Ferromagnetic integrals, correlations and maximum principles
Annales de l'Institut Fourier, Volume 44 (1994) no. 2, p. 601-628
For correlations of the form (0.2) we consider a critical case and prove power decay upper bounds in terms of the fundamental solution of a certain elliptic operator. This is achieved by improving the use of a maximum principle. We also formulate a general maximum principle and give two applications.
Pour des corrélations de la forme (0,2) nous considérons un cas critique et démontrons des bornes supérieures de décroissance polynomiale en termes de la solution fondamentale d’un opérateur elliptique. Ceci est obtenu grâce à des améliorations d’un principe du maximum. Nous formulons aussi un principe du maximum général et nous donnons deux applications.
@article{AIF_1994__44_2_601_0,
     author = {Sj\"ostrand, Johannes},
     title = {Ferromagnetic integrals, correlations and maximum principles},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {44},
     number = {2},
     year = {1994},
     pages = {601-628},
     doi = {10.5802/aif.1411},
     mrnumber = {95h:81015},
     zbl = {0831.35031},
     language = {en},
     url = {https://aif.centre-mersenne.org/item/AIF_1994__44_2_601_0}
}
Ferromagnetic integrals, correlations and maximum principles. Annales de l'Institut Fourier, Volume 44 (1994) no. 2, pp. 601-628. doi : 10.5802/aif.1411. https://aif.centre-mersenne.org/item/AIF_1994__44_2_601_0/

[BL]H.J. Brascamp, E.H. Lieb, On extensions of the Brunn-Minkovski and Prékopa Leindler theorems,..., J. Funct. An., 22 (1976), 366-389. | Zbl 0334.26009

[BrFLeSp]J. Bricmont, J.R. Fontaine, J.L. Lebowitz, T. Spencer, Lattice systems with continuous symmetry II. Decay of correlations, Comm. Math. Phys., 78 (1981), 363-373.

[BrFLeLSp]J. Bricmont, J.R. Fontaine, J.L. Lebowitz, E.H. Lieb, T. Spencer, Lattice systems with continuous symmetry III. Low temperature asymptotic expansion for the plane rotator model, Comm. Math. Phys., 78 (1981), 545-566.

[C]P. Cartier, Inégalités de correlation en mécanique statistique, Sém. Bourbaki, 25ème année, 1972-1973, n° 431, Springer LNM n° 383. | Numdam

[E]R.S. Ellis, Entropy, large deviations and statistical mechanics, Grundlehren der Math. Wiss., 271, Springer (1985). | MR 87d:82008 | Zbl 0566.60097

[GlJ]J. Glimm, A. Jaffee, Quantum physics, a functional integral point of view, second edition, Springer (1987).

[Gr]G. Grimmett, Percolation, Springer (1989). | MR 90j:60109 | Zbl 0691.60089

[GRSi]F. Guerra, L. Rosen, B. Simon, The p(ø)2 Euclidean quantum field theory as classical statistical mechanics, Ann. Math., 101 (1975), 111-259.

[HS]B. Helffer, J. Sjöstrand, On the correlation for Kac like models in the convex case, report n° 9, 1992-1993, Institut Mittag-Leffler. | Zbl 0946.35508

[SinWYY]I.M. Singer, B. Wong, S.T. Yau, S.S.T. Yau, An estimate of the gap of the first two eigenvalues of the Schrödinger operator, Ann. Sc. Norm. Sup. Pisa (ser. 4), 12 (1985), 319-333. | Numdam | MR 87j:35280 | Zbl 0603.35070

[S]J. Sjöstrand, Exponential convergence of the first eigenvalue divided by the dimension, for certain sequences of Schrödinger operators, Astérisque, 210 (1992), 303-326. | Zbl 0796.35123

[So]A.D. Sokal, Mean field bounds and correlation inequalities, J. Stat. Phys., 28 (1982), 431-439.