# ANNALES DE L'INSTITUT FOURIER

Tilings of convex polygons
Annales de l'Institut Fourier, Tome 47 (1997) no. 3, pp. 929-944.

Un polygone est appelé rationnel si les rapports des longueurs d’arêtes sont rationnels. On démontre qu’un polygone convexe est pavable par des polygones rationnels si et seulement s’il est lui-même rationnel. À tout polygone $P$ on associe une forme quadratique $q\left(P\right)$, qui est positive semi-définie si $P$ est pavable par des polygones rationnels.

On démontre qu’un polygone convexe $P$ d’angles multiples de $\pi /n$ est pavable par des triangles d’angles multiples de $\pi /n$ si et seulement si $P$ est semblable à un polygone dont les sommets sont dans $ℚ\left[{e}^{2\pi i/n}\right]$.

Call a polygon rational if every pair of side lengths has rational ratio. We show that a convex polygon can be tiled with rational polygons if and only if it is itself rational. Furthermore we give a necessary condition for an arbitrary polygon to be tileable with rational polygons: we associate to any polygon $P$ a quadratic form $q\left(P\right)$, which must be positive semidefinite if $P$ is tileable with rational polygons.

The above results also hold replacing the rationality condition with the following: a polygon $P$ is coordinate-rational if a homothetic copy of $P$ has vertices with rational coordinates in ${ℝ}^{2}$.

Using the above results, we show that a convex polygon $P\in ℂ$ with angles multiples of $\pi /n$ and an edge from $0$ to $1$ can be tiled with triangles having angles multiples of $\pi /n$ if and only if vertices of $P$ are in the field $ℚ\left[{e}^{2\pi i/n}\right]$.

@article{AIF_1997__47_3_929_0,
author = {Kenyon, Richard},
title = {Tilings of convex polygons},
journal = {Annales de l'Institut Fourier},
pages = {929--944},
publisher = {Association des Annales de l'institut Fourier},
volume = {47},
number = {3},
year = {1997},
doi = {10.5802/aif.1586},
mrnumber = {98h:52037},
zbl = {0873.52020},
language = {en},
url = {aif.centre-mersenne.org/item/AIF_1997__47_3_929_0/}
}
Kenyon, Richard. Tilings of convex polygons. Annales de l'Institut Fourier, Tome 47 (1997) no. 3, pp. 929-944. doi : 10.5802/aif.1586. https://aif.centre-mersenne.org/item/AIF_1997__47_3_929_0/

[1] C. Bavard, E. Ghys, Polygones du plan et polyèdres hyperboliques., Geometriae Dedicata, 43 (1992), 207-224. | MR 93k:52009 | Zbl 0758.52001

[2] J.H. Conway, J.C. Lagarias, Tilings with polyominoes and combinatorial group theory, J. Combin. Theory Ser. A., 53 (1990), 183-206. | MR 91a:05030 | Zbl 0741.05019

[3] M. Laczkovich, Tilings of polygons with similar triangles, Combinatorica, 10 (1990), 281-306. | MR 92d:52045 | Zbl 0721.52013

[4] R. Kenyon, A group of paths in ℝ2, Trans. A.M.S., 348 (1996), 3155-3172. | MR 96j:20054 | Zbl 0896.52024

[5] W.P. Thurston, Shapes of polyhedra, Univ. of Minnesota, Geometry Center Research Report GCG7.

[6] W.T. Tutte, The dissection of equilateral triangles into equilateral triangles, Proc. Camb. Phil. Soc., 44 (1948), 463-482. | MR 10,319c | Zbl 0030.40903