Somme des chiffres et changement de base  [ Sum of digits and change of base ]
Annales de l'Institut Fourier, to appear, 12 p.

For q2, let s q (n) denote the sum of digits of an integer n in the base q expansion. Answering, in an extended form, a question of Deshouillers, Habsieger, Laishram, and Landreau, we show that, provided a and b are multiplicatively independent, any positive real number is a limit point of the sequence {s b (n)/s a (n)} n=1 . We also provide upper and lower bounds for the counting functions of the corresponding subsequences.

Pour q2, soit s q (n) la somme des chiffres d’un entier n en base q. Répondant, sous une forme étendue, à une question de Deshouillers, Habsieger, Laishram, et Landreau, nous montrons que, dès que a et b sont multiplicativement indépendants, tout nombre réel positif est valeur d’adhérence de la suite {s b (n)/s a (n)} n=1 . Nous donnons également un encadrement des fonctions de comptage des sous-suites associées.

Received : 2018-06-20
Revised : 2018-10-16
Accepted : 2019-01-17
Classification:  11A63,  11K16,  11K60,  11J82
Keywords: sum of digits, multiplicative independence, exponent of irrationality, binomial recentering
@unpublished{AIF_0__0_0_A4_0,
     author = {de la Bret\`eche, R\'egis and Stoll, Thomas and Tenenbaum, G\'erald},
     title = {Somme des chiffres et changement de base},
     note = {to appear in \emph{Annales de l'Institut Fourier}},
}
Somme des chiffres et changement de base. Annales de l'Institut Fourier, to appear, 12 p.

[1] Allouche, Jean-Paul; Shallit, Jeffrey Automatic sequences. Theory, applications, generalizations, Cambridge University Press (2003), xvi+571 pages | Article | MR 1997038 | Zbl 1086.11015

[2] Baker, Alan A sharpening of the bounds for linear forms in logarithms, Acta Arith., Tome 21 (1972), pp. 117-129 | Article | MR 0302573 | Zbl 0244.10031

[3] De La Bretèche, Régis; Tenenbaum, Gérald Dérivabilité ponctuelle d’une intégrale liée aux fonctions de Bernoulli, Proc. Am. Math. Soc., Tome 143 (2015) no. 11, pp. 4791-4796 | Article | MR 3391036

[4] Cassels, J. W. S. On a problem of Steinhaus about normal numbers, Colloq. Math., Tome 7 (1959), pp. 95-101 | Article | MR 0113863 | Zbl 0090.26004

[5] Cobham, Alan On the base-dependence of sets of numbers recognizable by finite automata, Math. Syst. Theory, Tome 3 (1969), pp. 186-192 | Article | MR 0250789 | Zbl 0179.02501

[6] Cobham, Alan Uniform tag sequences, Math. Syst. Theory, Tome 6 (1972), pp. 164-192 | Article | MR 0457011

[7] Deshouillers, Jean-Marc; Habsieger, Laurent; Laishram, Shanta; Landreau, Bernard Sums of the digits in bases 2 and 3, Number theory—Diophantine problems, uniform distribution and applications, Springer (2017), pp. 211-217 | MR 3676401

[8] Salikhov, Vladislav Kh. On the irrationality measure of ln3, Dokl. Akad. Nauk SSSR, Tome 417 (2007) no. 6, pp. 753-755 (English tranlsation in Dokl. Math. 76 (2007), no. 3, p. 955-957) | Article | MR 2462856 | Zbl 1169.11032

[9] Tenenbaum, Gérald Introduction à la théorie analytique et probabiliste des nombres, Belin (2015)

[10] Wu, Qiang; Wang, Lihong On the irrationality measure of log3, J. Number Theory, Tome 142 (2014), pp. 264-273 | Article | MR 3208402