Classification of flat pencils of foliations on compact complex surfaces  [ Classification des pinceaux plats de feuilletages sur des surfaces complexes compactes ]
Annales de l'Institut Fourier, à paraître, 24 p.

En lien avec la classification des feuilletages réguliers dans une surface algébrique complexe, on traite le problème de la classification des surfaces complexes qui admettent un pinceau plat de feuilletages. À propos de cette question, une classification des pinceaux plats qui admettent des feuilletages avec une intégrale première de genre un et des singularités isolées a été obtenue par Lins Neto. Dans ce travail, on complète le travail de Lins Neto, en obtenant la classification des surfaces complexes compactes qui ont un pinceau avec ensemble de tangence invariant.

Related to the classification of regular foliations in a complex algebraic surface, we address the problem of classifying the complex surfaces which admit a flat pencil of foliations. On this matter, a classification of flat pencils which admit foliations with a first integral of genus one and isolated singularities was done by Lins Neto. In this work, we complement Lins Neto’s work, by obtaining the classification of compact complex surfaces which have a pencil with an invariant tangency set.

Reçu le : 2017-01-13
Révisé le : 2019-05-03
Accepté le : 2020-01-22
Première publication : 2020-12-03
Classification : 34C07,  14J27,  14D06,  32S65
Mots clés : surfaces complexes compactes, pinceaux de feuilletages, intégrale première
@unpublished{AIF_0__0_0_A27_0,
     author = {Puchuri, Liliana},
     title = {Classification of flat pencils of foliations on compact complex surfaces},
     note = {to appear in \emph{Annales de l'Institut Fourier}},
}
Puchuri, Liliana. Classification of flat pencils of foliations on compact complex surfaces. Annales de l'Institut Fourier, à paraître, 24 p.

[1] Barth, Wolf P.; Peters, Christiaan A. M.; Van de Ven, Antonius Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., Volume 4, Springer, 1984 | MR MR749574 | Zbl 0718.14023

[2] Baum, Paul F.; Bott, Raoul On the zeroes of meromorphic vector-fields, Essays on Topology and Related Topics (Mémoires dédiés à Georges de Rham), Springer, 1970, pp. 29-47 | MR 0261635 | Zbl 0193.52201

[3] Brunella, Marco Feuilletages holomorphes sur les surfaces complexes compactes, Ann. Sci. Éc. Norm. Sup., Volume 30 (1997) no. 5, pp. 569-594 | Article | MR MR1474805 | Zbl 0893.32019

[4] Brunella, Marco Some remarks on indices of holomorphic vector fields, Publ. Mat., Barc., Volume 41 (1997) no. 2, pp. 527-544 | MR MR1485502 | Zbl 0912.32024

[5] Brunella, Marco Birational geometry of foliations, Publicações Matemáticas do IMPA. [IMPA Mathematical Publications], Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2004 | MR MR2114696 | Zbl 1082.32022

[6] Ehresmann, Charles Les connexions infinitésimales dans un espace fibré différentiable, Colloque de topologie (espaces fibrés), Bruxelles, 1950, Georges Thone; Masson, 1951, pp. 29-55 | MR 0042768 | Zbl 0054.07201

[7] Ghys, Étienne Feuilletages holomorphes de codimension un sur les espaces homogènes complexes, Ann. Fac. Sci. Toulouse, Math., Volume 5 (1996) no. 3, pp. 493-519 | MR MR1440947 | Zbl 0877.57014

[8] Ghys, Étienne À propos d’un théorème de J.-P. Jouanolou concernant les feuilles fermées des feuilletages holomorphes, Rend. Circ. Mat. Palermo, Volume 49 (2000) no. 1, pp. 175-180 | Article | MR MR1753461 | Zbl 0953.32016

[9] Kobayashi, Shoshichi; Ochiai, Takushiro Holomorphic projective structures on compact complex surfaces, Math. Ann., Volume 249 (1980) no. 1, pp. 75-94 | Article | MR 575449 | Zbl 0412.32026

[10] Lins Neto, Alcides Exceptional families of foliations and the Poincaré Problem (2002) (http://preprint.impa.br/FullText/183__Tue_Nov_26_16_11_27_EDT_2002.html/Pprob1.PDF, Preprint)

[11] Lins Neto, Alcides Some Examples for the Poincaré and Painlevé problems, Ann. Sci. École Norm, Volume 2 (2002) no. 35, pp. 231-266 | Zbl 1130.34301

[12] Lins Neto, Alcides Curvature of pencil of foliations, Analyse complexe, systèmes dynamiques, sommabilité des séries divergentes et théories galoisiennes. I. Volume en l’honneur de Jean-Pierre Ramis (Astérisque) Volume 296, Société Mathématique de France, 2004, pp. 167-190 | Zbl 1081.32021

[13] Pereira, Jorge Vitório; Pirio, Luc The classification of exceptional CDQL webs on compact complex surfaces, Int. Math. Res. Not. (2010) no. 12, pp. 2169-2282 | Article | MR 2652221 | Zbl 1208.53011