Relative Chow correspondences and the Griffiths group
Annales de l'Institut Fourier, Tome 50 (2000) no. 4, pp. 1073-1098.

Une version relative de constructions récentes et le théorème de Lefschetz rationnel de Nori fournissent des exemples intéressants de la filtration topologique sur les cycles algébriques.

A relativization of earlier constructions and Nori’s rational Lefschetz theorem enable interesting examples of the “topological filtration” on algebraic cycles.

@article{AIF_2000__50_4_1073_0,
     author = {Friedlander, Eric M.},
     title = {Relative Chow correspondences and the Griffiths group},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {50},
     number = {4},
     year = {2000},
     pages = {1073-1098},
     doi = {10.5802/aif.1785},
     mrnumber = {1799738},
     mrnumber = {2002g:14010},
     zbl = {0960.14005},
     language = {en},
     url = {aif.centre-mersenne.org/item/AIF_2000__50_4_1073_0/}
}
Friedlander, Eric M. Relative Chow correspondences and the Griffiths group. Annales de l'Institut Fourier, Tome 50 (2000) no. 4, pp. 1073-1098. doi : 10.5802/aif.1785. https://aif.centre-mersenne.org/item/AIF_2000__50_4_1073_0/

[A] F. Almgren, Homotopy groups of the integral cycle groups, Topology, 1 (1962), 257-299. | MR 26 #4355 | Zbl 0118.18503

[AF] A. Andreotti and T. Frankel, The Lefschetz theorem on hyperplane sections, Ann. of Math., (2), 69 (1959), 713-717. | MR 31 #1685 | Zbl 0115.38405

[B] D. Barlet, Espace analytique réduit des cycles analytiques complexes compacts d'un espace analytique complexe de dimension finite, Fonctions de plusieurs variables, II, Lecture Notes in Math. 482, Springer-Verlag, (1975), 1-158. | MR 53 #3347 | Zbl 0331.32008

[De] P. Deligne, Théorie de Hodge III, Pub. I.H.E.S., 44 (1974), 5-77. | | Numdam | MR 58 #16653b | Zbl 0237.14003

[D] A. Dold, Lectures on Algebraic Topology, Springer-Verlag, 1972. | MR 54 #3685 | Zbl 0234.55001

[F1] E. Friedlander, Algebraic cycles, Chow varieties, and Lawson homology, Compositio Math., 77 (1991), 55-93. | | Numdam | MR 92a:14005 | Zbl 0754.14011

[F2] E. Friedlander, Filtrations on algebraic cycles and homology, Annales Ec. Norm. Sup. 4e série, t. 28 (1995), 317-343. | | Numdam | MR 96i:14004 | Zbl 0854.14006

[F3] E. Friedlander, Algebraic cocycles on quasi-projective varieties, Compositio Math., 110 (1998), 127-162. | MR 2000a:14024 | Zbl 0915.14004

[F4] E. Friedlander, Bloch-Ogus properties for topological cycle theory, Annales Ec. Norm. Sup., 33 (2000), 57-79. | | Numdam | MR 2000m:14025 | Zbl 0982.14011

[FG] E. Friedlander and O. Gabber, Cycle spaces and intersection theory, in Topological Methods in Modern Mathematics, (1993), 325-370. | MR 94j:14010 | Zbl 0830.14008

[FL1] E. Friedlander and H.B. Lawson, A theory of algebraic cocycles, Annals of Math., 136 (1992), 361-428. | MR 93g:14013 | Zbl 0788.14014

[FL2] E. Friedlander and H.B. Lawson, Moving algebraic cycles of bounded degree, Inventiones Math., 132 (1998), 92-119. | MR 99k:14011 | Zbl 0936.14005

[FL3] E. Friedlander and H.B. Lawson, Graph mappings and Poincaré duality, preprint.

[FM1] E. Friedlander and B. Mazur, Filtrations on the homology of algebraic varieties, Memoir, A.M.S., 529 (1994). | MR 95a:14023 | Zbl 0841.14019

[FM2] E. Friedlander and B. Mazur, Correspondence homomorphisms for singular varieties, Ann. Inst. Fourier, Grenoble, 44-3 (1994), 703-727. | Numdam | MR 95j:14009 | Zbl 0811.14007

[FW] E. Friedlander and M. Walker, Function spaces and continuous algebraic pairings for varieties, to appear in Compositio Math. | Zbl 01587226

[H] H. Hironaka, Triangulations of algebraic sets, Proc. of Symposia in Pure Math., 29 (1975), 165-185. | MR 51 #10331 | Zbl 0332.14001

[LiF] P. Lima-Filho, Completions and fibrations for topological monoids, Trans. A.M.S., 340 (1993), 127-147. | MR 94a:55009 | Zbl 0788.55013

[N] M. Nori, Algebraic cycles and Hodge theoretic connectivity, Inventiones Math., 111 (1993), 349-373. | MR 94b:14007 | Zbl 0822.14008

[Sp] E. Spanier, Algebraic Topology, McGraw-Hill, 1966. | MR 35 #1007 | Zbl 0145.43303

[SV] A. Suslin and V. Voevodsky, Relative cycles and Chow sheaves, Cycles, transfers, and Motivic Homology Theories (V. Voevodsky, A. Suslin, and E. Friedlander, ed.), Annals of Math. Studies, 143 (2000), 10-86. | MR 1764199 | Zbl 01526535