Calcul fonctionnel précisé pour des opérateurs elliptiques complexes en dimension un (et applications à certaines équations elliptiques complexes en dimension deux)
Annales de l'Institut Fourier, Volume 45 (1995) no. 3, p. 721-778
In this paper, we study the functional properties of the square root of differential operators of the form b(x)D(a(x)D) where a(x) and b(x) are bounded, measurable and accretive functions, and D=-id dx. We prove that T 1/2 D -1 is a Calderón-Zygmund operator which depends analytically on the pair (a,b). We prove that the semi-group operator exp(-tT 1/2 ) is bounded on all L p () with sharp pointwise estimates on its kernel. This allows to develop a theory of Hardy spaces associated with T. In a second part we prove existence and uniqueness results of the Dirichlet (and Neumann and regularity) problem for the elliptic equation t 2 u-Tu=0 with data in L p (), 1<p<+ and we obtain a weak maximum principle (p=+). We also prove a weak Harnack principle for the gradient of weak solutions of some two dimensional complex elliptic equations.
Dans cet article, on considère les opérateurs différentiels T=b(x)D(a(x)D), où a(x) et b(x) sont deux fonctions mesurables, bornées et accrétives, et D=-id dx. Les résultats principaux portent sur les propriétés fonctionnelles de T, de sa racine carrée, avec applications à l’équation elliptique t 2 u-Tu=0 sur ×[0,+[. On démontre que T 1/2 D -1 est un opérateur de Calderón-Zygmund qui dépend analytiquement du couple (a,b). Les estimations ponctuelles optimales sur le noyau du semi-groupe exp (-tL 1/2 ) et le calcul fonctionnel permettent de développer une théorie des espaces de Hardy associés à T et fournissent les résultats d’existence optimaux concernant les problèmes aux limites pour l’équation elliptique ci-dessus avec données L p . On obtient un principe du maximum faible ainsi que des résultats d’unicité en utilisant, notamment, un principe de Harnack faible pour le gradient des solutions faibles de certaines équations elliptiques complexes en dimension 2.
@article{AIF_1995__45_3_721_0,
     author = {Auscher, Pascal and Tchamitchian, Philippe},
     title = {Calcul fonctionnel pr\'ecis\'e pour des op\'erateurs elliptiques complexes en dimension un (et applications \`a certaines \'equations elliptiques complexes en dimension deux)},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {45},
     number = {3},
     year = {1995},
     pages = {721-778},
     doi = {10.5802/aif.1472},
     mrnumber = {96f:35036},
     zbl = {0819.35028},
     language = {fr},
     url = {https://aif.centre-mersenne.org/item/AIF_1995__45_3_721_0}
}
Auscher, Pascal; Tchamitchian, Philippe. Calcul fonctionnel précisé pour des opérateurs elliptiques complexes en dimension un (et applications à certaines équations elliptiques complexes en dimension deux). Annales de l'Institut Fourier, Volume 45 (1995) no. 3, pp. 721-778. doi : 10.5802/aif.1472. https://aif.centre-mersenne.org/item/AIF_1995__45_3_721_0/

[A] P. Auscher, Étude de l'opérateur √bDaD, séminaire E.D.P. de Rennes, octobre 1991.

[AMcT] P. Auscher, A. Mcintosh, et Ph. Tchamitchian, Noyau de la chaleur d'opérateurs elliptiques complexes, Math. Research Letters, 1 (1994), 37-45. | Zbl 0827.35033

[AT1] P. Auscher, et Ph. Tchamitchian, Ondelettes et conjecture de Kato, C. R. Acad. Sci. Paris, 313 (1991), 63-66. | MR 92h:47035 | Zbl 0733.47034

[AT2] P. Auscher, et Ph. Tchamitchian, Estimates on Green's kernel using wavelets and applications, in Topics in the theory and applications of wavelets, L. Schumaker and G. Webb eds., Academic Press, Boston, 1993. | Zbl 0803.35154

[AT3] P. Auscher, et Ph. Tchamitchian, Sur le problème de la racine carrée pour les opérateurs différentiels accrétifs, en cours de rédaction.

[CJ] M. Christ, et J.-L. Journé, Polynomial growth estimates for multilinear singular integral operators, Acta Math., 159 (1987), 51-80. | MR 89a:42024 | Zbl 0645.42017

[CDM] R. Coifman, D.G. Deng, et Y. Meyer, Domaine de la racine carrée de certains opérateurs différentiels accrétifs, Ann. Inst. Fourier, 33-2 (1983), 123-134. | Numdam | MR 84h:35040 | Zbl 0497.35088

[CMcM] R. Coifman, A. Mcintosh, et Y. Meyer, L'intégrale de Cauchy définit un opérateur borné sur L2(R) pour les courbes lipschitziennes, Ann. Math., 116 (1982), 361-387. | MR 84m:42027 | Zbl 0497.42012

[CMS] R. Coifman, Y. Meyer, et E.M. Stein, Some new functions spaces and their applications to harmonic analysis, J. Funct. Anal., 62 (1985), 304-335. | MR 86i:46029 | Zbl 0569.42016

[CS] R. Coifman, et S. Semmes, Real-analytic operator-valued functions defined in BMO, Volume in honor of M. Cotlar, C. Sadosky ed., Marcel Dekker, 1991. | Zbl 0709.47012

[CW] R. Coifman, et G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc., 83 (1977), 569-645. | MR 56 #6264 | Zbl 0358.30023

[CFK] M. Cwikel, E. Fabes, et C. Kenig, On the lack of L∞ estimates for solutions of elliptic systems or equations with complex coefficients, conf. in honor of Antoni Zygmund, W. Beckner et al eds., Wadsworth Math Series, (1981), 557-576. | MR 86d:35022 | Zbl 0507.35024

[D] G. David, Wavelets and singular Integrals on curves and surfaces, Lecture Notes in Math. 1465, Springer Verlag, 1991. | MR 92k:42021 | Zbl 0764.42019

[Da] E.B. Davies, Heat kernels and spectral theory, Cambridge Univ. Press, 1992.

[DJS] G. David, J.-L. Journé, et S. Semmes, Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation, Rev. Mat. Iberoamericana, 1 (1985), 1-56. | Zbl 0604.42014

[FJK] E.B. Fabes, D.S. Jerison, et C.E. Kenig, Multilinear Littlewood-Paley estimates with applications to partial differential equations, Proc. Nat. Acad. Sci. USA, 79 (1982), 5746-5750. | MR 83k:47035 | Zbl 0501.35014

[FS] C. Fefferman, et E.M. Stein, Hp spaces of several variables, Acta Math., 129 (1972) 137-193. | MR 56 #6263 | Zbl 0257.46078

[FJW] M. Frazier, B. Jawerth, B., et G. Weiss, Littlewood-Paley theory and the study of function spaces, CBMS - conference lecture notes 79, AMS, Providence RI, 1991. | MR 92m:42021 | Zbl 0757.42006

[GC-RF] J. Garcia-Cuerva, et J.-L. Rubio De Francia, Weighted norm inequalities and related topics, North Holland Math. studies, Elsevier Science Publishers B.V., Amsterdam, 1985. | MR 87d:42023 | Zbl 0578.46046

[G] M. Giaquinta, Multiple integrals in the calculus of variations and non-linear elliptic systems, Annals of Math. Studies, 105, Princeton Univ. Press, 1983. | MR 86b:49003 | Zbl 0516.49003

[GT] D. Gilbarg, et N.S. Trudinger, elliptic PDE of second order, Springer Verlag, 1983.

[H] L. Hörmander, The analysis of linear partial differential operators, tome III, Springer Verlag, 1983. | Zbl 0521.35001

[K] T. Kato, Perturbation theory for linear operators, Springer-Verlag, New York, 1966. | MR 34 #3324 | Zbl 0148.12601

[Ke] C. Kenig, Harmonic Analysis techniques for second order elliptic boundary value problems, CBMS lectures notes n° 84, American Mathematical Society, Providence. | Zbl 0812.35001

[KM] C. Kenig, et Y. Meyer, the Cauchy integral on lipschitz curves the square root of second order accretive operators are the same, Recent progress in Fourier analysis, Peral eds., Math. Studies, 111 (1985), 123-145. | MR 87h:47113 | Zbl 0641.47039

[KP] P. Kenig, et J. Pipher, The Neumann problem for elliptic equations with non-smooth coefficients, Inventiones Matematicae, 113 (1993), 447-509. | Zbl 0807.35030

[MNP] V.G. Maz'Ya, S.A. Nazarov, et B.A. Plamenevskii, Absence of the De Giorgi-type theorems for strongly elliptic equations with complex coefficients, J. Math. Sov., 28 (1985), 726-739. | Zbl 0562.35030

[Mc1] A. Mcintosh, The square root problem for elliptic operators, in Functional analytic methods for partial differential equations, Lect. notes in Math., Springer Verlag, Berlin, 1450 (1990), 122-140. | MR 91j:47056 | Zbl 0723.47032

[Mc2] A. Mcintosh, Operators which have an H∞ functional calculus, Miniconference on operator theory and partial differential equations, Proc. of the Centre for Math. Analysis., Australian National Univ., 14 (1986) 210-231. | MR 88k:47019 | Zbl 0634.47016

[McM] A. Mcintosh, et Y. Meyer, Algèbres d'opérateurs définis par des intégrales singulières, C. R. Acad. Sci. Paris, 301 (1985), 395-397. | MR 87b:47053 | Zbl 0584.47030

[M] Y. Meyer, Ondelettes et opérateurs, Hermann, volume 2, 1990. | Zbl 0694.41037

[Mo] C. Morrey, Multiple integrals in the calculus of variations, Springer Verlag, 1966. | MR 34 #2380 | Zbl 0142.38701

[S] S. Semmes, Square function estimates and the T(b) theorem, Proc. Amer. Math. Soc., 110, no. 3 (1990) 721-726. | MR 91h:42018 | Zbl 0719.42023

[T] H. Tanabe, Equations of evolution, Pitman, London, 1979. | Zbl 0417.35003