# ANNALES DE L'INSTITUT FOURIER

Recovering the total singularity of a conormal potential from backscattering data
Annales de l'Institut Fourier, Volume 48 (1998) no. 5, p. 1513-1532

The problem of recovering the singularities of a potential from backscattering data is studied. Let $\Omega$ be a smooth precompact domain in ${ℝ}^{n}$ which is convex (or normally accessible). Suppose ${V}_{i}=v+{w}_{i}$ with $v\in {C}_{c}^{\infty }\left({ℝ}^{n}\right)$ and ${w}_{i}$ conormal to the boundary of $\Omega$ and supported inside $\overline{\Omega }$ then if the backscattering data of ${V}_{1}$ and ${V}_{2}$ are equal up to smoothing, we show that ${w}_{1}-{w}_{2}$ is smooth.

On étudie le problème de la restitution de singularités d’un potentiel de la rétrodiffusion. Soit $\Omega$ un domaine précompact, convexe et ${C}^{\infty }$. Soit ${V}_{i}=v+{w}_{i}$ avec $v\in {C}_{c}^{\infty }\left({ℝ}^{n}\right)$ et ${w}_{i}$ conormale au bord de $\Omega$ et avec support dans $\overline{\Omega }$; si les données de la rétrodiffusion de ${V}_{1}$ et ${V}_{2}$ sont égaux, alors ${V}_{1}-{V}_{2}\in {C}^{\infty }$.

@article{AIF_1998__48_5_1513_0,
author = {Joshi, Mark S.},
title = {Recovering the total singularity of a conormal potential from backscattering data},
journal = {Annales de l'Institut Fourier},
publisher = {Association des Annales de l'institut Fourier},
volume = {48},
number = {5},
year = {1998},
pages = {1513-1532},
doi = {10.5802/aif.1664},
mrnumber = {2000b:35272},
zbl = {0918.35140},
language = {en},
url = {aif.centre-mersenne.org/item/AIF_1998__48_5_1513_0}
}

Joshi, Mark S. Recovering the total singularity of a conormal potential from backscattering data. Annales de l'Institut Fourier, Volume 48 (1998) no. 5, pp. 1513-1532. doi : 10.5802/aif.1664. https://aif.centre-mersenne.org/item/AIF_1998__48_5_1513_0/

 J.J. Duistermaat and L. Hörmander, Fourier Integral Operators II, Acta Mathematicae, 128 (1972), 183-269. | MR 52 #9300 | Zbl 0232.47055

 A. Greenleaf and G. Uhlmann, Recovering Singularities of a Potential from Singularities of Scattering Data, Commun. Math. Phys., 157 (1993), 549-572. | MR 94j:35188 | Zbl 0790.35112

 A. Greenleaf and G. Uhlmann, Estimates for singular Radon transforms and pseudo-differential operators with singular symbols, J. Funct. Anal., 89 (1990), 202-232. | MR 91i:58146 | Zbl 0717.44001

 V. Guillemin, G. Uhlmann, Oscillatory integrals with Singular Symbols, Duke Math. J., 48 (1981), 251-267. | MR 82d:58065 | Zbl 0462.58030

 L. Hörmander, Fourier Integral Operators I, Acta Mathematicae, 127 (1971), 79-183. | MR 52 #9299 | Zbl 0212.46601

 L. Hörmander, Analysis of Linear Partial Differential Operators, Vol. 1 to 4, Springer Verlag, Berlin, 1985.

 M.S. Joshi, An Intrinsic Characterisation of Paired Lagrangian Distributions, Proc. Amer. Math. Soc., 125 (1997), N° 5, 1537-1543. | MR 97g:46048 | Zbl 0868.58078

 M.S. Joshi, A Precise Calculus of Paired Lagrangian Distributions, M.I.T. thesis, 1994.

 M.S. Joshi, A Symbolic Contruction of the Forward Fundamental Solution of the Wave Operator, preprint. | Zbl 0917.35171

 M.S. Joshi and A. Sa Barreto, Recovering Asymptotics of Short Range Potentials, to appear in Commun. in Math. Phys. | Zbl 0920.58052

 P. Lax, R. Phillips, Scattering Theory, Revised Edition. New York, London: Academic Press, 1989. | MR 90k:35005 | Zbl 0697.35004

 R.B. Melrose, Differential Analysis on Manifolds with Corners, forthcoming.

 R.B. Melrose, Marked Lagrangian Distributions, manuscript.

 R.B. Melrose and G. Uhlmann, Lagrangian Intersection and the Cauchy Problem, Comm. on Pure and Applied Math., 32 (1979), 482-512. | MR 81d:58052 | Zbl 0406.58017

 R. Philips, Scattering Theory for the Wave Equation with Short Range Potential, Indiana Univ. Math. Journal, 31 (1982), 609-639. | Zbl 0465.35073