# ANNALES DE L'INSTITUT FOURIER

Eigenvalue asymptotics for the Pauli operator in strong nonconstant magnetic fields
Annales de l'Institut Fourier, Volume 49 (1999) no. 5, p. 1603-1636
We consider the Pauli operator $\mathbf{H}\left(\mu \right):={\left({\sum }_{j=1}^{m}{\sigma }_{j}\left(-i\frac{\partial }{\partial {x}_{j}}-\mu {A}_{j}\right)\right)}^{2}+V$ selfadjoint in ${L}^{2}\left({ℝ}^{m};{ℂ}^{2}\right)$, $m=2,3$. Here ${\sigma }_{j}$, $j=1,...,m$, are the Pauli matrices, $A:=\left({A}_{1},...,{A}_{m}\right)$ is the magnetic potential, $\mu >0$ is the coupling constant, and $V$ is the electric potential which decays at infinity. We suppose that the magnetic field generated by $A$ satisfies some regularity conditions; in particular, its norm is lower-bounded by a positive constant, and, in the case $m=3$, its direction is constant. We investigate the asymptotic behaviour as $\mu \to \infty$ of the number of the eigenvalues of $\mathbf{H}\left(\mu \right)$ smaller than $\lambda$, the parameter $\lambda <0$ being fixed. Furthermore, if $m=2$, we study the asymptotics as $\mu \to \infty$ of the number of the eigenvalues of $\mathbf{H}\left(\mu \right)$ situated on the interval $\left({\lambda }_{1},{\lambda }_{2}\right)$ with $0<{\lambda }_{1}<{\lambda }_{2}$.
On considère l’opérateur de Pauli $\mathbf{H}\left(\mu \right):={\left({\sum }_{j=1}^{m}{\sigma }_{j}\left(-i\frac{\partial }{\partial {x}_{j}}-\mu {A}_{j}\right)\right)}^{2}+V$ autoadjoint dans ${L}^{2}\left({ℝ}^{m};{ℂ}^{2}\right)$, $m=2,3$. Ici ${\sigma }_{j}$, $j=1,...,m$, sont les matrices de Pauli, $A:=\left({A}_{1},...,{A}_{m}\right)$ est le potentiel magnétique, $\mu >0$ est la constante de couplage, et $V$ est le potentiel électrique qui décroît à l’infini. On suppose que le champ magnétique engendré par $A$ satisfait à certaines conditions de régularité; en particulier, sa norme est minorée par une constante strictement positive et, dans le cas $m=3$, sa direction est constante. On analyse le comportement asymptotique quand $\mu \to \infty$ du nombre des valeurs propres de $\mathbf{H}\left(\mu \right)$ inférieures à $\lambda$, le paramètre $\lambda <0$ étant fixé. De plus, si $m=2$, on étudie l’asymptotique lorsque $\mu \to \infty$ du nombre des valeurs propres de $\mathbf{H}\left(\mu \right)$ appartenant à l’intervalle $\right]{\lambda }_{1},{\lambda }_{2}\left[$ avec $0<{\lambda }_{1}<{\lambda }_{2}$.
@article{AIF_1999__49_5_1603_0,
author = {Raikov, Georgi D.},
title = {Eigenvalue asymptotics for the Pauli operator in strong nonconstant magnetic fields},
journal = {Annales de l'Institut Fourier},
publisher = {Association des Annales de l'institut Fourier},
volume = {49},
number = {5},
year = {1999},
pages = {1603-1636},
doi = {10.5802/aif.1731},
mrnumber = {2000k:35227},
zbl = {0935.35109},
language = {en},
url = {https://aif.centre-mersenne.org/item/AIF_1999__49_5_1603_0}
}

Raikov, Georgi D. Eigenvalue asymptotics for the Pauli operator in strong nonconstant magnetic fields. Annales de l'Institut Fourier, Volume 49 (1999) no. 5, pp. 1603-1636. doi : 10.5802/aif.1731. https://aif.centre-mersenne.org/item/AIF_1999__49_5_1603_0/

[AHS] J. Avron, I. Herbst, B. Simon, Schrödinger operators with magnetic fields. I. General interactions, Duke. Math. J., 45 (1978), 847-883. | MR 80k:35054 | Zbl 0399.35029

[B] M.Š. Birman, On the spectrum of singular boundary value problems, Mat. Sbornik, 55 (1961) 125-174 (Russian); Engl. transl. in Amer. Math. Soc. Transl., (2) 53 (1966), 23-80. | MR 26 #463 | Zbl 0174.42502

[E] L. Erdös, Ground state density of the Pauli operator in the large field limit, Lett.Math.Phys., 29 (1993), 219-240. | MR 95a:81080 | Zbl 0850.81030

[Hö] L. Hörmander, The Analysis of Linear Partial Differential Operators. IV, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1985. | Zbl 0612.35001

[IT1] A. Iwatsuka, H. Tamura, Asymptotic distribution of eigenvalues for Pauli operators with nonconstant magnetic fields, Duke J.Math., 93 (1998), 535-574. | MR 2000d:35172 | Zbl 0948.35091

[IT2] A. Iwatsuka, H. Tamura, Asymptotic distribution of negative eigenvalues for two dimensional Pauli operators with nonconstant magnetic fields, Ann. Inst. Fourier, 48-2 (1998), 479-515. | Numdam | MR 99e:35168 | Zbl 0909.35100

[KMSz] M. Kac, W.L. Murdock, G. Szegö, On the eigenvalues of certain hermitian forms, Journ. Rat. Mech. Analysis, 2 (1953), 767-800. | MR 15,538b | Zbl 0051.30302

[R1] G.D. Raikov, Eigenvalue asymptotics for the Schrödinger operator in strong constant magnetic fields, Commun. P.D.E., 23 (1998), 1583-1619. | MR 99i:35120 | Zbl 0919.35097

[R2] G.D. Raikov, Eigenvalue asymptotics for the Dirac operator in strong constant magnetic fields, Math. Phys. Electron. J., 5, n° 2 (1999), 22 p. http://www.ma.utexas.edu/mpej/. | MR 2000h:35127 | Zbl 0923.35112

[Sh] I. Shigekawa, Spectral properties of Schrödinger operators with magnetic fields for a spin 1/2 particle, J. Func. Anal., 101 (1991), 255-285. | MR 93g:35101 | Zbl 0742.47002

[W] H. Widom, Eigenvalue distribution in certain homogeneous spaces, J. Func. Anal., 71 (1979), 139-147. | MR 80h:58054 | Zbl 0414.43010