Specialness and Isotriviality for Regular Algebraic Foliations  [ Isotrivialité et caractère spécial pour les feuilletages algébriques réguliers ]
Annales de l'Institut Fourier, à paraître, 28 p.

Nous montrons l’isotrivialité des feuilles d’un feuilletage partout régulier et à feuilles compactes sur une variété quasi-projective lorsque la base orbifolde de la famille des feuilles est spéciale. Cette dernière condition signifie que, pour tout p>0, la puissance extérieure p-ième de l’extension logarithmique du fibré conormal de ne contient aucun sous-faisceau de rang un de dimension de Kodaira maximale p. Cette condition est satisfaite, par exemple, dans le cas très particulier où la dimension de Kodaira du déterrminant de l’extension logarithmique du fibré conormal est nulle. Des exemples de cette situation sont fournis par les sous-variétés « algébriquement coisotropes » des variétés hyperkählériennes irréductibles projectives.

We show that an everywhere regular foliation on a quasi-projective manifold, such that all of its leaves are compact with semi-ample canonical bundle, has isotrivial family of leaves when the orbifold base of this family is special. The specialness condition means that for any p>0, the p-th exterior power of the logarithmic extension of its conormal bundle does not contain any rank-one subsheaf of maximal possible Kodaira dimension p. This condition is satisfied, for example, in the very particular case when the Kodaira dimension of the determinant of the logarithmic extension of the conormal bundle vanishes. Motivating examples are given by the “algebraically coisotropic” submanifolds of irreducible hyperkähler projective manifolds.

Publié le : 2019-03-08
Classification:  14C05,  14D06,  14E22,  14E30,  14E40,  14J32
Mots clés: feuilletage algébrique, isotrivialité, diviseurs orbifoldes, varétés quasi-projectives spéciales
@unpublished{AIF_0__0_0_A39_0,
     author = {Amerik, Ekaterina and Campana, Fr\'ed\'eric},
     title = {Specialness and Isotriviality for Regular Algebraic Foliations},
     note = {to appear in \emph{Annales de l'Institut Fourier}},
}
Amerik, Ekaterina; Campana, Frédéric. Specialness and Isotriviality for Regular Algebraic Foliations. Annales de l'Institut Fourier, à paraître, 28 p.

[1] Amerik, Ekaterina; Campana, Frédéric Characteristic foliation on non-uniruled smooth divisors on hyperkähler manifolds, J. Lond. Math. Soc., Tome 95 (2017) no. 1, pp. 115-127 | Zbl 06775071

[2] Berndtsson, Bo; Păun, Mihai; Wang, Xu Algebraic fibre spaces and curvature of higher direct image sheaves (2017) (https://arxiv.org/abs/1704.02279 )

[3] Campana, Frédéric Orbifolds, special varieties and classification theory, Ann. Inst. Fourier, Tome 54 (2004) no. 3, pp. 499-665 | Zbl 1062.14014

[4] Campana, Frédéric Orbifoldes géométriques spéciales et classification biméromorphe des variétés Kählériennes compactes, J. Inst. Math. Jussieu, Tome 10 (2011) no. 4, pp. 809-934 | Zbl 1236.14039

[5] Campana, Frédéric; Păun, Mihai Orbifold generic semi-positivity: an application to families of canonically polarized manifolds, Ann. Inst. Fourier, Tome 65 (2015) no. 2, pp. 835-861 | Zbl 1338.14012

[6] Campana, Frédéric; Păun, Mihai Foliations with positive slopes and birational stability of the orbifold cotangent bundles (2017) (https://arxiv.org/abs/1508.02456 )

[7] Claudon, Benoît Positivité du fibré cotangent logarithmique et Conjecture de Shafarevich–Viehweg, Séminaire Bourbaki. Volume 2015/2016, Société Mathématique de France (Astérisque) Tome 390 (2015), pp. 27-63 | Zbl 1338.32019

[8] Demailly, Jean-Pierre On the Frobenius integrability of certain holomorphic p-forms, Complex geometry, Springer (2000), pp. 93-98 | Zbl 1011.32019

[9] Edwards, Robert; Millett, Kenneth; Sullivan, Dennis Foliations with all leaves compact, Topology, Tome 26 (1977), pp. 13-32 | Zbl 0356.57022

[10] Hwang, Jun-Muk; Viehweg, Eckart Characteristic foliation on a hypersurface of general type in a projective symplectic manifold, Compos. Math., Tome 146 (2010) no. 2, pp. 497-506 | Zbl 1208.37031

[11] Jabbusch, Kelly; Kebekus, Stefan Families over special base manifolds and a conjecture of Campana, Math. Z., Tome 269 (2011) no. 3, pp. 847-878 | Zbl 1238.14024

[12] Jabbusch, Kelly; Kebekus, Stefan Positive sheaves of differentials coming from coarse moduli spaces, Ann. Inst. Fourier, Tome 61 (2011) no. 6, pp. 2277-2290 | Zbl 1253.14009

[13] Okonek, Christian; Schneider, Michael; Spindler, Heinz Vector Bundles on Complex Projective Spaces, Birkhäuser, Progress in Mathematics, Tome 3 (1980), vii+389 pages | Zbl 0438.32016

[14] Pereira, Jorge V. Global stability for holomorphic foliations on Kähler manifolds, Qual. Theory Dyn. Syst., Tome 2 (2001) no. 2, pp. 381-384

[15] Popa, Mihnea; Schnell, Christian Viehweg’s hyperbolicity conjecture for families with maximal variation, Invent. Math., Tome 208 (2017) no. 3, pp. 677-713 | Zbl 1375.14043

[16] Taji, Behrouz The isotriviality of smooth families of canonically polarized manifolds over a special quasi-projective base, Compos. Math., Tome 152 (2016) no. 7, pp. 1421-1434 | Zbl 06619361

[17] Viehweg, Eckart Quasi-projective moduli for polarized manifolds, Springer, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., Tome 30 (1995), viii+320 pages | Zbl 0844.14004

[18] Viehweg, Eckart; Zuo, Kang Base spaces of non-isotrivial families of minimal models, Springer (2002), pp. 279-328 | Zbl 1006.14004