The level crossing problem in semi-classical analysis. II. The Hermitian case  [ Le problème des croisements des valeurs propres en analyse semi-classique. II : le cas hermitien ]
Annales de l'Institut Fourier, Tome 54 (2004) no. 5, pp. 1423-1441.

Cet article est la seconde partie de l’article ``The level crossing problem in semi- classical analysis I. The symmetric case’’ (Annales de l’Institut Fourier, volume en l’honneur de Frédéric Pham). Nous considérons ici le cas où la matrice de dispersion est hermitienne.

This paper is the second part of the paper ``The level crossing problem in semi-classical analysis I. The symmetric case’’(Annales de l’Institut Fourier in honor of Frédéric Pham). We consider here the case where the dispersion matrix is complex Hermitian.

DOI : https://doi.org/10.5802/aif.2054
Classification : 35C20,  35Q40,  35S30,  53D05
Mots clés: conversion de modes, polarisation, approximation de Born-Oppenheimer, croisement de valeurs propres, système pseudo-différentiel, analyse semi-classique, forme normale
@article{AIF_2004__54_5_1423_0,
     author = {Colin de Verdi\`ere, Yves},
     title = {The level crossing problem in semi-classical analysis. II. The Hermitian case},
     journal = {Annales de l'Institut Fourier},
     pages = {1423--1441},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {54},
     number = {5},
     year = {2004},
     doi = {10.5802/aif.2054},
     zbl = {1067.35162},
     mrnumber = {2127853},
     language = {en},
     url = {aif.centre-mersenne.org/item/AIF_2004__54_5_1423_0/}
}
Colin de Verdière, Yves. The level crossing problem in semi-classical analysis. II. The Hermitian case. Annales de l'Institut Fourier, Tome 54 (2004) no. 5, pp. 1423-1441. doi : 10.5802/aif.2054. https://aif.centre-mersenne.org/item/AIF_2004__54_5_1423_0/

[1] V. Arnold Mathematical Methods of Classical Mechanics, Springer, 1988 | Zbl 0386.70001

[2] P. Braam; H. Duistermaat Normal forms of real symmetric systems with multiplicity, Indag. Math., N.S. (4) (1993) no. 4, pp. 407-421 | MR 1252985 | Zbl 0802.35176

[3] Y. Colin de Verdière The level crossing problem in semi-classical analysis I. The symmetric case, Ann. Inst. Fourier, Tome 53 (2003), pp. 1023-1054 | Numdam | MR 2033509 | Zbl 02014671

[4] Y. Colin de Verdière Bohr-Sommerfeld phases for avoided crossings (2004) (preprint)

[5] Y. Colin de Verdière; M. Lombardi; J. Pollet The microlocal Landau-Zener formula, Annales de l'IHP (Physique théorique), Tome 71 (1999), pp. 95-127 | Numdam | MR 1704655 | Zbl 0986.81027

[6] Y. Colin de Verdière; J. Vey Le lemme de Morse isochore, Topology, Tome 18 (1979), pp. 283-293 | MR 551010 | Zbl 0441.58003

[7] F. Faure; B. Zhilinskii Topological Chern Indices in Molecular Spectra, Phys. Rev. Letters, Tome 85 (2000), pp. 960-963

[8] F. Faure; B. Zhilinskii Topological properties of the Born-Oppenheimer approximation and implications for the exact spectrum, Lett. Math. Phys, Tome 55 (2001), pp. 219-239 | MR 1843445 | Zbl 0981.81028

[9] C. Fermanian-Kammerer A non-commutative Landau-Zener formula, Math. Nacht, Tome 271 (2004), pp. 22-50 | MR 2068882 | Zbl 1050.35093

[10] C. Fermanian-Kammerer Wigner measures and molecular propagation through generic energy level crossings, Rev. Math. Phys, Tome 15 (2003), pp. 1285-1317 | MR 2038071 | Zbl 02102846

[11] C. Fermanian-Kammerer Semi-classical analysis of generic codimension 3 crossings, International Math. Research Notices, Tome 45 (2004), pp. 2391-2435 | MR 2076099 | Zbl 02150554

[12] C. Fermanian-Kammerer; P. Gérard A Landau-Zener formula for non-degenerated involutive codimension $3$ crossings, Ann. Henri Poincaré, Tome 4 (2003), pp. 513-552 | MR 2007256 | Zbl 1049.81029

[13] W. Flynn; R. Littlejohn Semi-classical theory of spin-orbit coupling, Phys. Rev. A, Tome 45 (1992), pp. 7697-7717 | MR 1167156

[14] G. Hagedorn Molecular Propagation through Electron Energy Level Crossings, Memoirs of the AMS, Tome 536 (1994) | MR 1234882 | Zbl 0833.92025

[15] A. Joye Proof of the Landau-Zener Formula, Asymptotic Analysis, Tome 9 (1994), pp. 209-258 | MR 1295294 | Zbl 0814.35109

[16] A. Kaufman; E. Tracy Ray Helicity: a Geometric Invariant for Multidimensional Resonant Wave Conversion, Phys. Rev. Lett, Tome 91 (2003)

[17] J. Moser On the generalization of a theorem of Liapounoff, Comm. Pure Appl. Math, Tome 11 (1958), pp. 257-271 | MR 96021 | Zbl 0082.08003

[18] E. Nelson Topics in dynamics, I: Flows, Princeton Univ. Press, 1969 | MR 282379 | Zbl 0197.10702

[19] V. Rousse Landau-Zener Transitions for Eigenvalue Avoided Crossings in the Adiabatic and Born-Oppenheimer Approximations, Asymptotic Analysis, Tome 37 (2004), pp. 293-328 | MR 2047743 | Zbl 02135382

[20] J. Williamson On an algebraic problem concerning the normal forms of linear dynamical systems, American J. Maths, Tome 58 (1936), pp. 141-163 | JFM 63.1290.01 | MR 1507138 | Zbl 0013.28401