005) no. 3, pp. 773-804. doi : 10.5802/aif.2114. https://aif.centre-mersenne.org/item/AIF_2005__55_3_773_0/

[1] W.W. Adams; J.L. Davison A remarkable class of continued fractions, Proc. Amer. Math. Soc., Tome 65 (1977), pp. 194-198 | Article | MR 441879 | Zbl 0366.10027

[2] J.-P. Allouche; J.L. Davison; M. Quefféle ; L.Q. Zamboni Transcendence of Sturmian or morphic continued fractions, J. Number Theory, Tome 91 (2001), pp. 39-66 | Article | MR 1869317 | Zbl 0998.11036

[3] B. Arbour; D. Roy A Gel'fond type criterion in degree two, Acta Arith., Tome 11 (2004), pp. 97-103 | MR 2038064 | Zbl 1064.11049

[4] A. Baker; W.M. Schmidt Diophantine approximation and Hausdorff dimension, Proc. London Math. Soc., Tome 21 (1970), pp. 1-11 | Article | MR 271033 | Zbl 0206.05801

[5] R.C. Baker On approximation with algebraic numbers of bounded degree, Mathematika, Tome 23 (1976), pp. 18-31 | Article | MR 409373 | Zbl 0327.10034

[6] V.I. Bernik Application of the Hausdorff dimension in the theory of Diophantine approximations, Acta Arith., Tome 42 (1983), pp. 219-253 | MR 729734 | Zbl 0482.10049

[7] Y. Bugeaud On the approximation by algebraic numbers with bounded degree, Algebraic number theory and Diophantine analysis (Graz, 1998), de Gruyter, Berlin (2000), pp. 47-53 | Zbl 0959.11033

[8] Y. Bugeaud Approximation par des nombres algébriques, J. Number Theory, Tome 84 (2000), pp. 15-33 | Article | MR 1782258 | Zbl 0967.11025

[9] Y. Bugeaud Mahler's classification of numbers compared with Koksma's, Acta Arith., Tome 110 (2003), pp. 89-105 | Article | MR 2007546 | Zbl 1029.11034

[10] Y. Bugeaud Approximation by algebraic numbers, Cambridge University Press, Cambridge Tracts in Math., Tome 160 (2004) | MR 2136100 | Zbl 1055.11002

[11] Y. Bugeaud; O. Teulié Approximation d'un nombre réel par des nombres algébriques de degré donné, Acta Arith., Tome 93 (2000), pp. 77-86 | MR 1760090 | Zbl 0948.11029

[12] J. Cassaigne Limit values of the recurrence quotient of Sturmian sequences, Theor. Comput. Sci., Tome 218 (1999), pp. 3-12 | Article | MR 1687748 | Zbl 0916.68115

[13] H. Davenport; W.M. Schmidt Approximation to real numbers by quadratic irrationals, Acta Arith., Tome 13 (1967), pp. 169-176 | MR 219476 | Zbl 0155.09503

[14] H. Davenport; W.M. Schmidt Approximation to real numbers by algebraic integers, Acta Arith., Tome 15 (1969), pp. 393-416 | MR 246822 | Zbl 0186.08603

[15] H. Davenport; W.M. Schmidt Dirichlet's theorem on Diophantine approximation, Academic Press, London (Symposia Mathematica (INDAM, Rome, 1968/69)) Tome IV (1970), pp. 113-132 | Zbl 0226.10032

[16] J.L. Davison A series and its associated continued fraction, Proc. Amer. Math. Soc., Tome 63 (1977), pp. 29-32 | Article | MR 429778 | Zbl 0326.10030

[17] K. Falconer The geometry of fractal sets, Cambridge University Press, Cambridge Tracts in Mathematics, Tome 85 (1985) | MR 867284 | Zbl 0587.28004

[18] V. Jarnik Zur metrischen Theorie der diophantischen Approximationen, Prace Mat.-Fiz., Tome 36 (1928/29), pp. 91-106 | JFM 55.0718.01

[19] V. Jarnik Zum Khintchineschen `Übertragungssatz', Trav. Inst. Math. Tbilissi, Tome 3 (1938), pp. 193-212 | Zbl 0019.10602

[20] J.F. Koksma Über die Mahlersche Klasseneinteilung der transzendenten Zahlen und die Approximation komplexer Zahlen durch algebraische Zahlen, Monats. Math. Phys., Tome 48 (1939), pp. 176-189 | Article | JFM 65.0180.01 | MR 845 | Zbl 0021.20804

[21] M. Laurent Some remarks on the approximation of complex numbers by algebraic numbers, Proceedings of the 2nd Panhellenic Conference in Algebra and Number Theory (Thessaloniki, 1998) (Bull. Greek Math. Soc.) Tome 42 (1999), pp. 49-57 | Zbl 0971.11035

[22] M. Laurent Simultaneous rational approximation to the successive powers of a real number, Indag. Math., Tome 11 (2003), pp. 45-53 | MR 2015598 | Zbl 1049.11069

[23] K. Mahler Zur Approximation der Exponentialfunktionen und des Logarithmus. I, II, J. reine angew. Math., Tome 166 (1932), pp. 118-150 | Zbl 0003.15101

[24] M. Queffélec Approximations diophantiennes des nombres sturmiens, J. Théor. Nombres Bordeaux, Tome 14 (2002), pp. 613-628 | Article | Numdam | MR 2040697 | Zbl 02184603

[25] A.M. Rockett; P. Szüsz Continued Fractions, World Scientific, Singapore (1992) | MR 1188878 | Zbl 0925.11038

[26] D. Roy Approximation simultanée d'un nombre et son carré, C. R. Acad. Sci. Paris, Tome 336 (2003), pp. 1-6 | MR 1968892 | Zbl 1038.11042

[27] D. Roy Approximation to real numbers by cubic algebraic numbers, I, Proc. London Math. Soc., Tome 88 (2004), pp. 42-62 | Article | MR 2018957 | Zbl 1035.11028

[28] D. Roy Approximation to real numbers by cubic algebraic numbers, II, Ann. of Math., Tome 158 (2003), pp. 1081-1087 | Article | MR 2031862 | Zbl 1044.11061

[29] D. Roy Diophantine approximation in small degree, Amer. Math. Soc. (CRM Proceedings and Lecture Notes) Tome 36 (2004), pp. 269-285 | Zbl 02152663

[30] V.G. Sprindzuk Mahler's problem in metric number theory, Amer. Math. Soc., Providence, R.I. Tome 25 (1969) | MR 245527 | Zbl 0181.05502

[31] E. Wirsing Approximation mit algebraischen Zahlen beschränkten Grades, J. reine angew. Math., Tome 206 (1961), pp. 67-77 | MR 142510 | Zbl 0097.03503