Logarithmic forms and singular projective foliations
Annales de l'Institut Fourier to appear, , 33 p.

In this article we study polynomial logarithmic q-forms on a projective space and characterize those that define singular foliations of codimension q. Our main result is the algebraic proof of their infinitesimal stability when q=2 with some extra degree assumptions. We determine new irreducible components of the moduli space of codimension two singular projective foliations of any degree, and we show that they are generically reduced in their natural scheme structure. Our method is based on an explicit description of the Zariski tangent space of the corresponding moduli space at a given generic logarithmic form. Furthermore, we lay the groundwork for an extension of our stability results to the general case q2.

Dans cet article nous étudions des q-formes logaritmiques polynomiales sur un espace projectif et nous caractérisons celles qui définissent des feuilletages singuliers de codimension q. Notre principal résultat est la preuve algébrique de leur stabilité infinitésimale lorsque q=2 avec quelques hypothèses supplémentaires sur leurs degrés. Nous donnons des nouvelles composantes irréductibles des espaces de modules des feuilletages projectifs de codimension deux et de degré quelconque, et nous montrons que ces composantes sont génériquement réduites selon leur structure naturelle de schéma. Notre méthode est basée sur le calcul explicite de l’espace tangent de Zariski de l’espace de modules en une forme logarithmique générique. Nous posons aussi les bases pour l’extension de nos résultats de stabilité au cas général q2

Received : 2018-04-13
Revised : 2018-10-11
Accepted : 2019-01-17
Classification:  14D20,  37F75,  14B10,  32S65
Keywords: logarithmic forms, singular projective foliations, moduli spaces.
@unpublished{AIF_0__0_0_A4_0,
     author = {Gargiulo Acea, Javier},
     title = {Logarithmic forms and singular projective foliations},
     note = {to appear in \emph{Annales de l'Institut Fourier}},
}
Gargiulo Acea, Javier. Logarithmic forms and singular projective foliations. Annales de l'Institut Fourier, to appear, 33 p.

[1] Calvo-Andrade, Omegar Irreducible components of the space of holomorphic foliations, Math. Ann., Tome 299 (1994) no. 4, pp. 751-767 | Article | MR 1286897

[2] Cerveau, Dominique; Lins Neto, Alcides Irreducible components of the space of holomorphic foliations of degree two in ℂℙ(n), n3, Ann. Math., Tome 143 (1996) no. 3, pp. 577-612 | Article | MR 1394970 | Zbl 1236.60080

[3] Cerveau, Dominique; Lins Neto, Alcides Logarithmic foliations (2018) (https://arxiv.org/abs/1803.08894) | Zbl 1304.60092

[4] Cukierman, Fernando; Gargiulo Acea, Javier Nicolas; Massri, César Geometry of the base locus for logarithmic forms (In preparation) | Article

[5] Cukierman, Fernando; Gargiulo Acea, Javier Nicolas; Massri, César Stability of logarithmic differential one-forms, Trans. Am. Math. Soc., Tome 371 (2019) no. 9, pp. 6289-6308 | Article

[6] Cukierman, Fernando; Pereira, Jorge Vitório Stability of holomorphic foliations with split tangent sheaf, Am. J. Math., Tome 130 (2008) no. 2, 18, pp. 413-439 | Article | MR 2405162 | Zbl 07055622

[7] Cukierman, Fernando; Pereira, Jorge Vitório; Vainsencher, Israel Stability of foliations induced by rational maps, Ann. Fac. Sci. Toulouse, Math., Tome 18 (2009) no. 4, pp. 685-715 | Article | MR 2590385 | Zbl 07051731

[8] Deligne, Pierre Équations différentielles à points singuliers réguliers, Lecture Notes in Mathematics, Tome 163, Springer, 1970, 27, iii+133 pages | Article | MR 0417174 | Zbl 1365.60035

[9] Gelfand, Israel M.; Kapranov, Mikhail M.; Zelevinsky, Andrei V. Discriminants, resultants and multidimensional determinants, Modern Birkhäuser Classics, Birkhäuser, 2008, x+523 pages (Reprint of the 1994 edition) | Article | MR 2394437 | Zbl 0336.60024

[10] Hartshorne, Robin Algebraic geometry, Graduate Texts in Mathematics, Tome 52, Springer, 1977, xvi+496 pages | MR 0463157 | Zbl 1336.83042

[11] Jouanolou, Jean-Pierre Équations de Pfaff algébriques, Lecture Notes in Mathematics, Tome 708, Springer, 1979, v+255 pages | Article | MR 537038 | Zbl 1306.60055

[12] Lazarsfeld, Robert Positivity in algebraic geometry. I. Classical setting: line bundles and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., Tome 48, Springer, 2004, xviii+387 pages | Article | MR 2095471 | Zbl 1297.60033

[13] de Medeiros, Airton S. Singular foliations and differential p-forms, Ann. Fac. Sci. Toulouse, Math., Tome 9 (2000) no. 3, pp. 451-466 | MR 1842027 | Zbl 1226.81241

[14] Peters, Chris A. M.; Steenbrink, Joseph H. M. Mixed Hodge structures, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., Tome 52, Springer, 2008, xiv+470 pages | Article | MR 2722836 | Zbl 1202.60001

[15] Saito, Kyoji On a generalization of de Rham lemma, Ann. Inst. Fourier, Tome 26 (1976) no. 2, pp. 165-170 | Article | MR 0413155

[16] Saito, Kyoji Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci., Univ. Tokyo, Sect. I A, Tome 27 (1980) no. 2, pp. 265-291 | MR 586450