Cylindres dans les fibrations de Mori: formes du volume quintique de del Pezzo
Annales de l'Institut Fourier, to appear, 17 p.

Motivated by the general question of existence of open 𝔸 1 -cylinders in higher dimensional projective varieties, we consider the case of Mori Fiber Spaces of relative dimension three, whose general closed fibers are isomorphic to the quintic del Pezzo threefold, the smooth Fano threefold of index two and degree five. We show that the total spaces of these Mori Fiber Spaces always contain a relative 𝔸 2 -cylinder, and we characterize those admitting relative 𝔸 3 -cylinders in terms of the existence of certain special lines in their generic fiber.

Dans le contexte général de l’étude de l’existence de 𝔸 1 -cylindres ouverts dans les variétés projectives de dimension supérieure, nous considérons le cas des fibrations de Mori de dimension relative trois, dont les fibres générales sont isomorphes au volume quintique de del Pezzo, l’unique variété de Fano lisse de degré cinq et d’indice deux. Nous établissons que les espaces totaux de fibrations de Mori de ce type contiennent toujours un 𝔸 2 -cylindre relatif au-dessus de la base de la fibration. Nous donnons également une caractérisation reliant l’existence de 𝔸 3 -cylindres relatifs à l’existence de certaines droites spéciales dans la fibre générique de ces fibrations

Received : 2018-07-24
Revised : 2018-11-09
Accepted : 2018-11-26
Classification:  14E30,  14J30,  14J45,  14R10,  14R25
Keywords: Volumes de Fano, Fibrations de Mori, Liens de Sarkisov, Involutions de Cremona, Cylindres
@unpublished{AIF_0__0_0_A1_0,
     author = {Dubouloz, Adrien and Kishimoto, Takashi},
     title = {Cylindres dans les fibrations de Mori: formes du volume quintique de del Pezzo},
     note = {to appear in \emph{Annales de l'Institut Fourier}},
}
Cylindres dans les fibrations de Mori: formes du volume quintique de del Pezzo. Annales de l'Institut Fourier, to appear, 17 p.

[1] Birkar, Caucher; Cascini, Paolo; Hacon, Christopher D.; Mckernan, James Existence of minimal models for varieties of log general type, J. Am. Math. Soc., Tome 23 (2010) no. 2, pp. 405-468 | Article

[2] Dubouloz, Adrien; Kishimoto, Takashi Explicit biregular/birational geometry of affine threefolds: completions of 𝔸 3 into del Pezzo fibrations and Mori conic bundles, Algebraic varieties and automorphism groups, Mathematical Society of Japan (Advanced Studies in Pure Mathematics) Tome 75 (2017), pp. 49-71 | MR 3793362

[3] Dubouloz, Adrien; Kishimoto, Takashi Cylinders in del Pezzo fibrations, Isr. J. Math., Tome 225 (2018) no. 2, pp. 797-815 | Article

[4] Dubouloz, Adrien; Kishimoto, Takashi Deformations of 𝔸 1 -cylindrical varieties, Math. Ann., Tome 373 (2019) no. 3-4, pp. 1135-1149 | Article

[5] Furushima, Mikio The complete classification of compactifications of C 3 which are projective manifolds with the second Betti number one, Math. Ann., Tome 297 (1993) no. 4, pp. 627-662 | Article

[6] Furushima, Mikio; Nakayama, Noboru The family of lines on the Fano threefold V 5 , Nagoya Math. J., Tome 116 (1989), pp. 111-122 | Article

[7] Furushima, Mikio; Nakayama, Noboru A new construction of a compactification of C 3 , Tôhoku Math. J., Tome 41 (1989) no. 4, pp. 543-560 | Article

[8] Iliev, Atanas The Fano surface of the Gushel’ threefold, Compos. Math., Tome 94 (1994) no. 1, pp. 81-107

[9] Iliev, Atanas Lines on the Gushel’ threefold, Indag. Math., New Ser., Tome 5 (1994) no. 3, pp. 307-320 | Article | Zbl 0840.14027

[10] Iskovskih, Vasily A. Anticanonical models of three-dimensional algebraic varieties, Current problems in mathematics, Vol. 12 (Russian), VINITI (1979), pp. 59-157

[11] Kishimoto, Takashi; Prokhorov, Yuri; Zaidenberg, Mikhail Group actions on affine cones, Affine algebraic geometry, American Mathematical Society (CRM Proceedings & Lecture Notes) Tome 54 (2011), pp. 123-163

[12] Kishimoto, Takashi; Prokhorov, Yuri; Zaidenberg, Mikhail 𝔾 a -actions on affine cones, Transform. Groups, Tome 18 (2013) no. 4, pp. 1137-1153 | Article

[13] Kishimoto, Takashi; Prokhorov, Yuri; Zaidenberg, Mikhail Affine cones over Fano threefolds and additive group actions, Osaka J. Math., Tome 51 (2014) no. 4, pp. 1093-1112

[14] Kolpakov-Miroshnichenko, I. Ya.; Prokhorov, Yuri Construction of the rationality of fields of invariants of some finite four-dimensional linear groups that are connected with Fano threefolds, Mat. Zametki, Tome 51 (1992) no. 1, pp. 114-117 | Article | Zbl 0765.14023

[15] Kuznetsov, Alexander G.; Prokhorov, Yuri; Shramov, Constantin A. Hilbert schemes of lines and conics and automorphism groups of Fano threefolds, Jpn. J. Math., Tome 13 (2018) no. 1, pp. 109-185 | Article

[16] Micali, Artibano Sur les algèbres universelles, Ann. Inst. Fourier, Tome 14 (1964) no. 2, pp. 33-87

[17] Mukai, Shigeru; Umemura, Hiroshi Minimal rational threefolds, Algebraic geometry (Tokyo/Kyoto, 1982), Springer (Lecture Notes in Mathematics) Tome 1016 (1983), pp. 490-518 | Article

[18] Prokhorov, Yuri Fano threefolds of genus 12 and compactifications of C 3 , Algebra Anal., Tome 3 (1991) no. 4, pp. 162-170

[19] Prokhorov, Yuri; Zaidenberg, Mikhail Examples of cylindrical Fano fourfolds, Eur. J. Math., Tome 2 (2016) no. 1, pp. 262-282 | Article

[20] Prokhorov, Yuri; Zaidenberg, Mikhail New examples of cylindrical Fano fourfolds, Algebraic varieties and automorphism groups, Mathematical Society of Japan (Advanced Studies in Pure Mathematics) Tome 75 (2017), pp. 443-463

[21] Serre, Jean-Pierre Sur les modules projectifs, Séminaire Dubreil. Algèbre et théorie des nombres (1960/61), Secrétariat mathématique (1963), pp. 1-16 | Zbl 0132.41301

[22] Takeuchi, Kiyohiko Some birational maps of Fano 3-folds, Compos. Math., Tome 71 (1989) no. 3, pp. 265-283