Abelian simply transitive affine groups of symplectic type
Annales de l'Institut Fourier, Volume 52 (2002) no. 6, p. 1729-1751
The set of all Abelian simply transitive subgroups of the affine group naturally corresponds to the set of real solutions of a system of algebraic equations. We classify all simply transitive subgroups of the symplectic affine group by constructing a model space for the corresponding variety of solutions. \noindent Similarly, we classify the complete global model spaces for flat special Kähler manifolds with a constant cubic form.
L'ensemble des sous-groupes abéliens simplement transitifs du groupe affine correspond, de façon naturelle, à l'ensemble des solutions réelles d'un système d'équations algébriques. Nous classifions les sous-groupes abéliens simplement transitifs du groupe symplectique affine, en construisant un modèle pour la variété de solutions correspondante. De manière similaire, nous classifions les espaces modèles globaux des variétés kählériennes spéciales, plates, avec forme cubique constante.
DOI : https://doi.org/10.5802/aif.1932
Classification:  22E25,  22E45,  53C26
Keywords: affine transformations, flat symplectic connections, special Kähler manifolds
@article{AIF_2002__52_6_1729_0,
     author = {Baues, Oliver and Cort\'es, Vicente},
     title = {Abelian simply transitive affine groups of symplectic type},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {52},
     number = {6},
     year = {2002},
     pages = {1729-1751},
     doi = {10.5802/aif.1932},
     mrnumber = {1952529},
     zbl = {1012.22013},
     language = {en},
     url = {https://aif.centre-mersenne.org/item/AIF_2002__52_6_1729_0}
}
Baues, Oliver; Cortés, Vicente. Abelian simply transitive affine groups of symplectic type. Annales de l'Institut Fourier, Volume 52 (2002) no. 6, pp. 1729-1751. doi : 10.5802/aif.1932. https://aif.centre-mersenne.org/item/AIF_2002__52_6_1729_0/

[A] L. Auslander Simply Transitive Groups of Affine Motions, Amer. J. Math, Tome 99 (1977) no. 4, pp. 809-826 | Article | MR 447470 | Zbl 0357.22006

[ACD] D. V. Alekseevsky; V. Cortés; C. Devchand Special complex manifolds, J. Geom. Phys, Tome 42 (2002), pp. 85-105 | Article | MR 1894078 | Zbl 1004.53038

[BC] O. Baues; V. Cortés Realisation of special Kähler manifolds as parabolic spheres, Proc. Amer. Math. Soc, Tome 129 (2001) no. 8, pp. 2403-2407 | Article | MR 1823925 | Zbl 1031.53020

[Ca] E. Calabi Improper affine hypersurfaces of convex type and a generalization of a theorem of Jörgens, Michigan Math. J, Tome 5 (1958), pp. 105-126 | Article | MR 106487 | Zbl 0113.30104

[D] B. Dubrovin Geometry of 2D topological field theories, Integrable systems and quantum groups (Montecatini Terme, 1993), Springer (Lecture Notes in Math) Tome 1620 (1996), pp. 120-348 | Zbl 0841.58065

[DO] K. Dekimpe; V. Ongenae On the number of abelian left symmetric algebras, Proc. Amer. Math. Soc, Tome 128 (2000) no. 11, pp. 3191-3200 | Article | MR 1695151 | Zbl 0953.17001

[F] D. S. Freed Special Kähler manifolds, Commun. Math. Phys, Tome 203 (1999) no. 1, pp. 31-52 | Article | MR 1695113 | Zbl 0940.53040

[FGH] D. Fried; W. Goldman; M.W. Hirsch Affine manifolds with nilpotent holonomy, Comment. Math. Helv, Tome 56 (1981) no. 4, pp. 487-523 | Article | MR 656210 | Zbl 0516.57014

[K] S. Kobayashi Transformation groups in differential geometry, Springer-Verlag (1972) | MR 355886 | Zbl 0246.53031

[L] Z. Lu A note on special Kähler manifolds, Math. Ann, Tome 313 (1999) no. 4, pp. 711-713 | Article | MR 1686939 | Zbl 1021.53046

[NS] K. Nomizu; T. Sasaki Affine differential geometry. Geometry of affine immersions, Cambridge University Press, Cambridge, Cambridge Tracts in Mathematics, Tome 111 (1994) | MR 1311248 | Zbl 0834.53002

[S] D. Segal The structure of complete left-symmetric algebras, Math. Ann, Tome 293 (1992) no. 3, pp. 569-578 | Article | MR 1170527 | Zbl 0766.17005

[VLS] L. Vrancken; A. M. Li; U. Simon Affine spheres with constant affine sectional curvature, Math. Z, Tome 206 (1991) no. 4, pp. 651-658 | Article | MR 1100847 | Zbl 0721.53014