Integrable analytic vector fields with a nilpotent linear part
Annales de l'Institut Fourier, Volume 45 (1995) no. 5, p. 1449-1470
We study the normalization of analytic vector fields with a nilpotent linear part. We prove that such an analytic vector field can be transformed into a certain form by convergent transformations when it has a non-singular formal integral. We then prove that there are smoothly linearizable parabolic analytic transformations which cannot be embedded into the flows of any analytic vector fields with a nilpotent linear part.
On étudie la normalisation des champs de vecteurs analytiques à partie linéaire nilpotente. On démontre qu’un tel champ de vecteurs analytique peut être transformé en une certaine forme par des transformations convergentes s’il a une intégrale formelle non singulière. Alors on montre qu’il existe des applications analytiques paraboliques différentiablement linéarisables qui ne peuvent être plongées dans le flot d’aucun champ de vecteurs analytique avec une partie linéaire nilpotente.
@article{AIF_1995__45_5_1449_0,
     author = {Gong, Xianghong},
     title = {Integrable analytic vector fields with a nilpotent linear part},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {45},
     number = {5},
     year = {1995},
     pages = {1449-1470},
     doi = {10.5802/aif.1502},
     mrnumber = {96m:58229},
     zbl = {0835.58032},
     language = {en},
     url = {https://aif.centre-mersenne.org/item/AIF_1995__45_5_1449_0}
}
Integrable analytic vector fields with a nilpotent linear part. Annales de l'Institut Fourier, Volume 45 (1995) no. 5, pp. 1449-1470. doi : 10.5802/aif.1502. https://aif.centre-mersenne.org/item/AIF_1995__45_5_1449_0/

[1] V.I. Arnol'D and Yu. S. Il'Yashenko, Ordinary differential equations, in “Dynamical Systems I, EMS” vol. 1, Springer-Verlag, Berlin, 1990. | Zbl 0789.53017

[2] A. Baider and J. C. Sanders, Further reduction of the Takens-Bogdanov normal form, J. Diff. Equations, 99 (1992), 205-244. | MR 93m:58101 | Zbl 0761.34027

[3] R.I. Bogdanov, Versal deformation of a singularity of a vector field on the plane in the case of zero eigenvalues, Seminar Petrovski (1976), and Selecta Math. Soviet, n° 4, 1 (1981), 389-421. | Zbl 0518.58030

[4] D. Cerveau and R. Moussu, Groupes d'automorphismes de (C, 0) et équations différentielles y dy + ... = 0, Bull. Soc. Math. France, 116 (1988), 459-488. | Numdam | MR 90m:58192 | Zbl 0696.58011

[5] X. Gong, Divergence for the normalization of real analytic glancing hypersurfaces, Commun. Partial Diff. Equations, 19, n° 3 & 4 (1994), 643-654. | MR 95f:58079 | Zbl 0804.53080

[6] R.B. Melrose, Equivalence of glancing hypersurfaces, Invent. Math., 37 (1976), 165-191. | MR 55 #9173 | Zbl 0354.53033

[7] F. Takens, Singularities of vector fields, Publ. Math. I.H.E.S., 43 (1974), 47-100. | Numdam | MR 49 #4052 | Zbl 0279.58009

[8] S.M. Webster, Holomorphic symplectic normalization of a real function, Ann. Scuola Norm. Sup. di Pisa, 19 (1992), 69-86. | Numdam | MR 94d:32024 | Zbl 0763.58010