Existence of bubbling solutions without mass concentration  [ Existence de solutions bouillonnantes sans concentration de masse ]
Annales de l'Institut Fourier, à paraître, 46 p.

Le travail séminal de Brezis et Merle a été pionnier dans l’étude des phénomènes de bulles de l’équation du champ moyen avec des sources singulières. Lorsque les points de vortex ne s’affaissent pas, l’équation du champ moyen possède la propriété de ce que l’on appelle « le bouillonnement implique une concentration de masse » . Récemment, Lin et Tarantello ont remarqué que les phénomènes de « bouillonnement implique une concentration de masse » pourraient ne pas s’appliquer en général s’il y a effondrement des singularités se produit. Dans cet article, nous construisons le premier exemple concret de solution bulleuse non concentrée de l’équation du champ moyen avec des singularités d’effondrement.

The seminal work by Brezis and Merle has been pioneering in studying the bubbling phenomena of the mean field equation with singular sources. When the vortex points are not collapsing, the mean field equation possesses the property of the so-called “bubbling implies mass concentration”. Recently, Lin and Tarantello pointed out that the “bubbling implies mass concentration” phenomena might not hold in general if the collapse of singularities occurs. In this paper, we shall construct the first concrete example of non-concentrated bubbling solution of the mean field equation with collapsing singularities.

Reçu le : 2017-08-11
Accepté le : 2017-03-27
Publié le : 2019-03-08
Classification:  53A30,  35B44,  35J15,  82D55
Mots clés: phénomènes de bulles, équation de champ moyen
@unpublished{AIF_0__0_0_A25_0,
     author = {Lee, Youngae and Lin, Chang-Shou and Yang, Wen},
     title = {Existence of bubbling solutions without mass concentration},
     note = {to appear in \emph{Annales de l'Institut Fourier}},
}
Lee, Youngae; Lin, Chang-Shou; Yang, Wen. Existence of bubbling solutions without mass concentration. Annales de l'Institut Fourier, à paraître, 46 p.

[1] Baraket, Sami; Pacard, Frank Construction of singular limits for a semilinear elliptic equation in dimension 2, Calc. Var. Partial Differ. Equ., Tome 6 (1997) no. 1, pp. 1-38

[2] Bartolucci, Daniele; Chen, Chiun-Chuan; Lin, Chang-Shou; Tarantello, Gabriella Profile of blow-up solutions to mean field equations with singular data, Commun. Partial Differ. Equations, Tome 29 (2004) no. 7-8, pp. 1241-1265 | Article | MR 2097983

[3] Bartolucci, Daniele; De Marchis, Francesca On the Ambjorn-Olesen electroweak condensates, J. Math. Phys., Tome 53 (2012) no. 7, 073704, 15 pages (Art. ID 073704, 15 p.) | Article | MR 2985263

[4] Bartolucci, Daniele; Tarantello, Gabriella Liouville type equations with singular data and their applications to periodic multivortices for the electroweak theory, Commun. Math. Phys., Tome 229 (2002) no. 1, pp. 3-47 | Article | MR 1917672

[5] Battaglia, Luca; Malchiodi, Andrea Existence and non-existence results for the SU (3) singular Toda system on compact surfaces, J. Funct. Anal., Tome 270 (2016) no. 10, pp. 3750-3807

[6] Brezis, Haïm; Merle, Frank Uniform estimates and blow-up behavior for solutions of -Δu=V(x)e u in two dimensions, Commun. Partial Differ. Equations, Tome 16 (1991) no. 8-9, pp. 1223-1253 | Article | MR 1132783

[7] Chai, Ching-Li; Lin, Chang-Shou; Wang, Chin-Lung Mean field equations, hyperelliptic curves and modular forms: I, Camb. J. Math., Tome 3 (2015) no. 1-2, pp. 127-274 | Article | MR 3356357

[8] Chan, Hsungrow; Fu, Chun-Chieh; Lin, Chang-Shou Non-topological multi-vortex solutions to the self-dual Chern-Simons-Higgs equation, Commun. Math. Phys., Tome 231 (2002) no. 2, pp. 189-221 | Article | MR 1946331

[9] Chang, Sun-Yung Alice; Yang, Paul C. Prescribing Gaussian curvature on S 2 , Acta Math., Tome 159 (1987) no. 3-4, pp. 215-259 | Article | MR 908146

[10] Chen, Chiun-Chuan; Lin, Chang-Shou Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces, Commun. Pure Appl. Math., Tome 55 (2002) no. 6, pp. 728-771 | Article | MR 1885666

[11] Chen, Chiun-Chuan; Lin, Chang-Shou Topological degree for a mean field equation on Riemann surfaces, Commun. Pure Appl. Math., Tome 56 (2003) no. 12, pp. 1667-1727 | Article | MR 2001443

[12] Chen, Chiun-Chuan; Lin, Chang-Shou Mean field equations of Liouville type with singular data: sharper estimates, Discrete Contin. Dyn. Syst., Tome 28 (2010) no. 3, pp. 1237-1272 | Article | MR 2644788 | Zbl 1211.35263

[13] Chen, Chiun-Chuan; Lin, Chang-Shou Mean field equation of Liouville type with singular data: topological degree, Commun. Pure Appl. Math., Tome 68 (2015) no. 6, pp. 887-947 | Article | MR 3340376

[14] Chen, Zhijie; Kuo, Ting-Jung; Lin, Chang-Shou; Wang, Chin-Lung Green function, Painlevé VI equation, and Eisenstein series of weight one, J. Differ. Geom., Tome 108 (2018) no. 2, pp. 185-241 | Article | MR 3763067

[15] Choe, Kwangseok; Kim, Namkwon Blow-up solutions of the self-dual Chern-Simons-Higgs vortex equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Tome 25 (2008) no. 2, pp. 313-338 | Article | MR 2396525

[16] Choe, Kwangseok; Kim, Namkwon; Lee, Youngae; Lin, Chang-Shou Existence of mixed type solutions in the Chern-Simons gauge theory of rank two in 2 , J. Funct. Anal., Tome 273 (2017) no. 5, pp. 1734-1761 | Article | MR 3666727

[17] Choe, Kwangseok; Kim, Namkwon; Lin, Chang-Shou Existence of mixed type solutions in the SU(3) Chern-Simons theory in 2 , Calc. Var. Partial Differ. Equ., Tome 56 (2017) no. 2, 17, 30 pages (Art ID 17, 30 p.) | Article | MR 3605842

[18] D’Aprile, Teresa; Pistoia, Angela; Ruiz, David Asymmetric blow-up for the SU(3) Toda system, J. Funct. Anal., Tome 271 (2016) no. 3, pp. 495-531 | Article | MR 3506954

[19] Esposito, Pierpaolo; Grossi, Massimo; Pistoia, Angela On the existence of blowing-up solutions for a mean field equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Tome 22 (2005) no. 2, pp. 227-257 | Article | MR 2124164

[20] Esposito, Pierpaolo; Musso, Monica; Pistoia, Angela Concentrating solutions for a planar elliptic problem involving nonlinearities with large exponent, J. Differ. Equations, Tome 227 (2006) no. 1, pp. 29-68 | Article | MR 2233953

[21] Figueroa, Pablo Singular limits for Liouville-type equations on the flat two-torus, Calc. Var. Partial Differ. Equ., Tome 49 (2014) no. 1-2, pp. 613-647 | Article | MR 3148129

[22] Lee, Youngae; Lin, Chang-Shou; Tarantello, Gabriella; Yang, Wen Sharp estimates for solutions of mean field equations with collapsing singularity, Commun. Partial Differ. Equations, Tome 42 (2017) no. 10, pp. 1549-1597 | Article | MR 3764920

[23] Lee, Youngae; Lin, Chang-Shou; Wei, Jun-Cheng; Yang, Wen Degree counting and Shadow system for Toda system of rank two: One bubbling, J. Differ. Equations, Tome 264 (2018) no. 7, pp. 4343-4401 | Article | MR 3758525

[24] Lee, Youngae; Lin, Chang-Shou; Yang, Wen; Zhang, Lei Degree counting for Toda system with simple singularity: one point blow up (2017) (https://arxiv.org/abs/1707.07156 )

[25] Lee, Youngae; Lin, Chang-Shou; Zhong, Xuexiu Existence of non-topological solutions in the SU(3) Chern–Simons model in 2 , part I (preprint)

[26] Li, Yan Yan Harnack type inequality: the method of moving planes, Commun. Math. Phys., Tome 200 (1999) no. 2, pp. 421-444

[27] Li, Yan Yan; Shafrir, Itai Blow-up analysis for solutions of- Δu=Ve u in dimension two, Indiana Univ. Math. J., Tome 43 (1994) no. 4, pp. 1255-1270

[28] Lin, Chang-Shou An expository survey on the recent development of mean field equations, Discrete Contin. Dyn. Syst., Tome 19 (2007) no. 2, pp. 387-410

[29] Lin, Chang-Shou; Tarantello, Gabriella When “blow-up” does not imply “concentration”: A detour from Brézis–Merle’s result, C. R. Math. Acad. Sci. Paris, Tome 354 (2016) no. 5, pp. 493-498 | Article | Zbl 1387.35310

[30] Lin, Chang-Shou; Wei, Jun-Cheng; Yang, Wen; Zhang, Lei On rank-2 Toda systems with arbitrary singularities: local mass and new estimates, Anal. PDE, Tome 11 (2018) no. 4, pp. 873-898 | Article

[31] Lin, Chang-Shou; Yan, Shusen Existence of bubbling solutions for Chern–Simons model on a torus, Arch. Ration. Mech. Anal., Tome 207 (2013) no. 2, pp. 353-392 | Zbl 1260.35155

[32] Malchiodi, Andrea Morse theory and a scalar field equation on compact surfaces, Adv. Differ. Equ., Tome 13 (2008) no. 11-12, pp. 1109-1129 | Zbl 1175.53052

[33] Malchiodi, Andrea; Ndiaye, Cheikh Birahim Some existence results for the Toda system on closed surfaces, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Tome 18 (2007) no. 4, pp. 391-412 | Zbl 1148.35021

[34] Malchiodi, Andrea; Ruiz, David A variational analysis of the Toda system on compact surfaces, Commun. Pure Appl. Math., Tome 66 (2013) no. 3, pp. 332-371

[35] Malchiodi, Andrea; Ruiz, David On the Leray-Schauder degree of the Toda system on compact surfaces, Proc. Am. Math. Soc., Tome 143 (2015) no. 7, pp. 2985-2990

[36] Nolasco, Margherita; Tarantello, Gabriella On a Sharp Sobolev-Type Inequality on Two-Dimensional Compact Manifolds, Arch. Ration. Mech. Anal., Tome 145 (1998) no. 2, pp. 161-195 | Zbl 0980.46022

[37] Nolasco, Margherita; Tarantello, Gabriella Double vortex condensates in the Chern-Simons-Higgs theory, Calc. Var. Partial Differ. Equ., Tome 9 (1999) no. 1, pp. 31-94

[38] Del Pino, Manuel; Kowalczyk, Michal; Musso, Monica Singular limits in Liouville-type equations, Calc. Var. Partial Differ. Equ., Tome 24 (2005) no. 1, pp. 47-81 | Article | MR 2157850

[39] Prajapat, Jyotshana; Tarantello, Gabriella On a class of elliptic problems in 2 : symmetry and uniqueness results, Proc. R. Soc. Edinb., Sect. A, Math., Tome 131 (2001) no. 4, pp. 967-985 | Zbl 1009.35018

[40] Troyanov, Marc Metrics of constant curvature on a sphere with two conical singularities, Differential Geometry, Springer (Lecture Notes in Mathematics) Tome 1410 (1989), pp. 296-306 | Zbl 0697.53037

[41] Yang, Yisong The relativistic non-abelian Chern-Simons equations, Commun. Math. Phys., Tome 186 (1997) no. 1, pp. 199-218 | Zbl 0874.58093

[42] Yang, Yisong Solitons in Field Theory and Nonlinear Analysis, Springer, Springer Monographs in Mathematics (2001), xxiv+553 pages | Zbl 0982.35003