Global Strichartz estimates for the Schrödinger equation with non zero boundary conditions and applications  [ Estimée de Strichartz globales pour l’équation de Schrödinger avec conditions au bord non triviales et applications ]
Annales de l'Institut Fourier, à paraître, p. 1-50
On considère l’équation de Schrödinger sur le demi espace en dimension arbitraire pour une classe de conditions au bord non homogènes, incluant les conditions de Dirichlet, Neumann, et « transparentes ». Le principal résultat consiste en des estimations de Strichartz globales pour des données initiales H s , 0s2 et des données au bord dans un espace naturel s , il améliore les estimées de Strichartz locales en temps obtenues récemment par d’autres auteurs dans le cas des conditions de Dirichlet. Pour s1/2, la définition des conditions de compatibilité requiert une étude précise des espaces s . En application, on résout des équations de Schrödinger non linéaires, et on construit des solutions dispersives globales si les données sont petites. On discute également le sens précis donné à « solution dispersive », ainsi que la question de l’optimalité de l’espace s .
We consider the Schrödinger equation on a half space in any dimension with a class of nonhomogeneous boundary conditions including Dirichlet, Neuman and the so-called transparent boundary conditions. Building upon recent local in time Strichartz estimates (for Dirichlet boundary conditions), we obtain global Strichartz estimates for initial data in H s ,0s2 and boundary data in a natural space s . For s1/2, the issue of compatibility conditions requires a thorough analysis of the s space. As an application we solve nonlinear Schrödinger equations and construct global asymptotically linear solutions for small data. A discussion is included on the appropriate notion of scattering in this framework, and the optimality of the s space.
Reçu le : 2017-02-20
Révisé le : 2017-11-17
Accepté le : 2018-02-02
Classification:  35Q41,  35G31,  35B45,  35B65
Mots clés: Équation de Schrödinger, estimation dispersives, conditions au bord, Kreiss–Lopatinskii, condition de compatibilité
@unpublished{AIF_0__0_0_A2_0,
     author = {Audiard, Corentin},
     title = {Global Strichartz estimates for the Schr\"odinger equation with non zero boundary conditions and applications},
     note = {to appear in \emph{Annales de l'Institut Fourier}},
}
Audiard, Corentin. Global Strichartz estimates for the Schrödinger equation with non zero boundary conditions and applications. Annales de l'Institut Fourier, à paraître, pp. 1-50.

[1] Antoine, Xavier; Besse, Christophe; Klein, Pauline Absorbing boundary conditions for the two-dimensional Schrödinger equation with an exterior potential. Part I: Construction and a priori estimates, Math. Models Methods Appl. Sci., Tome 22 (2012) no. 10, 1250026, 38 pages (Art. ID 1250026, 38 p.) | Article | MR 2974164 | Zbl 1251.35096

[2] Anton, Ramona Strichartz inequalities for Lipschitz metrics on manifolds and nonlinear Schrödinger equation on domains, Bull. Soc. Math. Fr., Tome 136 (2008) no. 1, pp. 27-65 | MR 2415335

[3] Audiard, Corentin Non-homogeneous boundary value problems for linear dispersive equations, Commun. Partial Differ. Equations, Tome 37 (2012) no. 1-3, pp. 1-37 | Article | MR 2864804 | Zbl 1246.35048

[4] Audiard, Corentin On the boundary value problem for the Schrödinger equation: compatibility conditions and global existence, Anal. PDE, Tome 8 (2015) no. 5, pp. 1113-1143 | Article | MR 3393675 | Zbl 1330.35392

[5] Benzoni-Gavage, Sylvie; Serre, Denis Multi-dimensional hyperbolic partial differential equations. First-order systems and applications, Oxford University Press, Oxford Mathematical Monographs (2007), xxvi+508 pages | MR MR2284507 | Zbl 1113.35001

[6] Bergh, Jöran; Löfström, Jörgen Interpolation spaces. An introduction, Springer, Grundlehren der Mathematischen Wissenschaften, Tome 223 (1976), x+207 pages | MR 0482275 | Zbl 0344.46071

[7] Blair, Matthew D.; Smith, Hart F.; Sogge, Christopher D. On Strichartz estimates for Schrödinger operators in compact manifolds with boundary, Proc. Am. Math. Soc., Tome 136 (2008) no. 1, pp. 247-256 | Article | MR 2350410 | Zbl 1169.35012

[8] Bona, Jerry L.; Sun, Shu-Ming; Zhang, Bing-Yu A non-homogeneous boundary-value problem for the Korteweg-de Vries equation in a quarter plane, Trans. Am. Math. Soc., Tome 354 (2002) no. 2, pp. 427-490 | Article | MR 1862556 | Zbl 0988.35141

[9] Bona, Jerry L.; Sun, Shu-Ming; Zhang, Bing-Yu Non-homogeneous Boundary-Value Problems for One-Dimensional Nonlinear Schrödinger Equations (2016) (https://arxiv.org/abs/1503.00065, to appear in J.Math. Pures Appl.)

[10] Bourgain, Jean Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal., Tome 3 (1993) no. 2, pp. 107-156 | Article | MR 1209299 | Zbl 0787.35097

[11] Burq, Nicolas; Gérard, Patrick; Tzvetkov, Nikolay On nonlinear Schrödinger equations in exterior domains, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Tome 21 (2004) no. 3, pp. 295-318 | Article | MR 2068304 | Zbl 1061.35126

[12] Cavalcanti, Marcelo M.; Corrêa, Wellington J.; Lasiecka, Irena; Lefler, Christopher Well-posedness and uniform stability for nonlinear Schrödinger equations with dynamic/Wentzell boundary conditions, Indiana Univ. Math. J., Tome 65 (2016) no. 5, pp. 1445-1502 | Article | MR 3571436

[13] Cazenave, Thierry Semilinear Schrödinger equations, American Mathematical Society; Courant Institute of Mathematical Sciences, Courant Lecture Notes in Mathematics, Tome 10 (2003), xiv+323 pages | MR 2002047 | Zbl 1055.35003

[14] Colliander, James; Keel, Markus; Staffilani, Gigiola; Takaoka, Hideo; Tao, Terence Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in 3 , Ann. Math., Tome 167 (2008) no. 3, pp. 767-865 | Article | MR 2415387 | Zbl 1178.35345

[15] Fokas, Athanassios S. A unified transform method for solving linear and certain nonlinear PDEs, Proc. R. Soc. Lond., Ser. A, Tome 453 (1997) no. 1962, pp. 1411-1443 | Article | MR 1469927 | Zbl 0876.35102

[16] Fokas, Athanassios S.; Himonas, A. Alexandrou; Mantzavinos, Dionyssios The nonlinear Schrödinger equation on the half-line, Trans. Am. Math. Soc., Tome 369 (2017) no. 1, pp. 681-709 | Article | MR 3557790 | Zbl 1351.35182

[17] Holmer, Justin The initial-boundary-value problem for the 1D nonlinear Schrödinger equation on the half-line, Differ. Integral Equ., Tome 18 (2005) no. 6, pp. 647-668 | MR 2136703 | Zbl 1212.35448

[18] Ivanovici, Oana On the Schrödinger equation outside strictly convex obstacles, Anal. PDE, Tome 3 (2010) no. 3, pp. 261-293 | Article | MR 2672795

[19] Ivanovici, Oana; Lebeau, Gilles Dispersion for the wave and the Schrödinger equations outside strictly convex obstacles and counterexamples, C. R. Math. Acad. Sci. Paris, Tome 355 (2017) no. 7, pp. 774-779 | Article | MR 3673052 | Zbl 1375.35491

[20] Kenig, Carlos E.; Ponce, Gustavo; Vega, Luis Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Am. Math. Soc., Tome 4 (1991) no. 2, pp. 323-347 | MR MR1086966

[21] Killip, Rowan; Visan, Monica; Zhang, Xiaoyi Quintic NLS in the exterior of a strictly convex obstacle, Am. J. Math., Tome 138 (2016) no. 5, pp. 1193-1346 | MR 3553392

[22] Kreiss, Heinz-Otto Initial boundary value problems for hyperbolic systems, Commun. Pure Appl. Math., Tome 23 (1970), pp. 277-298 | MR MR0437941

[23] Linares, Felipe; Ponce, Gustavo Introduction to nonlinear dispersive equations, Springer, Universitext (2009), xii+256 pages | MR 2492151 | Zbl 1178.35004

[24] Lions, Jacques-Louis; Magenes, Enrico Problèmes aux limites non homogènes et applications. Vol. 1, Dunod, Travaux et Recherches Mathématiques, Tome 17 (1968), xx+372 pages | MR MR0247243 | Zbl 0165.10801

[25] Lions, Jacques-Louis; Magenes, Enrico Problèmes aux limites non homogènes et applications. Vol. 2, Dunod, Travaux et Recherches Mathématiques, Tome 18 (1968), xvi+251 pages | MR MR0247244 | Zbl 0165.10801

[26] Métivier, G. Stability of multidimensional shocks, Advances in the theory of shock waves, Birkhäuser Boston (Progress in Nonlinear Differential Equations and their Applications) Tome 47 (2001), pp. 25-103 | MR MR1842775 | Zbl 1017.35075

[27] Özsari, Türker Weakly-damped focusing nonlinear Schrödinger equations with Dirichlet control, J. Math. Anal. Appl., Tome 389 (2012) no. 1, pp. 84-97 | Article | MR 2876483

[28] Ran, Yu; Sun, Shu-Ming; Zhang, Bing-Yu Nonhomogeneous Boundary Value Problems of Nonlinear Schrödinger Equations in a Half Plane, SIAM J. Math. Anal., Tome 50 (2018) no. 3, pp. 2773-2806 | Article | Zbl 1392.35292

[29] Rosier, Lionel; Zhang, Bing-Yu Exact boundary controllability of the nonlinear Schrödinger equation, J. Differ. Equations, Tome 246 (2009) no. 10, pp. 4129-4153 | Article | MR 2514738

[30] Strauss, Walter Nonlinear Scattering Theory at Low Energy, J. Funct. Anal., Tome 41 (1981), pp. 110-133 | Zbl 0466.47006

[31] Szeftel, Jérémie Design of absorbing boundary conditions for Schrödinger equations in d , SIAM J. Numer. Anal., Tome 42 (2004) no. 4, pp. 1527-1551 | Article | MR 2114289 | Zbl 1094.35037

[32] Tartar, Luc An introduction to Sobolev spaces and interpolation spaces, Springer, Lecture Notes of the Unione Matematica Italiana, Tome 3 (2007), xxvi+218 pages | MR 2328004 | Zbl 1126.46001