Riesz potentials and amalgams
Annales de l'Institut Fourier, Volume 49 (1999) no. 4, p. 1345-1367
Let (M,d) be a metric space, equipped with a Borel measure μ satisfying suitable compatibility conditions. An amalgam A p q (M) is a space which looks locally like L p (M) but globally like L q (M). We consider the case where the measure μ(B(x,ρ) of the ball B(x,ρ) with centre x and radius ρ behaves like a polynomial in ρ, and consider the mapping properties between amalgams of kernel operators where the kernel kerK(x,y) behaves like d(x,y) -a when d(x,y)1 and like d(x,y) -b when d(x,y)1. As an application, we describe Hardy–Littlewood–Sobolev type regularity theorems for Laplace–Beltrami operators on Riemannian manifolds and for certain subelliptic operators on Lie groups of polynomial growth.
Soit (M,d) un espace métrique, muni d’une mesure borélienne μ telle que la mesure μ(B(x,ρ)) de la boule B(x,ρ) de centre x et de rayon ρ soit polynomiale en ρ. Un amalgame A p q (M) est un espace de fonctions qui ressemble localement à L p (M) et globalement à L q (M). On étudie les applications linéaires entre amalgames dont les noyaux se comportent comme d(x,y) -a quand d(x,y)1 et comme d(x,y) -b quand d(x,y)1. On démontre un théorème de régularité du type Hardy–Littlewood–Sobolev pour l’opérateur de Laplace–Beltrami sur certaines variétés riemanniennes et pour certains opérateurs sous-elliptiques sur les groupes de Lie à croissance polynomiale.
@article{AIF_1999__49_4_1345_0,
     author = {Cowling, Michael and Meda, Stefano and Pasquale, Roberta},
     title = {Riesz potentials and amalgams},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {49},
     number = {4},
     year = {1999},
     pages = {1345-1367},
     doi = {10.5802/aif.1720},
     mrnumber = {2000i:47058},
     zbl = {0938.47027},
     language = {en},
     url = {https://aif.centre-mersenne.org/item/AIF_1999__49_4_1345_0}
}
Riesz potentials and amalgams. Annales de l'Institut Fourier, Volume 49 (1999) no. 4, pp. 1345-1367. doi : 10.5802/aif.1720. https://aif.centre-mersenne.org/item/AIF_1999__49_4_1345_0/

[1] J.-P. Bertrandias, C. Datry and C. Dupuis, Unions et intersections d'espaces Lp invariantes par translation ou convolution, Ann. Inst. Fourier, Grenoble, 28-2 (1978), 53-84. | Numdam | MR 81g:43005 | Zbl 0365.46029

[2] R.L. Bishop and R.J. Crittenden, Geometry of Manifolds, Academic Press, New York, 1964. | Zbl 0132.16003

[3] C. Carathéodory, Untersuchungen über dire Grundlagen der Thermodynamik, Math. Ann., 67 (1909), 355-386.

[4] J. Cheeger, M. Gromov and M. Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geom., 17 (1982), 15-53. | MR 84b:58109 | Zbl 0493.53035

[5] W.L. Chow, Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung, Math. Ann., 117 (1940), 98-115. | JFM 65.0398.01 | MR 1,313d | Zbl 0022.02304

[6] T. Coulhon, Dimension à l'infini d'un semi-groupe analytique, Bull. Sci. Math., 114 (1990), 485-500. | MR 91k:47091 | Zbl 0738.47032

[7] T. Coulhon, Noyau de la chaleur et discrétisation d'une variété riemannienne, Israel J. Math., 80 (1992), 289-300. | MR 93k:58213 | Zbl 0772.58055

[8] T. Coulhon, L. Saloff-Coste, Variétés riemanniennes isométriques à l'infini, Rev. Mat. Iberoamericana, 11 (1995), 687-726. | MR 96m:53035 | Zbl 0845.58054

[9] T. Coulhon, L. Saloff-Coste, Semi-groupes d'opérateurs et espaces fonctionnels sur les groupes de Lie, J. Approx. Theory, 65 (1991), 176-199. | MR 92c:47049 | Zbl 0745.47030

[10] C.B. Croke, Some isoperimetric inequalities and eigenvalue estimates, Ann. Sci. Ecole Norm. Sup., 13 (1980), 419-435. | Numdam | MR 83d:58068 | Zbl 0465.53032

[11] E.B. Davies, Heat Kernels and Spectral Theory, Cambridge Tract in Math. 92, Cambridge University Press, Cambridge, 1989. | MR 90e:35123 | Zbl 0699.35006

[12] E.B. Davies, Gaussian upper bounds for the heat kernels of some second order operators on Riemannian manifolds, J. Funct. Anal., 80 (1988), 16-32. | MR 90k:58213 | Zbl 0759.58045

[13] E.B. Davies and M.M.H. Pang, Sharp heat bounds for some Laplace operators, Quart. J. Math. Oxford, 40 (1989), 281-290. | MR 91i:58142 | Zbl 0701.35004

[14] G.B. Folland and E.M. Stein, Estimates for the ∂b-complex and analysis on the Heisenberg group, Comm. Pure Appl. Math., 27 (1974), 429-522. | MR 51 #3719 | Zbl 0293.35012

[15] J.J.F. Fournier and J. Stewart, Amalgams of Lp and lq, Bull. Amer. Math. Soc. (N.S.), 13 (1985), 1-21. | MR 86f:46027 | Zbl 0593.43005

[16] F. Holland, Harmonic analysis on amalgams of Lp and lq, J. London Math. Soc., 10 (1975), 295-305. | MR 51 #11013 | Zbl 0314.46029

[17] L. Hörmander, Hypoelliptic second-order differential equations, Acta Math., 119 (1967), 147-171. | MR 36 #5526 | Zbl 0156.10701

[18] M. Kanai, Rough isometries, and combinatorial approximation of non-compact Riemannian manifolds, J. Math. Soc. Japan, 37 (1985), 391-413. | MR 87d:53082 | Zbl 0554.53030

[19] P. Li and S.T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math., 156 (1986), 153-201. | MR 87f:58156 | Zbl 0611.58045

[20] A. Nagel, E.M. Stein and S. Wainger, Balls and metrics defined by vector fields. I: Basic properties, Acta Math., 155 (1985), 103-147. | MR 86k:46049 | Zbl 0578.32044

[21] D.W. Robinson, Elliptic Operators and Lie Groups, Oxford Mathematical Monographs, Oxford University Press, Oxford, 1991. | Zbl 0747.47030

[22] L. Saloff-Coste, Uniformly elliptic operators on Riemannian manifolds, J. Differential Geom., 36 (1992), 417-450. | MR 93m:58122 | Zbl 0780.58042

[23] N.Th. Varopoulos, Analysis on Lie groups, J. Funct. Anal., 76 (1988), 346-410. | MR 89i:22018 | Zbl 0634.22008

[24] N.Th. Varopulos, L. Saloff-Coste and T. Coulhon, Analysis and Geometry on Groups, Cambridge Tract in Math. 100, Cambridge University Press, Cambridge, 1992. | Zbl 0813.22003

[25] S.-T. Yau, Some function theoretic properties of complete Riemannian manifolds and their applications to geometry, Indiana Univ. Math. J., 25 (1976), 659-670. | MR 54 #5502 | Zbl 0335.53041