Sparse bounds for maximal rough singular integrals via the Fourier transform  [ Un contrôle épars à travers la transformée de Fourier ]
Annales de l'Institut Fourier, à paraître, 32 p.

Nous démontrons un contrôle épars qualitatif pour la troncature maximale des noyaux de convolution dont la transformée de Fourier satisfait des conditions de décroissance appropriées. Notre résultat étend le principe de contrôle épars de Conde-Alonso, Culiuc, Ou et du premier auteur au cas de la troncature maximale, et inclut le cas des intégrales singulières homogènes T Ω sur d dont la composante angulaire Ω est bornée et a une moyenne nulle. Parmi les diverses conséquences, nous obtenons de nouvelles inégalités quantitatives pondérées pour la troncature maximale de T Ω , l’extension d’un résultat de Roncal, Tapiola et du second auteur. De plus, une extension appropriée aux valeurs vectorielles du contrôle épars implique de nouvelles estimations à poids matriciels pour les troncatures maximales de T Ω . Notre résultat est quantitatif, mais il est nouveau même d’un point de vue qualitatif. L’approche actuelle basée sur le contrôle épars est la seule actuellement connue pour les estimations à poids matriciels de cette classe d’opérateurs.

We prove a quantified sparse bound for the maximal truncations of convolution-type singular integrals with suitable Fourier decay of the kernel. Our result extends the sparse domination principle by Conde-Alonso, Culiuc, Ou and the first author to the maximally truncated case, and covers the rough homogeneous singular integrals T Ω on d with bounded angular part Ω having vanishing integral on the sphere. Among several consequences, we obtain new quantitative weighted norm inequalities for the maximal truncation of T Ω , extending a result by Roncal, Tapiola and the second author.

A convex-body valued version of the sparse bound is also deduced and employed towards novel matrix-weighted norm inequalities for the maximal truncations of T Ω . Our result is quantitative, but even the qualitative statement is new, and the present approach via sparse domination is the only one currently known for the matrix weighted bounds of this class of operators.

Reçu le : 2017-06-29
Révisé le : 2019-01-21
Accepté le : 2019-03-12
Première publication : 2020-10-01
Classification : 42B2042B25
Mots clés: contrôle épars, intégrales singulières de finesse limitée, estimations á poids
@unpublished{AIF_0__0_0_A18_0,
     author = {Di Plinio, Francesco and Hyt\"onen, Tuomas P. and Li, Kangwei},
     title = {Sparse bounds for maximal rough singular integrals via the Fourier transform},
     note = {to appear in \emph{Annales de l'Institut Fourier}},
}
Di Plinio, Francesco; Hytönen, Tuomas P.; Li, Kangwei. Sparse bounds for maximal rough singular integrals via the Fourier transform. Annales de l'Institut Fourier, à paraître, 32 p.

[1] Bernicot, Frédéric; Frey, Dorothee; Petermichl, Stefanie Sharp weighted norm estimates beyond Calderón-Zygmund theory, Anal. PDE, Volume 9 (2016) no. 5, pp. 1079-1113 | Article | MR 3531367

[2] Bickel, Kelly; Culiuc, Amalia; Treil, Sergei; Wick, Brett D. Two weight estimates with matrix measures for well localized operators (2016) (https://arxiv.org/abs/1611.06667, to appear in Trans. Amer. Math. Soc.)

[3] Bickel, Kelly; Petermichl, Stefanie; Wick, Brett D. Bounds for the Hilbert transform with matrix A 2 weights, J. Funct. Anal., Volume 270 (2016) no. 5, pp. 1719-1743 | Article | MR 3452715

[4] Christ, Michael Weak type (1,1) bounds for rough operators, Ann. Math., Volume 128 (1988) no. 1, pp. 19-42 | Article | MR 951506

[5] Christ, Michael; Rubio de Francia, José Luis Weak type (1,1) bounds for rough operators. II, Invent. Math., Volume 93 (1988) no. 1, pp. 225-237 | Article | MR 943929

[6] Christ, Michael; Goldberg, Michael Vector A 2 weights and a Hardy-Littlewood maximal function, Trans. Am. Math. Soc., Volume 353 (2001) no. 5, pp. 1995-2002 | Article | MR 1813604

[7] Conde-Alonso, José M.; Culiuc, Amalia; Di Plinio, Francesco; Ou, Yumeng A sparse domination principle for rough singular integrals, Anal. PDE, Volume 10 (2017) no. 5, pp. 1255-1284 | Article | MR 3668591

[8] Culiuc, Amalia; Di Plinio, Francesco; Ou, Yumeng Domination of multilinear singular integrals by positive sparse forms, J. Lond. Math. Soc., Volume 98 (2018) no. 2, pp. 369-392 | Article | MR 3873113

[9] Culiuc, Amalia; Di Plinio, Francesco; Ou, Yumeng Uniform sparse domination of singular integrals via dyadic shifts, Math. Res. Lett., Volume 25 (2018) no. 1, pp. 21-42 | Article | MR 3818613

[10] Culiuc, Amalia; Kesler, Robert; Lacey, Michael T. Sparse bounds for the discrete cubic Hilbert transform, Anal. PDE, Volume 12 (2019) no. 5, pp. 1259-1272 | Article | MR 3892403

[11] Di Plinio, Francesco; Lerner, Andrei K. On weighted norm inequalities for the Carleson and Walsh-Carleson operator, J. Lond. Math. Soc., Volume 90 (2014) no. 3, pp. 654-674 | Article | MR 3291794

[12] Duoandikoetxea, Javier; Rubio de Francia, José Luis Maximal and singular integral operators via Fourier transform estimates, Invent. Math., Volume 84 (1986) no. 3, pp. 541-561 | Article | MR 837527

[13] de França Silva, Fernanda Clara; Zorin-Kranich, Pavel Sparse domination of sharp variational truncations (2016) (https://arxiv.org/abs/1604.05506)

[14] Hytönen, Tuomas; Pérez, Carlos; Rela, Ezequiel Sharp reverse Hölder property for A weights on spaces of homogeneous type, J. Funct. Anal., Volume 263 (2012) no. 12, pp. 3883-3899 | Article | MR 2990061

[15] Hytönen, Tuomas; Petermichl, Stefanie; Volberg, Alexander The sharp square function estimate with matrix weight (2017) (https://arxiv.org/abs/1702.04569)

[16] Hytönen, Tuomas P.; Roncal, Luz; Tapiola, Olli Quantitative weighted estimates for rough homogeneous singular integrals, Isr. J. Math., Volume 218 (2017) no. 1, pp. 133-164 | Article | MR 3625128

[17] Isralowitz, Joshua; Kwon, Hyun-Kyoung; Pott, Sandra Matrix weighted norm inequalities for commutators and paraproducts with matrix symbols, J. Lond. Math. Soc., Volume 96 (2017) no. 1, pp. 243-270 | Article | MR 3687948

[18] Lacey, Michael T. An elementary proof of the A 2 bound, Isr. J. Math., Volume 217 (2017) no. 1, pp. 181-195 | Article | MR 3625108

[19] Lacey, Michael T. Sparse bounds for spherical maximal functions (2017) (https://arxiv.org/abs/1702.08594, to appear in J. Anal. Math.)

[20] Lacey, Michael T.; Mena Arias, Dario The sparse T1 Theorem, Houston J. Math., Volume 43 (2017) no. 1, pp. 111-127

[21] Lacey, Michael T.; Spencer, Scott Sparse bounds for oscillatory and random singular integrals, New York J. Math., Volume 23 (2017), pp. 119-131 | MR 3611077

[22] Lerner, Andrei K. On pointwise estimates involving sparse operators, New York J. Math., Volume 22 (2016), pp. 341-349 | MR 3484688

[23] Lerner, Andrei K. A weak type estimate for rough singular integrals (2017) (https://arxiv.org/abs/1705.07397, to appear in Rev. Mat. Iberoam.)

[24] Lerner, Andrei K.; Ombrosi, Sheldy; Rivera-Ríos, Israel P. On pointwise and weighted estimates for commutators of Calderón-Zygmund operators, Adv. Math., Volume 319 (2017), pp. 153-181 | Article | MR 3695871

[25] Li, Kangwei Sharp weighted estimates involving one supremum, C. R. Math. Acad. Sci. Paris, Volume 355 (2017) no. 8, pp. 906-909 | Article | MR 3693513

[26] Li, Kangwei Two weight inequalities for bilinear forms, Collect. Math., Volume 68 (2017) no. 1, pp. 129-144

[27] Li, Kangwei Sparse domination theorem for multilinear singular integral operators with L r -Hörmander condition, Mich. Math. J., Volume 67 (2018) no. 2, pp. 253-265 | Article | MR 3802254

[28] Li, Kangwei; Pérez, Carlos; Rivera-Ríos, Israel P.; Roncal, Luz Weighted norm inequalities for rough singular integral operators, J. Geom. Anal., Volume 29 (2019) no. 3, pp. 2526-2564 | Article | Zbl 07093587

[29] Luque, Teresa; Pérez, Carlos; Rela, Ezequiel Optimal exponents in weighted estimates without examples, Math. Res. Lett., Volume 22 (2015) no. 1, pp. 183-201 | Article | MR 3342184

[30] Nazarov, Fedor; Petermichl, Stefanie; Treil, Sergei; Volberg, Alexander Convex body domination and weighted estimates with matrix weights, Adv. Math., Volume 318 (2017), pp. 279-306 | Article | MR 3689742

[31] Seeger, Andreas Singular integral operators with rough convolution kernels, J. Am. Math. Soc., Volume 9 (1996) no. 1, pp. 95-105 | Article | MR 1317232

[32] Stein, Elias M. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, Volume 43, Princeton University Press, 1993, xiv+695 pages (with the assistance of Timothy S. Murphy) | MR 1232192 | Zbl 0821.42001

[33] Zorin-Kranich, Pavel A p -A estimates for multilinear maximal and sparse operators (2016) (https://arxiv.org/abs/1609.06923, to appear in J. Anal. Math.)