Révisé le : 2017-11-09
Accepté le : 2018-02-02
Classification: 35P05, 35P15, 35P20, 58J50
Mots clés: valeurs propres de Neumann, valeurs propres de Robin, domaines nodaux, théorème de Courant, théorème de Pleijel
@unpublished{AIF_0__0_0_A7_0, author = {L\'ena, Corentin}, title = {Pleijel's nodal domain theorem for Neumann and Robin eigenfunctions}, note = {to appear in \emph{Annales de l'Institut Fourier}}, }
Léna, Corentin. Pleijel’s nodal domain theorem for Neumann and Robin eigenfunctions. Annales de l'Institut Fourier, à paraître, pp. 1-19.
[1] Inégalités isopérimétriques et applications, Ann. Sci. Éc. Norm. Supér., Tome 15 (1982) no. 3, pp. 513-541 | MR 690651
[2] The weak Pleijel theorem with geometric control, J. Spectr. Theory, Tome 6 (2016) no. 4, pp. 717-733 | Article | Zbl 1372.35194
[3] On the number of Courant-sharp Dirichlet eigenvalues, J. Spectr. Theory, Tome 6 (2016) no. 4, pp. 735-745 | Article
[4] Nodal and spectral minimal partitions – the state of the art in 2016, Shape optimization and spectral theory, De Gruyter (2017), pp. 353-397 | MR 3681154 | Zbl 1373.49050
[5] On Pleijel’s nodal domain theorem, Int. Math. Res. Not. (2015) no. 6, pp. 1601-1612 | MR 3340367
[6] A Pleijel-type theorem for the quantum harmonic oscillator, J. Spectr. Theory, Tome 8 (2018) no. 2, pp. 715-732 | Zbl 06898063
[7] Pleijel’s theorem for Schrödinger operators with radial potentials, Ann. Math. Qué., Tome 42 (2018) no. 1, pp. 7-29 | Article | Zbl 1384.35048
[8] Ein allgemeiner Satz zur Theorie der Eigenfunktionen selbstadjungierter Differentialausdrücke, Gött. Nachr., Tome 1923 (1923), pp. 81-84 | Zbl 49.0342.01
[9] Methods of mathematical physics. Vol. I, Interscience Publishers (1953), xv+561 pages | MR 0065391 | Zbl 0051.28802
[10] Counting nodal domains in Riemannian manifolds, Ann. Global Anal. Geom., Tome 46 (2014) no. 1, pp. 57-61 | Article
[11] Elliptic problems in nonsmooth domains, Pitman Publishing Inc., Monographs and Studies in Mathematics, Tome 24 (1985), xiv+410 pages | MR 775683 | Zbl 0695.35060
[12] Critical sets of solutions to elliptic equations, J. Differ. Geom., Tome 51 (1999) no. 2, pp. 359-373 http://projecteuclid.org/euclid.jdg/1214425070 | MR 1728303 | Zbl 1144.35370
[13] A review on large minimal spectral -partitions and Pleijel’s theorem, Spectral theory and partial differential equations, American Mathematical Society (Contemporary Mathematics) Tome 640 (2015), pp. 39-57 | Article | MR 3381015 | Zbl 1346.35132
[14] Nodal domains and spectral minimal partitions, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Tome 26 (2009) no. 1, pp. 101-138 | Article | MR 2483815
[15] On nodal domains in Euclidean balls, Proc. Am. Math. Soc., Tome 144 (2016) no. 11, pp. 4777-4791 | Article | MR 3544529
[16] Extremum Problems for Eigenvalues of Elliptic Operators, Birkhäuser, Frontiers in Mathematics (2006), x+202 pages | MR 2251558 | Zbl 1109.35081
[17] A generalization of Courant’s nodal domain theorem, Math. Scand., Tome 5 (1957), pp. 15-20 | MR 0092917
[18] Remarks on Courant’s nodal line theorem, Commun. Pure Appl. Math., Tome 9 (1956), pp. 543-550 | MR 0080861 | Zbl 0070.32604
[19] Pleijel’s nodal domain theorem for free membranes, Proc. Am. Math. Soc., Tome 137 (2009) no. 3, pp. 1021-1024 | Article | MR 2457442
[20] Methods of Modern Mathematical physics. II. Fourier Analysis, Self-Adjointness, Academic Press (1975), xv+361 pages | MR 0493420 | Zbl 0308.47002
[21] Methods of Modern Mathematical Physics. IV. Analysis of Operators, Academic Press (1978), xv+396 pages | MR 0493421 | Zbl 0401.47001
[22] Spectral Theory of Differential Operators, Partial differential equations. VII, Springer (Encyclopaedia of Mathematical Sciences) Tome 64 (1994) | Article | Zbl 0805.35081
[23] A geometric uncertainty principle with an application to Pleijel’s estimate, Ann. Henri Poincaré, Tome 15 (2014) no. 12, pp. 2299-2319 | Article | MR 3272823
[24] Counting nodal lines which touch the boundary of an analytic domain, J. Differ. Geom., Tome 81 (2009) no. 3, pp. 649-686 http://projecteuclid.org/euclid.jdg/1236604347 | MR 2487604
[25] Calculus of variations. With applications to physics and engineering, Dover Publications, Dover Books on Advanced Mathematics (1974), x+326 pages (reprint of the 1952 edition) | MR 0443487 | Zbl 0296.49001