A quantum splitting principle and an application
Annales de l'Institut Fourier, to appear, 22 p.

We propose an analogy of splitting principle in genus-0 Gromov–Witten theory. More precisely, we show how the Gromov–Witten theory of a variety X can be embedded into the theory of the projectivization of a vector bundle over X. An application is also given.

Nous proposons un analogue du principe de décomposition en théorie de Gromov–Witten de genre zéro. Plus précisément, nous montrons comment réaliser la théorie de Gromov–Witten d’une variété X dans la théorie de la projectivisation d’un fibré vectoriel sur X. Nous donnons également une application.

Received : 2017-09-21
Revised : 2018-06-19
Accepted : 2018-09-25
Classification:  14N35
Keywords: Gromov–Witten theory, splitting principle, projective bundle
     author = {Fan, Honglu},
     title = {A quantum splitting principle and an application},
     note = {to appear in \emph{Annales de l'Institut Fourier}},
A quantum splitting principle and an application. Annales de l'Institut Fourier, to appear, 22 p.

[1] Bernardara, Marcello A semiorthogonal decomposition for Brauer Severi schemes, Math. Nachr., Tome 282 (2009) no. 10, pp. 1406-1413 | Zbl 1179.14013

[2] Brown, Jeffrey Gromov-Witten Invariants of Toric Fibrations (2009) (https://arxiv.org/abs/0901.1290 )

[3] Coates, Tom; Givental, Alexander Quantum Riemann–Roch, Lefschetz and Serre, Ann. Math., Tome 165 (2007) no. 1, pp. 15-53 | Zbl 1189.14063

[4] Fan, Honglu Chern classes and Gromov–Witten theory of projective bundles (2017) (https://arxiv.org/abs/1705.07421 )

[5] Fan, Honglu; Lee, Yuan-Pin On Gromov–Witten theory of projective bundles (2016) (https://arxiv.org/abs/1607.00740 )

[6] Graber, Tom; Pandharipande, Rahul Localization of virtual classes, Invent. Math., Tome 135 (1999) no. 2, pp. 487-518 | Zbl 0953.14035

[7] Grothendieck, Alexander Le groupe de Brauer I, II, III, Dix Exposés sur la Cohomologie des Schémas, North-Holland (Advanced Studies in Pure Mathematics) Tome 3 (1968), pp. 46-188

[8] Kim, Bumsig; Kresch, Andrew; Pantev, Tony Functoriality in intersection theory and a conjecture of Cox, Katz, and Lee, J. Pure Appl. Algebra, Tome 179 (2003) no. 1, pp. 127-136 | Zbl 1078.14535

[9] Kresch, Andrew Cycle groups for Artin stacks, Invent. Math., Tome 138 (1999) no. 3, pp. 495-536 | Zbl 0938.14003

[10] Lai, Hsin-Hong Gromov–Witten invariants of blow-ups along submanifolds with convex normal bundles, Geom. Topol., Tome 13 (2007) no. 1, pp. 1-48 | Zbl 1159.14030

[11] Lee, Yuan-Pin; Lin, Hui-Wen; Qu, Feng; Wang, Chin-Lung Invariance of quantum rings under ordinary flops III: A quantum splitting principle, Camb. J. Math., Tome 4 (2014) no. 3, pp. 333-401 | Article | Zbl 1365.14076

[12] Liu, Chiu-Chu M. Localization in Gromov–Witten theory and orbifold Gromov-Witten theory, Handbook of moduli. Volume II, International Press. (Advanced Lectures in Mathematics (ALM)) Tome 25 (2013), pp. 353-425 | Zbl 1322.14010

[13] Manolache, Cristina Virtual pull-backs, J. Algebr. Geom., Tome 21 (2012) no. 2, pp. 201-245 | Zbl 1328.14019

[14] Mustata, Anca; Mustata, Andrei Gromov–Witten invariants for varieties with C* action (2015) (https://arxiv.org/abs/1505.01471 )

[15] Ruan, Yongbin Surgery, quantum cohomology and birational geometry, Northern California symplectic geometry seminar, American Mathematical Society (Advances in the Mathematical Sciences) Tome 196 (1999), pp. 183-198 | Zbl 0952.53001