Strong diamagnetism for general domains and application
Annales de l'Institut Fourier, Volume 57 (2007) no. 7, p. 2389-2400
We consider the Neumann Laplacian with constant magnetic field on a regular domain in 2 . Let B be the strength of the magnetic field and let λ 1 (B) be the first eigenvalue of this Laplacian. It is proved that Bλ 1 (B) is monotone increasing for large B. Together with previous results of the authors, this implies the coincidence of all the “third” critical fields for strongly type 2 superconductors.
Nous considérons le Laplacien de Neumann avec champ magnétique constant dans un domaine régulier de 2 . Si B désigne l’intensité de ce champ et si λ 1 (B) désigne la première valeur propre de ce Laplacien, il est démontré que λ 1 est une fonction monotone croissante de B pour B grand. En combinant avec des résultats antérieurs des auteurs, ceci implique la coïncidence de toutes les définitions raisonables du troisième champ critique pour les matériaux supraconducteurs de type II.
DOI : https://doi.org/10.5802/aif.2337
Classification:  35P15,  35J55,  82D55
Keywords: Spectral theory, bottom of the spectrum, Neumann condition, superconductivity
@article{AIF_2007__57_7_2389_0,
     author = {Fournais, Soeren and Helffer, Bernard},
     title = {Strong diamagnetism for general domains and application},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {57},
     number = {7},
     year = {2007},
     pages = {2389-2400},
     doi = {10.5802/aif.2337},
     zbl = {1133.35073},
     mrnumber = {2394546},
     language = {en},
     url = {https://aif.centre-mersenne.org/item/AIF_2007__57_7_2389_0}
}
Fournais, Soeren; Helffer, Bernard. Strong diamagnetism for general domains and application. Annales de l'Institut Fourier, Volume 57 (2007) no. 7, pp. 2389-2400. doi : 10.5802/aif.2337. https://aif.centre-mersenne.org/item/AIF_2007__57_7_2389_0/

[1] Agmon, Shmuel Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of N -body Schrödinger operators, Princeton University Press, Princeton, NJ, Mathematical Notes, Tome 29 (1982) | MR 745286 | Zbl 0503.35001

[2] Bauman, P.; Phillips, D.; Tang, Q. Stable nucleation for the Ginzburg-Landau system with an applied magnetic field, Arch. Rational Mech. Anal., Tome 142 (1998) no. 1, pp. 1-43 | Article | MR 1629119 | Zbl 0922.35157

[3] Bernoff, Andrew; Sternberg, Peter Onset of superconductivity in decreasing fields for general domains, J. Math. Phys., Tome 39 (1998) no. 3, pp. 1272-1284 | Article | MR 1608449 | Zbl 1056.82523

[4] Bonnaillie, Virginie On the fundamental state for a Schrödinger operator with magnetic field in a domain with corners, Asymptotic Anal, Tome 41 (2005) no. 3-4, pp. 215-258 | MR 2127997 | Zbl 1067.35054

[5] Bonnaillie-Noël, Virginie; Dauge, Monique Asymptotics for the low-lying eigenstates of the Schrödinger operator with magnetic field near corners, Ann. Henri Poincaré, Tome 7 (2006) no. 5, pp. 899-931 | Article | MR 2254755 | Zbl 1134.81021

[6] Bonnaillie-Noël, Virginie; Soeren, Fournais Superconductivity in domains with corners (In preparation)

[7] Erdős, László Dia- and paramagnetism for nonhomogeneous magnetic fields, J. Math. Phys., Tome 38 (1997) no. 3, pp. 1289-1317 | Article | MR 1435670 | Zbl 0875.81047

[8] Erdős, László Spectral shift and multiplicity of the first eigenvalue of the magnetic Schrödinger operator in two dimensions, Ann. Inst. Fourier (Grenoble), Tome 52 (2002) no. 6, pp. 1833-1874 | Article | Numdam | MR 1954326 | Zbl 1106.35039

[9] Fournais, S.; Helffer, B. On the third critical field in Ginzburg-Landau theory, Comm. Math. Phys., Tome 266 (2006) no. 1, pp. 153-196 | Article | MR 2231969 | Zbl 1107.58009

[10] Giorgi, T.; Phillips, D. The breakdown of superconductivity due to strong fields for the Ginzburg-Landau model, SIAM Rev., Tome 44 (2002) no. 2, p. 237-256 (electronic) (Reprinted from SIAM J. Math. Anal. 30 (1999), no. 2, 341–359 [MR 2002b:35235]) | Article | MR 1926099 | Zbl 1094.82021

[11] Helffer, Bernard; Morame, Abderemane Magnetic bottles in connection with superconductivity, J. Funct. Anal., Tome 185 (2001) no. 2, pp. 604-680 | Article | MR 1856278 | Zbl 1078.81023

[12] Helffer, Bernard; Pan, Xing-Bin Upper critical field and location of surface nucleation of superconductivity, Ann. Inst. H. Poincaré Anal. Non Linéaire, Tome 20 (2003) no. 1, pp. 145-181 | Article | Numdam | MR 1958165 | Zbl 1060.35132

[13] Loss, Michael; Thaller, Bernd Optimal heat kernel estimates for Schrödinger operators with magnetic fields in two dimensions, Comm. Math. Phys., Tome 186 (1997) no. 1, pp. 95-107 | Article | MR 1462758 | Zbl 0873.35078

[14] Lu, Kening; Pan, Xing-Bin Eigenvalue problems of Ginzburg-Landau operator in bounded domains, J. Math. Phys., Tome 40 (1999) no. 6, pp. 2647-2670 | Article | MR 1694223 | Zbl 0943.35058

[15] Lu, Kening; Pan, Xing-Bin Estimates of the upper critical field for the Ginzburg-Landau equations of superconductivity, Phys. D, Tome 127 (1999) no. 1-2, pp. 73-104 | Article | MR 1678383 | Zbl 0934.35174

[16] Lu, Kening; Pan, Xing-Bin Gauge invariant eigenvalue problems in R 2 and in R + 2 , Trans. Amer. Math. Soc., Tome 352 (2000) no. 3, pp. 1247-1276 | Article | MR 1675206 | Zbl 1053.35124

[17] Pan, Xing-Bin Superconductivity near critical temperature, J. Math. Phys., Tome 44 (2003) no. 6, pp. 2639-2678 | Article | MR 1979105 | Zbl 1062.82057

[18] Del Pino, Manuel; Felmer, Patricio L.; Sternberg, Peter Boundary concentration for eigenvalue problems related to the onset of superconductivity, Comm. Math. Phys., Tome 210 (2000) no. 2, pp. 413-446 | Article | MR 1776839 | Zbl 0982.35077

[19] Soeren, Fournais; Helffer, Bernard Accurate eigenvalue asymptotics for the magnetic Neumann Laplacian, Ann. Inst. Fourier (Grenoble), Tome 56 (2006) no. 1, pp. 1-67 | Article | Numdam | MR 2228679 | Zbl 1097.47020