Completeness and existence of bounded biharmonic functions on a riemannian manifold
Annales de l'Institut Fourier, Tome 24 (1974) no. 1, pp. 311-317.

A.S. Galbraith nous a communiqué la question suivante : est-ce que la complétion d’une variété implique, ou est impliquée par, la propriété que la classe H 2 B des fonctions bornées non harmoniques biharmoniques soit vide ? Parmi toutes les variétés considérées jusqu’ici dans la classification biharmonique, celles qui sont complètes ne portent pas de H 2 B-fonctions et on peut suspecter qu’il en est toujours ainsi. Nous allons montrer cependant qu’il existe bien des variétés complètes de toute dimension qui portent des H 2 B-fonctions. De plus, il existe des variétés complètes et des variétés incomplètes qui n’en portent pas et, de façon évidente, des variétés incomplètes qui en portent.

A.S. Galbraith has communicated to us the following intriguing problem: does the completeness of a manifold imply, or is it implied by, the emptiness of the class H 2 B of bounded nonharmonic biharmonic functions? Among all manifolds considered thus far in biharmonic classification theory (cf. Bibliography), those that are complete fail to carry H 2 B-functions, and one might suspect that this is always the case. We shall show, however, that there do exist complete manifolds of any dimension that carry H 2 B-functions. Moreover, there exist both complete and incomplete manifolds not permitting these functions, and, trivially, incomplete manifolds possessing them.

@article{AIF_1974__24_1_311_0,
     author = {Sario, Leo},
     title = {Completeness and existence of bounded biharmonic functions on a riemannian manifold},
     journal = {Annales de l'Institut Fourier},
     pages = {311--317},
     publisher = {Imprimerie Louis-Jean},
     address = {Gap},
     volume = {24},
     number = {1},
     year = {1974},
     doi = {10.5802/aif.502},
     zbl = {0273.31010},
     mrnumber = {50 #5688},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.502/}
}
Sario, Leo. Completeness and existence of bounded biharmonic functions on a riemannian manifold. Annales de l'Institut Fourier, Tome 24 (1974) no. 1, pp. 311-317. doi : 10.5802/aif.502. https://aif.centre-mersenne.org/articles/10.5802/aif.502/

[1] D. Hada, L. Sario, C. Wang, Dirichlet finite biharmonic functions on the Poincaré N-ball, J. Reine Angew. Math. (to appear). | Zbl 0296.31013

[2] D. Hada, L. Sario, C. Wang, N-manifolds carrying bounded but no Dirichlet finite harmonic functions, Nagoya Math. J. (to appear). | Zbl 0264.31004

[3] Y.K. Kwon, L. Sario, B. Walsh, Behavior of biharmonic functions on Wiener's and Royden's compactifications, Ann. Inst. Fourier (Grenoble) 21 (1971), 217-226. | Numdam | MR 49 #5385 | Zbl 0208.13703

[4] N. Mirsky, L. Sario, C. Wang, Bounded polyharmonic functions and the dimension of the manifold, J. Math. Kyoto Univ., 13 (1973), 529-535. | MR 50 #2530 | Zbl 0284.31007

[5] M. Nakai, Dirichlet finite biharmonic functions on the plane with distorted metrics, (to appear). | Zbl 0268.31009

[6] M. Nakai, L. Sario, Completeness and function-theoretic degeneracy of Riemannian spaces, Proc. Nat. Acad. Sci., 57 (1967), 29-31. | MR 36 #4583 | Zbl 0168.08903

[7] M. Nakai, L. Sario, Biharmonic classification of Riemannian manifolds, Bull. Amer. Math. Soc., 77 (1971), 432-436. | MR 43 #3965 | Zbl 0253.31011

[8] M. Nakai, L. Sario, Quasiharmonic classification of Riemannian manifolds, Proc. Amer. Math. Soc., 31 (1972), 165-169. | MR 44 #4692 | Zbl 0229.31006

[9] M. Nakai, L. Sario, Dirichlet finite biharmonic functions with Dirichlet finite Laplacians, Math. Z., 122 (1971), 203-216. | MR 45 #2616 | Zbl 0263.31006

[10] M. Nakai, L. Sario, A property of biharmonic functions with Dirichlet finite Laplacians, Math. Scand., 29 (1971), 307-316. | MR 46 #9897 | Zbl 0246.31009

[11] M. Nakai, L. Sario, Existence of Dirichlet finite biharmonic functions, Ann. Acad. Sci. Fenn. A.I, 532 (1973), 1-34. | MR 54 #13781 | Zbl 0264.31008

[12] M. Nakai, L. Sario, Existence of bounded biharmonic functions, J. Reine Angew. Math. 259 (1973), 147-156. | MR 47 #9482 | Zbl 0251.31003

[13] M. Nakai, L. Sario, Existence of bounded Dirichlet finite biharmonic functions, Ann. Acad. Sci. Fenn. A.I., 505 (1972), 1-12. | MR 54 #10596 | Zbl 0236.31003

[14] M. Nakai, L. Sario, Biharmonic functions on Riemannian manifolds, Continuum Mechanics and Related Problems of Analysis, Nauka, Moscow, 1972, 329-335. | MR 52 #6002 | Zbl 0253.31004

[15] L. Sario, Biharmonic and quasiharmonic functions on Riemannian manifolds, Duplicated lecture notes 1968-1970, University of California, Los Angeles.

[16] L. Sario, M. Nakai, Classification Theory of Riemann Surfaces, Springer-Verlag, 1970, 446 pp. | MR 41 #8660 | Zbl 0199.40603

[17] L. Sario, C. Wang, The class of (p, q)-biharmonic functions, Pacific J. Math., 41 (1972), 799-808. | MR 47 #5780 | Zbl 0237.31013

[18] L. Sario, C. Wang, Counterexamples in the biharmonic classification of Riemannian 2-manifolds, Pacific J. Math. (to appear). | Zbl 0252.31011

[19] L. Sario, C. Wang, Generators of the space of bounded biharmonic functions, Math. Z., 127 (1972), 273-280. | MR 47 #8888 | Zbl 0217.10503

[20] L. Sario, C. Wang, Quasiharmonic functions on the Poincaré N-ball, Rend. Mat. (to appear). | Zbl 0318.31011

[21] L. Sario, C. Wang, Riemannian manifolds of dimension N ≥ 4 without bounded biharmonic functions, J. London Math. Soc. (to appear). | Zbl 0276.31007

[22] L. Sario, C. Wang, Existence of Dirichlet finite biharmonic functions on the Poincaré 3-ball, Pacific J. Math., 48 (1973), 267-274. | MR 50 #14582 | Zbl 0242.31008

[23] L. Sario, C. Wang, Negative quasiharmonic functions, Tôhoku Math. J., 26 (1974), 85-93. | MR 49 #9239 | Zbl 0276.31005

[24] L. Sario, C. Wang, Radial quasiharmonic functions, Pacific J. Math., 46 (1973), 515-522. | MR 48 #550 | Zbl 0256.31008

[25] L. Sario, C. Wang, Parabolicity and existence of bounded biharmonic functions, Comm. Math. Helv. 47, (1972), 341-347. | MR 50 #2532 | Zbl 0247.31012

[26] L. Sario, C. Wang, Positive harmonic functions and biharmonic degeneracy, Bull. Amer. Math. Soc., 79 (1973), 182-187. | MR 46 #9899 | Zbl 0252.31010

[27] L. Sario, C. Wang, Parabolicity and existence of Dirichlet finite biharmonic functions, J. London Math. Soc. (to appear). | Zbl 0278.31009

[28] L. Sario, C. Wang, Harmonic and biharmonic degeneracy, Kodai Math. Sem. Rep., 25 (1973), 392-396. | MR 48 #12403 | Zbl 0272.31005

[29] L. Sario, C. Wang, M. Range, Biharmonic projection and decomposition, Ann. Acad. Sci. Fenn. A.I., 494 (1971), 1-14. | MR 57 #9962 | Zbl 0219.31007

[30] C. Wang, L. Sario, Polyharmonic classification of Riemannian manifolds, Kyoto Math. J., 12 (1972), 129-140. | MR 45 #8825 | Zbl 0227.31008