Non-uniqueness results for the anisotropic Calderón problem with data measured on disjoint sets  [ Non-unicité pour le problème de Calderón anisotropique avec données mesurées sur des ensembles disjoints ]
Annales de l'Institut Fourier, à paraître, p. 1-52
Dans cet article, on montre qu’il y a non-unicité pour le problème de Calderón sur des variétés riemanniennes quand les données de Dirichlet et de Neumann sont mesurées sur des sous-ensembles disjoints du bord. On construit des contre-exemples à l’unicité en dimension 2 et 3 pour des variétés riemanniennes à bord topologiquement équivalentes à des cylindres dont les fibres sont des tores. La construction pourrait être aisément étendue à des variétés riemanniennes de dimensions supérieures.
In this paper, we show that there is non-uniqueness in the Calderón problem on Riemannian manifolds when the Dirichlet and Neumann data are measured on disjoint sets of the boundary. We provide counterexamples in the case of two and three dimensional Riemannian manifolds with boundary having the topology of circular cylinders in dimension two and toric cylinders in dimension three. The construction could be easily extended to higher dimensional Riemannian manifolds.
Reçu le : 2016-10-14
Accepté le : 2017-09-14
Classification:  81U40,  35P25,  58J50
Mots clés: Problème de Calderón anisotropique, équation d’Helmholtz sur une variété riemannienne, problèmes de Sturm–Liouville, fonctions de Weyl–Titchmarsh
@unpublished{AIF_0__0_0_A4_0,
     author = {Daud\'e, Thierry and Kamran, Niky and Nicoleau, Fran\c cois},
     title = {Non-uniqueness results for the anisotropic Calder\'on problem with data measured on disjoint sets},
     note = {to appear in \emph{Annales de l'Institut Fourier}},
}
Daudé, Thierry; Kamran, Niky; Nicoleau, François. Non-uniqueness results for the anisotropic Calderón problem with data measured on disjoint sets. Annales de l'Institut Fourier, à paraître, pp. 1-52.

[1] Astala, Kari; Päivärinta, Lassi; Lassas, Matti Calderón’s inverse problem for anisotropic conductivity in the plane, Commun. Partial Differ. Equations, Tome 30 (2005) no. 1-3, pp. 207-224 | Article | MR 2131051 | Zbl 1129.35483

[2] Bennewitz, Christer A proof of the local Borg-Marchenko theorem, Commun. Math. Phys., Tome 218 (2001) no. 1, p. 131-132 | Article | MR 1824201 | Zbl 0982.34021

[3] Boas, Ralph Philip Jr. Entire functions, Academic Press Inc., Pure and Applied Mathematics, Tome 5 (1954), x+276 pages | MR 0068627 | Zbl 0058.30201

[4] Borg, Göran Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe. Bestimmung der Differentialgleichung durch die Eigenwerte, Acta Math., Tome 78 (1946), pp. 1-96 | Article | MR 0015185 | Zbl 0063.00523

[5] Borg, Göran Uniqueness theorems in the spectral theory of y '' +(λ-q(x))y=0, Den 11te Skandinaviske Matematikerkongress, Trondheim, 1949, Johan Grundt Tanums Forlag (1952), pp. 276-287 | MR 0058063 | Zbl 0048.06802

[6] Daudé, Thierry; Gobin, Damien; Nicoleau, François Local inverse scattering at fixed energy in spherically symmetric asymptotically hyperbolic manifolds, Inverse Probl. Imaging, Tome 10 (2016) no. 3, pp. 659-688 | Article | MR 3562266 | Zbl 1348.81441

[7] Daudé, Thierry; Kamran, Niky; Nicoleau, François Inverse scattering at fixed energy on asymptotically hyperbolic Liouville surfaces, Inverse Probl., Tome 31 (2015) no. 12, 125009, 37 pages (Art. ID 125009, 37 p.) | Article | MR 3540316 | Zbl 1339.58016

[8] Daudé, Thierry; Nicoleau, François Inverse scattering at fixed energy in de Sitter-Reissner-Nordström black holes, Ann. Henri Poincaré, Tome 12 (2011) no. 1, pp. 1-47 | Article | MR 2770088 | Zbl 1243.81218

[9] Daudé, Thierry; Nicoleau, François Direct and inverse scattering at fixed energy for massless charged Dirac fields by Kerr-Newman-de Sitter black holes, Mem. Am. Math. Soc., Tome 247 (2017) no. 1170, iv+113 pages | Article | MR 3633460 | Zbl 1384.81034

[10] Dos Santos Ferreira, David; Kenig, Carlos; Salo, Mikko; Uhlmann, Gunther Limiting Carleman weights and anisotropic inverse problems, Invent. Math., Tome 178 (2009) no. 1, pp. 119-171 | Article | MR 2534094 | Zbl 1181.35327

[11] Dos Santos Ferreira, David; Kurylev, Yaroslav; Lassas, Matti; Salo, Mikko The Calderón problem in transversally anisotropic geometries, J. Eur. Math. Soc., Tome 18 (2016) no. 11, pp. 2579-2626 | Article | MR 3562352 | Zbl 1359.35224

[12] Eckhardt, Jonathan; Teschl, Gerald Uniqueness results for one-dimensional Schrödinger operators with purely discrete spectra, Trans. Am. Math. Soc., Tome 365 (2013) no. 7, pp. 3923-3942 | Article | MR 3042609 | Zbl 1286.34022

[13] Freiling, Gerhard; Yurko, Vjacheslav Inverse problems for differential operators with singular boundary conditions, Math. Nachr., Tome 278 (2005) no. 12-13, pp. 1561-1578 | Article | MR 2169700 | Zbl 1090.34007

[14] Gesztesy, Fritz; Simon, Barry On local Borg-Marchenko uniqueness results, Commun. Math. Phys., Tome 211 (2000) no. 2, pp. 273-287 | Article | MR 1754515 | Zbl 0985.34077

[15] Guillarmou, Colin; Sá Barreto, Antônio Inverse problems for Einstein manifolds, Inverse Probl. Imaging, Tome 3 (2009) no. 1, pp. 1-15 | Article | MR 2558301 | Zbl 1229.58025

[16] Guillarmou, Colin; Tzou, Leo Calderón inverse problem with partial data on Riemann surfaces, Duke Math. J., Tome 158 (2011) no. 1, pp. 83-120 | Article | MR 2794369 | Zbl 1222.35212

[17] Guillarmou, Colin; Tzou, Leo The Calderón inverse problem in two dimensions, Inverse problems and applications: inside out. II, Cambridge University Press (Mathematical Sciences Research Institute Publications) Tome 60 (2013), pp. 119-166 | MR 3098657 | Zbl 1317.35294

[18] Hörmander, Lars The analysis of linear partial differential operators. I: Distribution theory and Fourier analysis, Springer, Classics in Mathematics (2003), x+440 pages | Article | MR 1996773 | Zbl 1028.35001

[19] Imanuvilov; Uhlmann, Gunther; Yamamoto, Masahiro The Calderón problem with partial data in two dimensions, J. Am. Math. Soc., Tome 23 (2010) no. 3, pp. 655-691 | Article | MR 2629983 | Zbl 1201.35183

[20] Imanuvilov; Uhlmann, Gunther; Yamamoto, Masahiro Inverse boundary value problem by measuring Dirichlet data and Neumann data on disjoint sets, Inverse Probl., Tome 27 (2011) no. 8, 085007, 26 pages (Art. ID 085007, 26 p.) | Article | MR 2819949 | Zbl 1222.35213

[21] Isakov, Victor On uniqueness in the inverse conductivity problem with local data, Inverse Probl. Imaging, Tome 1 (2007) no. 1, pp. 95-105 | Article | MR 2262748 | Zbl 1125.35113

[22] Kang, Hyeonbae; Yun, Kihyun Boundary determination of conductivities and Riemannian metrics via local Dirichlet-to-Neumann operator, SIAM J. Math. Anal., Tome 34 (2002) no. 3, pp. 719-735 | Article | MR 1970890 | Zbl 1044.35106

[23] Katchalov, Alexander; Kurylev, Yaroslav; Lassas, Matti Inverse boundary spectral problems, Chapman & Hall/CRC Press, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, Tome 123 (2001), xx+290 pages | Article | MR 1889089 | Zbl 1037.35098

[24] Katchalov, Alexander; Kurylev, Yaroslav; Lassas, Matti; Mandache, Niculae Equivalence of time-domain inverse problems and boundary spectral problems, Inverse Probl., Tome 20 (2004) no. 2, pp. 419-436 | Article | MR 2065431 | Zbl 1073.35209

[25] Kenig, Carlos; Salo, Mikko The Calderón problem with partial data on manifolds and applications, Anal. PDE, Tome 6 (2013) no. 8, pp. 2003-2048 | Article | MR 3198591 | Zbl 1335.35301

[26] Kenig, Carlos; Salo, Mikko Recent progress in the Calderón problem with partial data, Inverse problems and applications, American Mathematical Society (Contemporary Mathematics) Tome 615 (2014), pp. 193-222 | Article | MR 3221605 | Zbl 1330.35534

[27] Kenig, Carlos; Sjöstrand, Johannes; Uhlmann, Gunther The Calderón problem with partial data, Ann. Math., Tome 165 (2007) no. 2, pp. 567-591 | Article | MR 2299741 | Zbl 1127.35079

[28] Kostenko, Aleksey; Sakhnovich, Alexander; Teschl, Gerald Weyl-Titchmarsh theory for Schrödinger operators with strongly singular potentials, Int. Math. Res. Not. (2012) no. 8, pp. 1699-1747 | Article | MR 2920828 | Zbl 1248.34027

[29] Lassas, Matti; Oksanen, Lauri An inverse problem for a wave equation with sources and observations on disjoint sets, Inverse Probl., Tome 26 (2010) no. 8, 085012, 19 pages (Art. ID 085012, 19 p.) | Article | MR 2661691 | Zbl 1197.35323

[30] Lassas, Matti; Oksanen, Lauri Inverse problem for the Riemannian wave equation with Dirichlet data and Neumann data on disjoint sets, Duke Math. J., Tome 163 (2014) no. 6, pp. 1071-1103 | Article | MR 3192525 | Zbl 1375.35634

[31] Lassas, Matti; Taylor, Michael; Uhlmann, Gunther The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary, Commun. Anal. Geom., Tome 11 (2003) no. 2, pp. 207-221 | Article | MR 2014876 | Zbl 1077.58012

[32] Lassas, Matti; Uhlmann, Gunther On determining a Riemannian manifold from the Dirichlet-to-Neumann map, Ann. Sci. Éc. Norm. Supér., Tome 34 (2001) no. 5, pp. 771-787 | Article | MR 1862026 | Zbl 0992.35120

[33] Lee, John M.; Uhlmann, Gunther Determining anisotropic real-analytic conductivities by boundary measurements, Commun. Pure Appl. Math., Tome 42 (1989) no. 8, pp. 1097-1112 | Article | MR 1029119 | Zbl 0702.35036

[34] Levin Lectures on entire functions, American Mathematical Society, Translations of Mathematical Monographs, Tome 150 (1996), xvi+248 pages (In collaboration with and with a preface by Yu. Lyubarskii, M. Sodin and V. Tkachenko, Translated from the Russian manuscript by Tkachenko) | MR 1400006 | Zbl 0856.30001

[35] Lionheart, William R. B. Conformal uniqueness results in anisotropic electrical impedance imaging, Inverse Probl., Tome 13 (1997) no. 1, pp. 125-134 | Article | MR 1435872 | Zbl 0868.35140

[36] Marčenko, Vladimir A. Some questions of the theory of one-dimensional linear differential operators of the second order. I, Trudy Moskov. Mat. Obšč., Tome 1 (1952), pp. 327-420 | MR 0058064

[37] Pöschel, Jürgen; Trubowitz, Eugene Inverse spectral theory, Academic Press Inc., Pure and Applied Mathematics, Tome 130 (1987), x+192 pages | MR 894477 | Zbl 0623.34001

[38] Rakesh Characterization of transmission data for Webster’s horn equation, Inverse Probl., Tome 16 (2000) no. 2, p. L9-L24 | Article | MR 1766761 | Zbl 0965.35188

[39] Ramm, Alexander G. An inverse scattering problem with part of the fixed-energy phase shifts, Commun. Math. Phys., Tome 207 (1999) no. 1, pp. 231-247 | Article | MR 1724847 | Zbl 0943.35106

[40] Regge, Tullio Introduction to complex orbital momenta, Nuovo Cimento, Tome 14 (1959), pp. 951-976 | MR 0143532 | Zbl 0087.42903

[41] Rudin, Walter Real and complex analysis, McGraw-Hill Book Co. (1987), xiv+416 pages | MR 924157 | Zbl 0925.00005

[42] Salo, Mikko The Calderón problem on Riemannian manifolds, Inverse problems and applications: inside out. II, Cambridge University Press (Mathematical Sciences Research Institute Publications) Tome 60 (2013), pp. 167-247 | MR 3098658 | Zbl 1316.35301

[43] Spiegel, Murray Theory and problems of complex variables, McGraw-Hill Book Co. (2009)

[44] Teschl, Gerald Mathematical methods in quantum mechanics. With applications to Schrödinger operators, American Mathematical Society, Graduate Studies in Mathematics, Tome 157 (2014), xiv+358 pages | MR 3243083 | Zbl 1342.81003

[45] Uhlmann, Gunther Electrical impedance tomography and Calderón’s problem, Inverse Probl., Tome 25 (2009) no. 12, 123011, 39 pages (Art. ID 123011, 39 p.) | Article | MR 3460047 | Zbl 1181.35339

[46] Zettl, Anton Sturm-Liouville theory, American Mathematical Society, Mathematical Surveys and Monographs, Tome 121 (2005), xii+328 pages | MR 2170950 | Zbl 1103.34001