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FINE AND QUASI CONNECTEDNESS
IN NONLINEAR POTENTIAL THEORY

by
D.R. ADAMS and J.L. LEWIS

I. DESCRIPTION OF RESULTS

1.

If E is an arbitrary subset of the Euclidean space R" , let B^ p (E)
denote the Bessel capacity of E, 0 < a < o o , l < p < o o ^ i.e.
inf {11/11^ ^GL^R"), G^ /> l on E} . Here L^R")
is the usual Lebesgue space of p-th power summable functions,
L^CR") the non-negative elements, ||/||p the usual norm
o f / i n If , and G^*/ the convolution over R" of /
with the Bessel kernel G^ — the L[ function on R" whose
Fourier transform is ( 1 + 1 ^ l2)-^2, ̂  B" • The reader
might want to consult any one of serveral sources for the
various properties of B^ p and the associated non-linear
potentials; see especially [16], [15], [4], [12], [13]. In particular,
we will need the following : if B^ (E)<oo , then there
exists a Borel measure ^, supported on E = closure of E,
such that

^i(E) = B^ (E) = ||G^ * /ill^p' = p / ( p - 1), (1)

G^(G^M)^~1 00 > 1 'B^p ~a . e .x (=E , (2)

G^ * (G^ * ̂ '~1 ( x ) < M, for aU x C R" ,
M a constant depending only on a, p and n. (3)

Key-words : Fine topology, Capacity, Quasi topology, Fine boundary.
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If G^ * (G^ * v^~ 1 Oc) < M, for all x ,
and G^*(G<,* ̂ -1 Qc)> 1, for all x E E , where
^ is a Borel measure with finite total variation \\v\\^ ,
then B ^ ( E ) < M - | M l i . (4)

Our main interest in this note is a study of the connectedness
of subsets of R" in the fine and quasi topologies associated
with B^ — the (a, p)-fine topologies and the (a,p)-quasi
topologies; see definitions below. When a = 1 and p = 2,
B^ is equivalent (same null sets) to the classical Newtonian
capacity for n > 3 and to logarithmic capacity for n = 2.
Hence in this case, the (l,2)-fine topology and the (l,2)-quasi
topology coincide with the familiar fine and quasi topologies of
classical potential theory, i.e. the theory developed extensively
by M. Brelot, 0. Frostman, H. Cartan, G. Choquet, B. Fuglede
and others ; see [5]. Our main results are Theorems 1 and 2 and
their corollaries, below. They extend the corresponding results
of Fuglede [7], [8] (see especially Theorem 2 of [8]) and Lyons
[14], who treated the case a == 1, p = 2 .

Our methods, however, are completely different ; they are akin to
those of geometric measure theory. For when p =^= 2, there
is so far no adequate theory of balayage of measures (one of
the principal tools of the classical theory) since there is no maxi-
mum (minimum) principle in this case. Lyons uses a variant of
a lemma called Hall's lemma in [6]. This lemma, for the case
a = 1, p = 2, says that the projection onto the unit sphere
of the set where a given Newtonian potential is greater than one
has surface area at most an absolute constant times the value of
the potential at the origin. Unfortunately, this lemma does not
generalize to nonlinear potentials for all values of a and p
under consideration. In particular, simple examples can be
constructed to show that it fails for any a , p satisfying :
ap > 1, p > 2 — (a/n), and n — ap > (n — 1) (p — 1).

In nos. 2-7 below, the (a,p)-fine and (a,p)-quasi
topologies and some of their elementary properties are discussed
as well as the main results. The proofs are given in Section II. It might be
noted that the proof of Theorem 1 relies on the Kellogg property
(Proposition 1), which, for all p > 1, is a recent result of
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Hedberg and T. Wolff [13]. Throughout, the letter c will denote
various constants depending only on a, p and n, not necessarily the
same constant in any single string of estimates.

2. The (a , p )-fine topologies.

A set E C R" is (a , p)-thin at x iff

^[^-"B^CEnBOc.r))]^-1 dr-<^, (5)

where l < p < n / a , p ' = p / ( p — l ) , and B(;c ,r) is an
open ball in R" centered at x of radius r . E is termed
(a,p)-fat at x iff E is not (a,p)-thin at x . V is an
(a,p)-fine neighborhood of the point x iff x E V and
the complement V^ = R" \V is (a,p)-thin at x . The
(a,p)-fine topology consists of those sets V which are an
(a,p)-fine neighborhood of each of its points, i.e. V^* is
(a, p)-thin at every point of V. This topology has been
studied by Meyers in [17]. Frequently, when the pair (a ,p)
is understood, we will drop them from the notation. The same
convention will be adopted in discussing the quasi topologies.

Now we set b(E) = {x : E is (a,p)-fat at x } , the
(a, p)-base of the set^ E, e(E) = b(EY , the (a, p)-fine
exterior of E, and E = closure of E in the (a, p)-fine
topology.

PROPOSITION 1. - (a) Kellogg Property : B^ p (E n e(E)) = 0.
(b) Choquet Property : For every e > 0, there exists an open
set G containing e(E) such that B^ p (E n G) < e.

For the proof of Proposition 1, see [13]. Note that it easily
follows that B^p (E) = 0 iff 6(E) = 0 .

PROPOSITION 2. - For any open ball B(x , r) ,

B^p (E 0 BOc , r)) = B^p (E 0 B(;c, r)) = B^p (6(E) 0 BQc, r)).
'">»/

Furthermore, E = E U b(E).
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Proof. — Following Meyers [17], we can deduce from [12]
(Theorem 2) or from [4] (Theorems 5.1 and 5.2) that

B^ ((E U b(E)) 0 B(x, r)) = B^ (E H B(x , r)),

Similarly, by also noting that E C &(E) U (E n e(E)), it follows
easily that

B^p (E n B(x , r)) == B^p (&(E) H BQc , r)).

We conclude by showing E = EU6(E) . In fact, &(E) is nothing
more than the set of (a,p)-fine limit points of E (Le. x is an
(a, p)-fine limit point of E iff whenever V is a finely open
neighborhood of x, then ( V — { x } ) n E = ^ 0 ) , Indeed, if E
is fat at x, then so is (V — [ x } ) H E, hence it is not empty ;
conversely, if E is thin at x , then (EUb(E))c U {x} is a finely
open neighborhood of x which does not meet E except
possibly at x .

Note that when a == 1, p = 2, 6(E) agrees with the notion
of "the base of a set" as given in [7] and [8].

3. The (a,p)-quasi topologies.

In [8], Fuglede has shown how to construct a quasi topology
on R" with a given countably subadditive set function. This
quasi topology is "almost" a topology in the sense that it is
closed under countable unions and finite intersections only. When
we apply this idea to the set function B^ , we naturally
call the resulting quasi topology, the (a,p)-quasi topology.
A set E is an (a, p)-quasi open set iff for every e > 0
there exists an open set G D E such that B ^ p ( G \ E ) < 6 .
Note that if E is quasi open and B a n ( N ) = = 0 , then E U N
is quasi open.

PROPOSITION 3. - The {a, pVfine topology and the
(a,p)-quasi topology are compatible in the sense of Fuglede [8]
for all (a, p), 1 < p < n / a . In particular :

(a) if E is quasi open, then E == H U N, where H is
finely open and B (N) = 0 ;
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(b) if E is finely open, then E is quasi open.

The proof of Proposition 3 follows from Proposition 1 and
a straightforward adaptation of the corresponding arguments
of [8]. In particular, (b) is just the Choquet Property. The set
H of (a) can be taken to be the (a, p)-fine interior of
E, i.e. E^.

4. The (a,p)-fine boundary.

The boundary of E in the fine topology will be denoted
by 3 ^ E = E n E ^ . Since b(E) H b^) C 9^E and
b (3^ E) C b (E) n b (E0), we have by Proposition 2,
B^p (^.E) = B^p (6(E)n6(E< l)) . Also note that if both E
and Ec are finely open then 3̂ . E = 0. This is true in the quasi
topology only modulo null sets. In fact in Section 7, we prove

PROPOSITION 4. — Let G be an open set in R" and suppose
E is a subset of G that is both (a, p)-quasi open and
(a,p)-quasi closed relative to G, then B^ p (G03yE) = 0.

In section 8, we prove

THEOREM 1. — For 1 < ap < n, there is a constant
C = C(a , p , n) such that for any set E

min {B^ (E n Q), B^ (E0 0 Q)} < C - B^ (Q n ̂  E), (6)

for all open cubes Q contained in R" .

Theorem 1 and Proposition 4 together give

COROLLARY 1. — // G is open and connected, then G is
connected in the (a, p)-quasi topology provided ap > 1.

Remarks.—(\) The above corollary is false for ap < 1 since
we can disconnect R" with n — 1 dimensional hypersurfaces
and they all have capacity zero when ap < 1. See [16].

(ii) Note that if G is open and connected, then G is
finely connected for all (a,p), \ < p < : n / a . This is a
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consequence of two facts : G must be connected in the ordinary
density topology of R" (for Lebesgue ^-measure) and the fine
topologies are all (strictly) smaller than the ordinary density
topology. The first fact is proven explicitly in [11]; see also [19].
It also follows immediately from Lemma 1 of Section 8. For the
second, note that if E is thin at x then E has ordinary Lebesgue
density zero at x.

5. Arc wise connectedness.

A closed continuous path 7 joining x to y is called a
coordinate path iff any compact subset of 7 — [x , y } is contained
in a finite union of line segments parallel to the coordinate axes.
We will be interested in arcwise connectedness using only coordinate
paths, hence the next theorem generalizes a result of Lyons [14].

THEOREM 2. - Let x G E and suppose that E is (a, p)-finely
open. Then for ap > 1 there is an (a, pYfinely open neighborhood
V of x, V C E, with the property that any y , z G V can be
joined by a coordinate path in E of length at most c- |z — y \ ; c
is a constant depending only on a, p and n.

COROLLARY 2. - If E is (a, p)-finely open and (a, pYfinely
connected, then for ap > 1, E is arcwise connected.

Remark. — (iii) The above corollary is false for ap < 1. From
the open ball B(0 , 1) remove a closed (exponential) cusp K with
vertex at the origin and also remove from B(0 , 1/2) \K the n — 1
dimensional surfaces of distance l/m from K, w = 2, 3 , . . . .
The resulting subset of B(0 , 1) together with the origin, call it
D, will be (a,p)-finely open and (a,p)-finely connected for
ap < 1, but will not be arcwise connected. Indeed D \{0} is an
open connected set, hence a finely connected set as noted in remark
(ii). Also any finely open set containing the origin must contain
points of D\{0}.
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6. Further results.

A function 0 : R" ——> R is (a, p)-quasi continuous iff
for every e > 0 there is an open set G such that B^ (G) < e
and 0 restricted to G0 is continuous there. Equivalently, 0 is
quasi continuous iff the inverse image of every open set is a
quasi open set. Thus 1^ = characteristic function of the
set E, is quasi continuous iff E is both quasi open and quasi closed,
and from Proposition 4, iff B^ p (8^ E) = 0. Now if we further
restrict attention to ap > 1 then we can use Theorem 1 which
gives: for ap > 1, Ig is (a,p)-quasi continuous iff
m i n { B ^ p (E) ,B^p (E^} = 0. The following proposition deals
with the case ap < 1. It is discussed in Section 10.

PROPOSITION 5. -For ap < 1, lg is (a,p)-quasi
continuous iff

B (EnB(^,r))
vm. B:,,(Bfc^)) '^w <7>

locally (a,p)-quasi almost uniformly, i.e. for every compact
set K and every e > 0 there is a subset e C K such that
Ba,p (^) ^ e an(^ t^ convergence is uniform on K\e.

II. THE DETAILS

7. Proof of proposition 4.

For each e > 0, there are open sets 0^ and 0^ in G
such that Oi D E, 0^ 3 G\E and B^ p (0^ \E) < e,
B^p (0^ H E) < e. Hence B^p (O^ n 0^) < 2e. But then
F = ( 0 ^ n 0 2 ; T has capacity less than 2e by Proposition 2.
Since B^p (3^ E n G) = B^p (6(E) 0 6(G\E)), we can conclude
the proof by showing that &(E)n&(G\E) is contained in F
except possibly for a set of capacity zero. Since E = H U N where
H is finely open in G and B^ p (N) = 0, it follows that H\F
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is finely open and that G\E is thin at every point of H\F. So
if j c G & ( E ) n 6 ( G \ E ) then j c € ( G \ H ) U F . Or except for a
set of capacity zero x G ( G \ E ) U F . Applying the same argument
to G\E implies that x E E U F except for a set of capacity
zero. Hence B^ — a.e. x G6(E) n &(G\E) must lie in F.

8. Proof of Theorem 1 and Corollary 1.

For 1 < ap < n, set

( H^nBOc^)]
R = j x : lim —————————— = 0

( r -O f1

and
i H^EHB^. r ) ] )S = ] x : lim ————————— = 0 .
( r-^o r" )

Then R = E and S == E'1, H" — a.e.. Here we are using H"
for rf-dimensional Hausdorff measure in R^ r f eZ"^ . Let
8* E = R^ 0 S^" be the measure theoretic boundary of E.
If j c E E \ R , then E0 is fat at x since otherwise the ratio
r^-" B^p (E" n B(JC ,r)) tends to zero with r . So either
^ E6(E) Fi ^(E^1) or E is thin at x. But the last condition
can only hold for a set of capacity zero by the Kellogg Property.
Thus E C R u a ^ E , B^p-a.e.. Similarly, E ^ S U ^ E ,
B^ p —a.e. . Hence by the subadditivity of B^ , (6) will follow
upon showing

min{B^p (RHQ) ,B^ (S H Q)} < C • B^p 0 * E H Q ) , (8)
since 3* E C 3^ E.

To prove (8), we need some preliminary lemmas. Let e^
denote the coordinate directions in R" , i = 1 , . . ., n and
pf the projection of R" onto the vector space V, generated
by e^ , . . ., e^_ ^ e^ ^ , . . ., e^ . The following lemma appears
in [10], 4.5.11.

LEMMA 1. -For H""1 a.e. y ^ V , the following state-
ment holds : if u E p ^ l ( y ) n S and v €p,~1 ( y ) H R , then
there exists w E p ^ l ( ^ ) n ^ * E lying on the line segment
from u to v.
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LEMMA 2. — Let Q' be a coordinate cube with side length r
and suppose that

H"-1 [ p ,0*EHQ' ) ]<^ - 2 2-"-2 r"-1 > (9)
for 1 < i < n. Then there is a set L C Q' with

H"(L) > [1-2-"-2]^

and with the property that any x , y G L can be joined by a
coordinate path 7 C Q' with H1 (7) < 8nr and either 7 C R or
7 C S .

Note that in Lemma 2, L C R or L C S since R 0 S = 0.

Proof. - Set G, = {y € Q': either p,rl ( p , ( y ) ) n Q' C R
or p^ 1 (p, (y)) n Q' C S} . By Lemma 1 and (9), we have

H"(G,)>(1 -n-2 2-n-2)rn .
Thus

H"( ^ G.) >(1 -n-1 2-'»-2)A•".\ , = i *'

By Fubinfs Theorem, we can obtain sets K^ , K^ ,. . . , K^_ ^
with the properties

( a ) K , C K , C — — C K ^ = ?„ (^ G , ) .

(b) K^, , for 1 < m < ^ — 1, lies inside an m-dimensional
plane parallel to the vector space generated by e ^ , . . ., e^ ,

(c^a^Xl -n-1 2-"- 2 ] r m , 1 <m <n- 1.

We set K^ = ^ G,. Now let L^ = K^ and define L ,̂ ,

1 < m < n, inductively by
L^ = {^€K^ :p^,(^) =P^,(^) forsome z E L ^ _ i } .

From (c) it follows that
H^LJS^O -2- w - 2 ) r" .

We conclude by showing that Lemma 2 is valid with
L = L ^ . First suppose y , z e L ^ and ?„ (^) ,?„ (z) E L^ . Then
p^( ; / ) ,p^ (z ) lie on a line segment parallel to ^ , so there
is a wGp," 1 (p^ ( y ) ) Hp^'1 (p^(z)) . Let 7 be the union of the
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line segments from y to w and from w to z . Since ^ , z € n G.,
1=1 '

it follows that H1 (7) < 2r, and either 7 C R 0 Q' or 7 C S n Q'.
For the induction, suppose we have shown that for some m,

Km<n-2, whenever ?„ ( z ) , p ^ ( y ) G L^ , then y can be
joined to z by a coordinate path 7 with H^)2^^, and
either 7 C R n Q' or 7 C S n Q\ If ^ ( y ) , p ^ z ) E 4, ̂  ,
then by definition there exists y^ , z^ E L^ with

Pm^l (Pn (^)) = Pm+l (P« (Vl )) .Pm+1 <Pn (^ ))

= Pm+i^^i)) and P ^ ( Z i ) , ^ ( ^ i ) e L ^ .

Thus, P n ( y ) . P n ( y i ) and P^ ( z ) .P„ ( z l ) respectively lie on
lines parallel to ^+1 , and consequently, there exist y ^ , z ^
with Vl ^Pm\l (Pm+l (y))^Pn1 (PnW) and

^G^^ (^.l^))^^1^^!)).

Let jy be the union of the line segments from y to >, and ^.
to y^ . 7^ is defined similarly for z . z ^ . z ^ . Then jy joins
^ to ^^ and either jy C R or 7y c S since . y , ^ G f " i G,

1=1
and similarly for 7^ . By the induction hypothesis, there
exists 7^ joining y^ to z^ with H l ( 7 ^ ) < 4 w r and either
7 i C R H Q ' or 7i C S H Q\ Let 7=7^7^07^ . Then 7
joins >/ to z, H1 (7) < 4(m +1) r , and either 7 C R n Q' or
7 C S n Q', which concludes the induction.

Remark. - (iv) The argument of Lemma 2 is due to B. Davis.
(Proof of Theorem 1 continued). — We may assume

Q = {y. h j < l / 2 } , ^ = ( ^ , . . . , ^ )
and H^ROQXH^SnQ) . From [16] and [18], we have :
if l<ap<n, then for any set F C R" there are constants
c^ , k = 1 ,3 , such that

H"-1 [p,(F)p^ <c, B^ [p,(F)] <c, B,^ [F]. (10)
Now if H"-1 [p,0* E H Q ) ] > ^ - 2 2-«-2 ^ ^^ ^

then (10) implies that (8) holds for some large constant.
Therefore, we may assume that the above is false for / = 1 , . . . , n.
Fix an xCR and let {Q^}, ^ = 0 , 1 , 2 , . . . , be a sequence
of open dyadic coordinate cubes of Q with
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( D x e Q ^ C Q ^ C - • - C Q ^ = Q
(ii) Q^ has side length 2- fc , fe = 0, 1, 2,. . . .

The claim now is that there exists a k and an f such that

H"~1 (^[Q^na* E])>^- 2 2- n-2 2-^-^ . (11)

To see this, suppose (11) is false. Then by Lemma 2, there is
an L^CQ^ with H" (Lk) > [1 - 2-"- 2 ]2-^ and either
L^ C R or I* C S, k = 0, 1, 2,. . . . Since

H" (R H Q) < H" (S 0 Q), L° C S.

Also H"[L1 ^\LO]>[l-2-n-2]2-n -l-^1-2 >0 , and since
L1 H L° C S, it follows that L1 C S. By induction, we must
have L^ C S, for all k . Also since

H" (Q^ 0 S) > H" (L^) > 2-nk [1 - 2-"-2],
we must have

Urn r- n H" (B(x , r) n S) > 0.
r-^ 0

But this is impossible since S = E0 , H" — a.e. and x E R.
Now let JLI be the measure of (1) - (3) for the set Q 03* E.

Then G^ * (G^ * ̂ Y- ^ > 1, B^p - a.e. on Q n 3 * E . We next
claim that

Ga^a*^"1 ( ^ )>c* , for all J C G R H Q (12)

where c* depends only on a, p and n. To see this, let JLI^ =jn
restricted to BQc ,^n22~k). Then for ^ € Q ^ = Q f c ( x ) , it is
easily seen that

G, * (G^ * ̂ pr-1 (^) < c[G^(G^ * ̂  /-1 ( y )

+G^(G^^P /-1 (x)]. (13)
Now if (12) is false, choose a constant CQ sufficiently small
so that G^ * (G^ * JLI)^~ 1 (x) < CQ for some x G R H Q and
such that (13) yields

G^(G^^)^-1 ( y ) > c , B^a.e. j / G Q ^ n a * E,
for some c > 0. From (3) and (4) it follows that

Ba^Qfc0^ EXc-^BOc.v^2-^)). (14)
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From [4], we always have the lower estimate

G^(G^^-1 (x)>c p [^-^(BOc,/-))]^-1-^, (15)
^o r

hence it follows that

G^*(G^ * ̂ p'-1 (x) > c^-^ JLA(BOC ^Z2-^))]^-1 .(16)

So putting (10), (11), (14), (16) together, we conclude

G^(G^AO^"1 ( x ) > c > C o

for CQ small enough. This is a contradiction, hence (12) must
hold. Since x G R n Q is arbitrary it follows from (4) that

Ba.p (R n 0) < c - ||/i|li = c • B^ (a* E n Q) ,
which proves Theorem 1 for op < n.

For ap = n, we must make some modifications. The first
inequality in (10) is now no longer valid. Instead we use : if ap = n,
then there exists constants c^ , f e = l , 2 , 3 , depending only on
a, p , 71 such that for any set F C R" ,

[log^/H'1-1 (F))]^ <c, • B^ ^ (F) (17)
when H"-1 (F) < 1 and

H"-1 (F )<C3-B^(F) (18)

when H"~1 (F) > 1. (17) and (18) follow in the standard way;
see [1] (Theorem 3), [3], [16]. Due to the logarithm in (17), we also
modify our construction of the cubes Q^. Now choose open
coordinate cubes in Q so that

(0 Qj, n Qfc+i ^ 0 and dist (x , Q^) = 2-^- x ,
(ii) Q^ has side length 2- k , k = 0, 1, 2,. . . ,
(iii) the center of each Q^ lies on a line parallel to one of the

coordinate axes.
Finally we replace (16) with

G^ * (G^ * JLI)^- l (x) > c • ̂ (A^x))^-1 ,

where A^(x) = [ y : 2-fc-l < \x -y\ <2- f c + l}. This again
follows from (15). The argument for ap = n is now easily constructed
as before.
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Proof of corollary 1.—Since G is open and connected, we
can find open cubes Q^ , k = 1, 2,. . . such that (i) Q^ C G for
all k , (ii) Q^HQ^ ^=0 for all fc, (iii) U Q^ = G. Now if
G = A U B , A H B = ^ 0 , A and B quasi open, then by Proposition
4, B^ p (Q^ H 3̂ . A) = 0 for all k , consequently by Theorem 1,
m i n { B ^ ( A n Q ^ ) , B ^ ( B n Q ^ ) } = 0 for all A:, (ii) now
easily implies that if B^ p (A H Q^) = 0 then B^ p (A H Q^,. ^ ) = 0,
consequently B ( A ) = 0 . Thus either A or B must have
capacity zero, ap > 1, and hence G must be quasi connected.

9. Proof of Theorem 2.

Let e be a small positive number to be fixed later. Then
there exists a 6 = 5(x , e) > 0 such that

raP-n B^^EC^B(x,r))<€ (19)

for 0 < r < 6 . Let Q(x , r) = { y : \y, -x,| < r, f = l , . . . . , ^ }
and let V* be the set of all y G E H[Q(jc, §/»2) - {x} ] for which

sup {^-" B^CE'HB^,.?))} <4 r l-ape. (20)
0<J<|x-yl ''

Clearly V = V * U { ^ } is contained in E. We claim first of
all that V is a finely open neighborhood of x . Indeed, suppose
^ E V — {x}. Then an easy argument using (19) and (20)
shows the existence of 5^ = 6^ (y , e) < 8/2n2 such that
whenever z G K ( y , f i ^ ) then

sup 5°^-" B. -, (E c nB(z ,5 ) )<4" - o ^e .
\z-y\<s<\x-z\ '•

Thus if z € B(^ , 81) 0 V0 , then either z € E0 or

sup ^-yl B. - (E^^r^z,^)^"-^ e. (21)
0<J<|2-y | ''

Given t , 0 < ^ < 8^ , let ^ be the measure satisfying (1) — (3)
for the set B(y , r) n E0. Then if z e B(^ , t / 2 ) H E satisfies
(21) it follows as in the proof of (12) that G^ * (G^ * M)^"1 (z) > ce

and thereupon that B^ p (V H B(j/ , r/2)) ^-^ B^ p (E'' n B(y , 2r)).



70 D.R. ADAMS AND J.L. LEWIS

Integrating this inequality, we see that V^ is thin whenever
y ^ V — {x}. A similar argument shows V0 is thin at x , and our
first claim is proved.

Next we define R , S relative to E ,EC as in the proof of
Theorem 1. Note now that R = E. Let y , z G V and let Qo
oe a parallel subcube of Q(x , 8 / n 2 ) whose side length r is propor-
tional to \y —z i and with y , z E Q^ . Using the bisection method,
divide Q^ into parallel subcubes and choose Q^ , k = 1, 2, . . . . with

( a ) ^ E Q ^ C Q ^ C - • -CQ,
(b) Q^ has side length 2-k r , k = 1 ,2, . . . .
Then from (19), (20), (10) and the fact that 3* E C E0,

we see for e sufficiently small that the hypotheses of Lemma 2
are satisfied with Q^ replacing Q'. By Lemma 2 it then
follows for e sufficiently small that there exists L^ C Q^ n E
with the property that any two points of L^ can be joined by
a coordinate path contained in E 0 Q^ with length at most
4n(2~kr), f e = 0 , l , 2 , . . . . Also, H^L^) > (1 - 2-"-2) (2-^ r)" .
Choose ^ G L^ n E. Clearly L^ n L^ + x ^ 0 hence ^ + ^
can be joined to y^ by a coordinate path a^ C E H Q^ with
H1 (or^) < 4^z 2"^ r. Now set a = U o^ , then a joins

fc ^O

y to 3^0 €QQ and H^a^cr. A similar argument shows
that we can join y^ to z by a coordinate path 7 with
H^^cr. Then 7 U o r C E , H^ U a) < cr < \z -y |,
and 7 U a joins y to z . Since y , z are arbitrary in V the
proof of Theorem 2 is complete provided ap < n. The modific-
ations required to deal with ap == n are similar to those outlined
in the proof of Theorem 1, and will hence be omitted.

10. Proof of Proposition 5.

If we interpret B^ p for a = 0 as Lebesgue ^-measure,
then Proposition 5 is just a standard fact in measure theory
when a = 0 (which is a simple consequence of Lebesgue's
differentiation theorem and Egoroffs theorem) since then
"IE quasi continuous" translates into "E measurable" by
Luzin's theorem. Hence we are proposing to extend this
to 0 < a < 1/p.
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Note first of all that the local quasi almost uniform
convergence of (7) easily implies that lg is quasi continuous
since B^ (E H BQc, r)) is a continuous function of x when
ap < 1. (This last fact is no longer true for ap > 1 since
then n — 1 dimensional surfaces have positive capacity.)

The necessity in Proposition 5 follows from

LEMMA 3. — Let ap < 1. // lg is (a,p)-quasi continuous,
then

B^ ( E H B ( x , r ) )
lml ""^——7o7———^T = lE<<X^Bap -^ x^ (22)r-o B^p(B(^,r)) '' "tp

ancf

LEMMA 4. -// the sequence {f^} of (a,p)-quasi
continuous functions converges B ^ p — a . e . to an (a,p)-quasi
continuous function /, then {f^} converges to f locally
(a, pVquasi almost uniformly.

Remarks. — (v) Lemma 3 trivially holds for ap > 1 by
Theorem 1 ; in fact, E = R" or 0 modulo null sets in this
case.

(vi) Fernstrom [9] has shown that there is a Borel set
of positive B^ - capacity for which the limit in (22) is zero
for all x.

The proof of Lemma 3 is contained in a more general
differentiation result established in [2]. There the analogue of
Lebesgue's theorem was obtained for (a, p)-quasi continuous
0 for which

r^B^^eBOc,/-): \d>(y)\ >\})\P-1 d\< oo.JQ

The proof follows the standard format — prove weak
type estimates for the corresponding maximal function and
then utilize the density of Co(R" )= continuous functions
on R" with compact support.

Lemma 4 follows the usual argument except now we
need : if {E j^} , f c = l , 2 , . . . is a non-increasing sequence of
(a,p)-quasi closed and bounded sets for which B ^ p ( H E ^ ) = 0 ,

k
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then lim B (E^) = 0. This is a special case of a result due
fc -»• 00 f r

to Fuglede [8] (for any countably subadditive set function and
any non-increasing sequence of quasi compact sets).
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