# ANNALES DE L'INSTITUT FOURIER

Recovering the total singularity of a conormal potential from backscattering data
Annales de l'Institut Fourier, Tome 48 (1998) no. 5, pp. 1513-1532.

On étudie le problème de la restitution de singularités d’un potentiel de la rétrodiffusion. Soit $\Omega$ un domaine précompact, convexe et ${C}^{\infty }$. Soit ${V}_{i}=v+{w}_{i}$ avec $v\in {C}_{c}^{\infty }\left({ℝ}^{n}\right)$ et ${w}_{i}$ conormale au bord de $\Omega$ et avec support dans $\overline{\Omega }$; si les données de la rétrodiffusion de ${V}_{1}$ et ${V}_{2}$ sont égaux, alors ${V}_{1}-{V}_{2}\in {C}^{\infty }$.

The problem of recovering the singularities of a potential from backscattering data is studied. Let $\Omega$ be a smooth precompact domain in ${ℝ}^{n}$ which is convex (or normally accessible). Suppose ${V}_{i}=v+{w}_{i}$ with $v\in {C}_{c}^{\infty }\left({ℝ}^{n}\right)$ and ${w}_{i}$ conormal to the boundary of $\Omega$ and supported inside $\overline{\Omega }$ then if the backscattering data of ${V}_{1}$ and ${V}_{2}$ are equal up to smoothing, we show that ${w}_{1}-{w}_{2}$ is smooth.

@article{AIF_1998__48_5_1513_0,
author = {Joshi, Mark S.},
title = {Recovering the total singularity of a conormal potential from backscattering data},
journal = {Annales de l'Institut Fourier},
pages = {1513--1532},
publisher = {Association des Annales de l'institut Fourier},
volume = {48},
number = {5},
year = {1998},
doi = {10.5802/aif.1664},
zbl = {0918.35140},
mrnumber = {2000b:35272},
language = {en},
url = {aif.centre-mersenne.org/item/AIF_1998__48_5_1513_0/}
}
Joshi, Mark S. Recovering the total singularity of a conormal potential from backscattering data. Annales de l'Institut Fourier, Tome 48 (1998) no. 5, pp. 1513-1532. doi : 10.5802/aif.1664. https://aif.centre-mersenne.org/item/AIF_1998__48_5_1513_0/

[1] J.J. Duistermaat and L. Hörmander, Fourier Integral Operators II, Acta Mathematicae, 128 (1972), 183-269. | MR 52 #9300 | Zbl 0232.47055

[2] A. Greenleaf and G. Uhlmann, Recovering Singularities of a Potential from Singularities of Scattering Data, Commun. Math. Phys., 157 (1993), 549-572. | MR 94j:35188 | Zbl 0790.35112

[3] A. Greenleaf and G. Uhlmann, Estimates for singular Radon transforms and pseudo-differential operators with singular symbols, J. Funct. Anal., 89 (1990), 202-232. | MR 91i:58146 | Zbl 0717.44001

[4] V. Guillemin, G. Uhlmann, Oscillatory integrals with Singular Symbols, Duke Math. J., 48 (1981), 251-267. | MR 82d:58065 | Zbl 0462.58030

[5] L. Hörmander, Fourier Integral Operators I, Acta Mathematicae, 127 (1971), 79-183. | MR 52 #9299 | Zbl 0212.46601

[6] L. Hörmander, Analysis of Linear Partial Differential Operators, Vol. 1 to 4, Springer Verlag, Berlin, 1985.

[7] M.S. Joshi, An Intrinsic Characterisation of Paired Lagrangian Distributions, Proc. Amer. Math. Soc., 125 (1997), N° 5, 1537-1543. | MR 97g:46048 | Zbl 0868.58078

[8] M.S. Joshi, A Precise Calculus of Paired Lagrangian Distributions, M.I.T. thesis, 1994.

[9] M.S. Joshi, A Symbolic Contruction of the Forward Fundamental Solution of the Wave Operator, preprint. | Zbl 0917.35171

[10] M.S. Joshi and A. Sa Barreto, Recovering Asymptotics of Short Range Potentials, to appear in Commun. in Math. Phys. | Zbl 0920.58052

[11] P. Lax, R. Phillips, Scattering Theory, Revised Edition. New York, London: Academic Press, 1989. | MR 90k:35005 | Zbl 0697.35004

[12] R.B. Melrose, Differential Analysis on Manifolds with Corners, forthcoming.

[13] R.B. Melrose, Marked Lagrangian Distributions, manuscript.

[14] R.B. Melrose and G. Uhlmann, Lagrangian Intersection and the Cauchy Problem, Comm. on Pure and Applied Math., 32 (1979), 482-512. | MR 81d:58052 | Zbl 0406.58017

[15] R. Philips, Scattering Theory for the Wave Equation with Short Range Potential, Indiana Univ. Math. Journal, 31 (1982), 609-639. | Zbl 0465.35073