On a Nielsen–Thurston classification theory for cluster modular groups
Annales de l'Institut Fourier, to appear, 46 p.

We classify elements of a cluster modular group into three types. We characterize them in terms of fixed point property of the action on the tropical compactifications associated with the corresponding cluster ensemble. The characterization gives an analogue of the Nielsen–Thurston classification theory on the mapping class group of a surface.

Nous classons les éléments d’un groupe modulaire de cluster en trois types. Nous les caractérisons en termes de propriété de point fixe de l’action sur les compactifications tropicales associées à l’ensemble de cluster correspondant. La caractérisation donne un analogue de la théorie de classification de Nielsen–Thurston sur le groupe modulaire d’une surface.

Received : 2017-05-01
Revised : 2018-02-12
Accepted : 2018-03-13
Classification:  13F60,  30F60,  57M50
Keywords: cluster modular groups, mapping class groups, decorated Teichmüller theory
@unpublished{AIF_0__0_0_A14_0,
     author = {Ishibashi, Tsukasa},
     title = {On a Nielsen--Thurston classification theory for cluster modular groups},
     note = {to appear in \emph{Annales de l'Institut Fourier}},
}
Ishibashi, Tsukasa. On a Nielsen–Thurston classification theory for cluster modular groups. Annales de l'Institut Fourier, to appear, 46 p.

[1] Assem, Ibrahim; Schiffler, Ralf; Shramchenko, Vasilisa Cluster automorphisms, Proc. Lond. Math. Soc., Tome 104 (2012) no. 6, pp. 1271-1302 | Article | MR 2946087

[2] Blanc, Jérémy; Dolgachev, Igor Automorphisms of cluster algebras of rank 2, Transform. Groups, Tome 20 (2015) no. 1, pp. 1-20 | Article | MR 3317793

[3] Bridgeland, Tom; Smith, Ivan Quadratic differentials as stability conditions, Publ. Math., Inst. Hautes Étud. Sci., Tome 121 (2015), pp. 155-278 | Article | MR 3349833

[4] Brown, Kenneth S. Complete Euler characteristics and fixed-point theory, J. Pure Appl. Algebra, Tome 24 (1982) no. 2, pp. 103-121 | Article | MR 651839 | Zbl 0493.20033

[5] Cerulli Irelli, Giovanni; Keller, Bernhard; Labardini-Fragoso, Daniel; Plamondon, Pierre-Guy Linear independence of cluster monomials for skew-symmetric cluster algebras, Compos. Math., Tome 149 (2013) no. 10, pp. 1753-1764 | Article | MR 3123308

[6] Chang, Wen; Zhu, Bin Cluster automorphism groups of cluster algebras of finite type, J. Algebra, Tome 447 (2016), pp. 490-515 | Article | MR 3427647

[7] Chang, Wen; Zhu, Bin Cluster automorphism groups of cluster algebras with coefficients, Sci. China, Math., Tome 59 (2016) no. 10, pp. 1919-1936 | Article | MR 3549933 | Zbl 1375.13030

[8] Derksen, Harm; Owen, Theodore New graphs of finite mutation type, Electron. J. Comb., Tome 15 (2008) no. 1, 139, 15 pages http://www.combinatorics.org/volume_15/abstracts/v15i1r139.html (Art. ID 139, 15 p.) | MR 2465763

[9] Farb, Benson; Margalit, Dan A primer on mapping class groups, Princeton University Press, Princeton Mathematical Series, Tome 49 (2012), xiv+472 pages | MR 2850125

[10] Fathi, Albert; Laudenbach, François; Poénaru, Valentin Thurston’s work on surfaces, Princeton University Press, Mathematical Notes, Tome 48 (2012), xvi+254 pages (Translated from the 1979 French original by Djun M. Kim and Dan Margalit) | MR 3053012 | Zbl 1244.57005

[11] Felikson, Anna; Shapiro, Michael; Tumarkin, Pavel Skew-symmetric cluster algebras of finite mutation type, J. Eur. Math. Soc., Tome 14 (2012) no. 4, pp. 1135-1180 | Article | MR 2928847

[12] Fock, Vladimir V.; Goncharov, Alexander B. Moduli spaces of local systems and higher Teichmüller theory, Publ. Math., Inst. Hautes Étud. Sci. (2006) no. 103, pp. 1-211 | Article | MR 2233852

[13] Fock, Vladimir V.; Goncharov, Alexander B. Dual Teichmüller and lamination spaces, Handbook of Teichmüller theory. Vol. I, European Mathematical Society (IRMA Lectures in Mathematics and Theoretical Physics) Tome 11 (2007), pp. 647-684 | Article | MR 2349682

[14] Fock, Vladimir V.; Goncharov, Alexander B. Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Éc. Norm. Supér. (2009) no. 6, pp. 865-930 | Article | MR 2567745

[15] Fock, Vladimir V.; Goncharov, Alexander B. Cluster Poisson varieties at infinity, Sel. Math., New Ser., Tome 22 (2016) no. 4, pp. 2569-2589 | Article | MR 3573965

[16] Fomin, Sergey; Shapiro, Michael; Thurston, Dylan Cluster algebras and triangulated surfaces. I. Cluster complexes, Acta Math., Tome 201 (2008) no. 1, pp. 83-146 | Article | MR 2448067

[17] Fomin, Sergey; Thurston, Dylan Cluster algebras and triangulated surfaces. II. Lambda lengths (2012) (preprint)

[18] Fomin, Sergey; Zelevinsky, Andrei Cluster algebras. II. Finite type classification, Invent. Math., Tome 154 (2003) no. 1, pp. 63-121 | Article | MR 2004457

[19] Fraser, Chris Quasi-homomorphisms of cluster algebras, Adv. Appl. Math., Tome 81 (2016), pp. 40-77 | Article | MR 3551663

[20] Harer, John L. The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math., Tome 84 (1986) no. 1, pp. 157-176 | Article | MR 830043

[21] Hatcher, Allen On triangulations of surfaces, Topology Appl., Tome 40 (1991) no. 2, pp. 189-194 | Article | MR 1123262 | Zbl 0727.57012

[22] Kashaev, R. M. On the spectrum of Dehn twists in quantum Teichmüller theory, Physics and combinatorics, 2000 (Nagoya), World Scientific (2001), pp. 63-81 | Article | MR 1872252

[23] Lawson, John W. Cluster automorphisms and the marked exchange graphs of skew-symmetrizable cluster algebras, Electron. J. Comb., Tome 23 (2016) no. 4, 4.41, 33 pages (Art. ID 4.41, 33 p.) | MR 3604799

[24] Le, Ian Higher laminations and affine buildings, Geom. Topol., Tome 20 (2016) no. 3, pp. 1673-1735 | Article | MR 3523066

[25] Mandel, Travis Classification of rank 2 cluster varieties (2014)

[26] Papadopoulos, Athanase; Penner, Robert C. The Weil-Petersson symplectic structure at Thurston’s boundary, Trans. Am. Math. Soc., Tome 335 (1993) no. 2, pp. 891-904 | Article | MR 1089420 | Zbl 0776.57007

[27] Penner, Robert C. The decorated Teichmüller space of punctured surfaces, Commun. Math. Phys., Tome 113 (1987) no. 2, pp. 299-339 http://projecteuclid.org/euclid.cmp/1104160216 | MR 919235

[28] Penner, Robert C. Decorated Teichmüller theory, European Mathematical Society, The QGM Master Class Series (2012), xviii+360 pages (With a foreword by Yuri I. Manin) | Article | MR 3052157 | Zbl 1243.30003

[29] Penner, Robert C.; Harer, John L. Combinatorics of train tracks, Princeton University Press, Annals of Mathematics Studies, Tome 125 (1992), xii+216 pages | Article | MR 1144770

[30] Thurston, William P. On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Am. Math. Soc., Tome 19 (1988) no. 2, pp. 417-431 | Article | MR 956596