Restrictions of smooth functions to a closed subset  [ Restrictions de fonctions différentiables à un sous ensemble fermé ]
Annales de l'Institut Fourier, Tome 54 (2004) no. 6, pp. 1811-1826.

Nous proposons une approche d’une conjecture de Bierstone-Milman-Pawłucki sur le problème de Whitney concernant le prolongement C d des fonctions. Elle permet de montrer que la conjecture est vraie pour des ensembles fractals classiques. Nous obtenons ensuite un raffinement d’un théorème de Spallek sur la platitude.

We first provide an approach to the conjecture of Bierstone-Milman-Pawłucki on Whitney’s problem on C d extendability of functions. For example, the conjecture is affirmative for classical fractal sets. Next, we give a sharpened form of Spallek’s theorem on flatness.

DOI : https://doi.org/10.5802/aif.2067
Classification : 26B05
Mots clés: Problème de Whitney, théorème de Spallek, fonction différentiable, fibré paratangent d'ordre supérieur, platitude, matrice de Vandermonde multi-dimensionnelle,
@article{AIF_2004__54_6_1811_0,
     author = {Izumi, Shuzo},
     title = {Restrictions of smooth functions to a closed subset},
     journal = {Annales de l'Institut Fourier},
     pages = {1811--1826},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {54},
     number = {6},
     year = {2004},
     doi = {10.5802/aif.2067},
     mrnumber = {2134225},
     zbl = {1083.26009},
     language = {en},
     url = {aif.centre-mersenne.org/item/AIF_2004__54_6_1811_0/}
}
Izumi, Shuzo. Restrictions of smooth functions to a closed subset. Annales de l'Institut Fourier, Tome 54 (2004) no. 6, pp. 1811-1826. doi : 10.5802/aif.2067. https://aif.centre-mersenne.org/item/AIF_2004__54_6_1811_0/

[AS] A.A. Akopyan; A.A. Saakyan Multivariate splines and polynomial interpolation, Russian Math. Surveys, Tome 48 (1993) no. 5, pp. 1-72 | MR 1258755 | Zbl 0813.41027

[B] G. Bouligand Introduction à la géométrie infinitésimale directe, Vuibert, Paris, 1932 | JFM 58.0086.03 | Zbl 0005.37501

[BMP1] E. Bierstone; P. Milman; W. Pawłucki Composite differentiable functions, Duke Math. J., Tome 83 (1996), pp. 607-620 | Zbl 0868.32011

[BMP2] E. Bierstone; P. Milman; W. Pawłucki Differentiable functions defined in closed sets. A problem of Whitney, Invent. Math., Tome 151 (2003), pp. 329-352 | Zbl 1031.58002

[C] G. Choquet Convergence, Ann. Inst. Fourier, Tome 23 (1948), pp. 57-112 | Numdam | Zbl 0031.28101

[F] K. Falconer Techniques in fractal geometry, John-Wiley and Sons, 1997 | MR 1449135 | Zbl 0869.28003

[G1] G. Glaeser Études de quelques algèbres tayloriennes, J. Anal. Math., Tome 6 (1958), pp. 1-124 | MR 101294 | Zbl 0091.28103

[G2] G. Glaeser; ed. C.T.C. Wall L'interpolation des fonctions différentiables de plusieurs variables, Proceedings of Liverpool singularities symposium II (Lecture Notes in Math.) Tome 209 (1971), pp. 1-33 | Zbl 0214.08001

[I] S. Izumi Flatness of differentiable functions along a subset of a real analytic set, J. Anal. Math., Tome 86 (2002), pp. 235-246 | MR 1894483 | Zbl 1032.32007

[K] P. Kergin A natural interpolation of 𝒞 K functions, J. Approx. Theory, Tome 29 (1980), pp. 278-293 | MR 598722 | Zbl 0492.41008

[MM] C.A. Micchelli; P. Milman A formula for Kergin interpolation in k , J. Approx. Theory, Tome 29 (1980), pp. 294-296 | MR 598723 | Zbl 0454.41002

[S] K. Spallek -Platte Funktionen auf semianalytischen Mengen, Math. Ann., Tome 227 (1977), pp. 277-286 | MR 450630 | Zbl 0333.32025

[W1] H. Whitney Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc., Tome 36 (1934), pp. 63-89 | JFM 60.0217.01 | MR 1501735 | Zbl 0008.24902

[W2] H. Whitney Differentiable functions defined in closed sets. I, Trans. Amer. Math. Soc., Tome 36 (1934) no. 2, pp. 369-387 | MR 1501749 | Zbl 0009.20803

[YHK] M. Yamaguti; M. Hata; J. Kigami Mathematics of Fractals, Transl. Math. Monog., Tome 167, Amer. Math. Soc., Providence, 1997 | MR 1471705 | Zbl 0888.58030