Equidimensional actions of algebraic tori
Annales de l'Institut Fourier, Volume 45 (1995) no. 3, p. 681-705
Let X be an affine conical factorial variety over an algebraically closed field of characteristic zero. We consider equidimensional and stable algebraic actions of an algebraic torus on X compatible with the conical structure. We show that such actions are cofree and the nullcones of X associated with them are complete intersections.
Soit X une variété affine conique factorielle sur un corps algébriquement clos de caractéristique zéro. Nous considérons les actions équidimensionnelles, algébriques, et stables d’un tore algébrique sur X qui sont compatibles avec la structure conique. Nous montrons que de telles actions sont colibres et que les nilcônes de X qui lui sont associés sont des intersections complètes.
@article{AIF_1995__45_3_681_0,
     author = {Nakajima, Haruhisa},
     title = {Equidimensional actions of algebraic tori},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {45},
     number = {3},
     year = {1995},
     pages = {681-705},
     doi = {10.5802/aif.1470},
     mrnumber = {96e:14055},
     zbl = {0823.14035},
     language = {en},
     url = {https://aif.centre-mersenne.org/item/AIF_1995__45_3_681_0}
}
Nakajima, Haruhisa. Equidimensional actions of algebraic tori. Annales de l'Institut Fourier, Volume 45 (1995) no. 3, pp. 681-705. doi : 10.5802/aif.1470. https://aif.centre-mersenne.org/item/AIF_1995__45_3_681_0/

[BK] W. Borho, H. Kraft, Über Bahenen und deren Deformationen bei linearen Aktionen reductiver Gruppen, Comment. Math. Helvetici, 54 (1979), 1-104. | MR 82m:14027 | Zbl 0395.14013

[CM] W. Bruns, J. Herzog, Cohen-Macaulay Rings, Cambridge Studies Advanced Math., 37, Cambridge, Cambridge Univ. 1993. | MR 95h:13020 | Zbl 0788.13005

[GM] H. Kraft, Geometrische Methoden in der Invariantentheorie, Aspecte der Mathematik, D1, Braunschweig-Wiesbaded, Vieweg, 1984. | MR 86j:14006 | Zbl 0569.14003

[H] W.H. Hesselink, Desingularizations of varieties of nullforms, Invent. Math., 55 (1979), 141-163. | MR 81b:14025 | Zbl 0401.14006

[HR] M. Hochster, J. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Advances in Math., 13 (1974), 115-175. | MR 50 #311 | Zbl 0289.14010

[K] V.G. Kac, Some remarks on nilpotent orbits, J. Algebra, 64 (1980), 190-213. | MR 81i:17005 | Zbl 0431.17007

[L] D. Luna, Slices étales, Bull. Soc. Math. France Mémoire, 33 (1973), 81-105. | Numdam | MR 49 #7269 | Zbl 0286.14014

[LR] M. Nagata, Local Rings, Interscience Tracts in Pure & Applied Math., 13, New York, Wiley, 1962. | Zbl 0123.03402

[M] A.R. Magid, Finite generation of class groups of rings of invariants, Proc. Amer. Math. Soc., 60 (1976), 45-48. | MR 55 #340 | Zbl 0344.13004

[N1] H. Nakajima, Relative invariants of finite groups, J. Algebra, 79 (1982), 218-234. | MR 84c:13006 | Zbl 0499.20029

[N2] H. Nakajima, Class groups of localities of rings of invariants of reductive algebraic groups, Math. Zeit., 182 (1983), 1-15. | MR 84j:20043 | Zbl 0488.13003

[N3] H. Nakajima, Representations of a reductive algebraic group whose algebras of invariants are complete intersections, J. reine angew. Math., 367 (1986), 115-138. | MR 87h:20069 | Zbl 0575.20036

[N4] H. Nakajima, Equidimensional toric extensions of symplectic groups, Proc. Japan Acad., 70 Ser. A (1994), 74-79. | MR 95d:20074 | Zbl 0819.20046

[N5] H. Nakajima, Semisimple algebraic groups admitting equidimensional toric extensions, in preparation.

[P1] V.L. Popov, Representations with a free module of covariants, Func. Anal. Appl., 10 (1976), 242-244. | MR 54 #5255 | Zbl 0365.20053

[P2] V.L. Popov, Modern developments in invariant theory, Proc. of International Congress of Mathematicians (Berkeley 1986) Vol. 1, 394-406, Providence, Amer. Math. Soc., 1987. | Zbl 0679.14024

[P3] V.L. Popov, Groups, Generators, Syzygies, and Orbits in Invariant Theory, Transl. Math. Monographs 100, Providence, Amer. Math. Soc., 1992. | MR 93g:14054 | Zbl 0754.13005

[S] G.W. Schwarz, Lifting smooth homotopies of orbit spaces, Inst. Hautes Etudes Sci. Publ. Math., 51 (1980), 37-136. | Numdam | MR 81h:57024 | Zbl 0449.57009

[TE] G. Kempf, F. Knudsen, D. Mumford, B. Saint-Donat, Toroidal Embeddings I, Lecture Notes in Math., 339, Berlin Heidelberg New York, Springer, 1973. | MR 49 #299 | Zbl 0271.14017

[W1] D. Wehlau, A proof of the Popov conjecture for tori, Proc. of Amer. Math. Soc., 114 (1992), 839-845. | MR 92f:14049 | Zbl 0754.20013

[W2] D. Wehlau, Equidimensional varieties and associated cones, J. Algebra, 159 (1993), 47-53. | MR 94f:14046 | Zbl 0808.14039