Annales de l'institut Fourier

Detlef MÜLLER
 A continuous Helson surface in \mathbf{R}^{3}

Annales de l'institut Fourier, tome 34, ${ }^{\text {º }} 4$ (1984), p. 135-150
http://www.numdam.org/item?id=AIF_1984__34_4_135_0
© Annales de l'institut Fourier, 1984, tous droits réservés.
L'accès aux archives de la revue «Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

A CONTINUOUS HELSON SURFACE IN \mathbf{R}^{3}

by Detlef MÜLLER

1.

Let G be a locally compact abelian group, and let $A(G)$ denote the Fourier algebra on G and $B(G)$ the Fourier-Stieltjes algebra on G. If $\mathrm{E} \subset G$ is a compact subset of G, then $A(E)$ will denote the quotient Banach algebra $A(G) / I(E)$, where $I(E)$ is the ideal of all functions in $A(G)$ which vanish on $E . E$ is a Helson set if $A(E)=C(E)$ (see [6] as a general reference). Let $\mathbf{M}(\mathrm{G})$ denote the algebra of bounded Radon measures on $G, M(E)$ the subspace of all measures with support contained in E, and let $P M(G)$ be the dual space of $A(G)$. Then E is a Helson set if and only if its Helson constant

$$
\begin{aligned}
\alpha(\mathrm{E}) & =\sup \left\{\|f\|_{\mathrm{A}(\mathrm{E})}: f \in \mathbf{A}(\mathrm{E}) \text { and } \quad\|f\|_{\mathrm{C}(\mathrm{E})} \leqslant 1\right\} \\
& =\sup \left\{\|\mu\|: \mu \in \mathrm{M}(\mathrm{E}) \quad \text { and }\|\mu\|_{\mathrm{PM}} \leqslant 1\right\}
\end{aligned}
$$

is finite.
A comprehensive study of the question when a continuous submanifold of \mathbf{R}^{n} is a Helson set has been carried out in [5] by O. C. McGehee and G. S. Woodward. They proved among other results that there exists a Helson curve in \mathbf{R}^{2} which is the graph of a Lip (1) function, and that there is a continuous Helson k-manifold in $\mathbf{R}^{\ell k}$ whenever $\ell \geqslant k+1$. The former result had essentially already been obtained by J. P. Kahane in [3] in connection with studies on Lusin's problem, but the proof in [5] gives a concrete construction instead of Baire category arguments which were used by Kahane. A variant of the proof in [5] did already appear in [4]. Two years after Kahane's result N. Th. Varopoulos proved that continuous Sidon manifolds of dimension $n-1$ are abundant in \mathbf{R}^{n} [8], but it was not clear whether at least some of these Sidon manifolds were Helson sets.

In this paper we will construct a Helson surface in $\mathbf{R}^{\mathbf{3}}$ which is the graph of a Lip (1) function. In addition to this our methods also offer the possibility of a proof by induction over n that every \mathbf{R}^{n} contains a Helson manifold of dimension $n-1$. But, to avoid technical complications, we will restrict ourselves to the case $n=3$. The proof will be based on the result (Theorem 1) that there even exists a sequence $\left\{\Gamma_{k}\right\}_{k}$ of Helson curves in $\mathbf{R}^{\mathbf{2}}$ such that $\cup \Gamma_{k}$ is dense in some open part of \mathbf{R}^{2} and such that $\alpha\left(\bigcup_{k \leqslant m} \Gamma_{k}\right)$ is uniformly bounded for all m.

We would like to thank Professor McGehee for helpful conversations and suggestions.

2.

We will now introduce some notations. G will in general denote a locally compact abelian group. Let W be a symmetric neighborhood of the neutral element in G, let D be a subset of C and let E be a compact subset of G. Then $C_{\sigma, W}(E, D)$ will denote the set of all continuous functions f on E with values in D, such that $|f(x)-f(y)|<\sigma$ whenever $x, y \in \mathrm{E}$ and $x-y \in \mathrm{~W}$.

By \mathbf{T} we will denote the subset $\mathbf{T}=\{\zeta \in \mathbf{C}:|\zeta|=1\}$ of \mathbf{C}.
If $G=R^{n}$ for some n, then for any $\delta>0, U(\delta)$ will denote the open ball with radius δ and center 0 in \mathbf{R}^{n}.

If f is a $\operatorname{Lip}(1)$ function on some subset Q of \mathbf{R}^{n}, then we write

$$
\mathrm{L}(f)=\sup \left\{\frac{|f(x)-f(y)|}{|x-y|}: x, y \in \mathrm{Q}, x \neq y\right\} .
$$

Finally the graph of a function f will be denoted by $G(f)$.

3.

In this section we will prove a result which is related to the deep separation results that emerged with the solution to the union problem for Helson sets (see [9], [2], and [1] as a general reference).

Lemma 1. - Let E be a compact Helson set in the locally compact abelian group G. Let $\sigma>0$, and let W be a symmetric neighborhood of
the neutral element in G. Then there exists a neighborhood $\mathrm{V}=\mathrm{V}(\mathrm{E}, \sigma, \mathrm{W})$ such that for any function $f \in \mathrm{C}_{\sigma / 4, \mathrm{w}}(\mathrm{E}, \mathrm{T})$ there exists some $g \in A(G)$ with

$$
\begin{equation*}
|f(x)-g(x+z)|<\sigma \text { for } x \in \mathrm{E} \text { and } z \in \mathrm{~V} \tag{i}
\end{equation*}
$$

Proof. - Assume E, σ and W are given as above. Choose a symmetric neighborhood W_{0} of the neutral element in G whose closure is compact, such that $W_{0}+W_{0}+W_{0} \subset W$.

We claim :
(1) There exist finitely many functions $\tilde{g}_{1}, \ldots, \tilde{g}_{m}$ in $\mathrm{C}_{\sigma / 2, \mathrm{w}_{0}}(\mathrm{E}, \mathrm{C})$ with $\left\|\tilde{g}_{i}\right\|_{C(E)}=1$ such that for every $f \in \mathrm{C}_{\sigma / 8, \mathrm{w}}(\mathrm{E}, \mathrm{T})$ there exists a \tilde{g}_{j} with $\left\|f-\tilde{g}_{j}\right\|_{C_{(\mathbf{E})}}<\sigma / 3$.
To prove (1), fix $\kappa>0$ such that $3\left(\frac{1}{8}+2 \kappa\right)<\frac{1}{2}$ and $\frac{1}{4}+3 \kappa<\frac{1}{3}$, and choose a finite subset $\mathrm{D} \subset \mathbf{T}$ such that each point of \mathbf{T} lies within distance $\kappa \sigma$ from D.

Let $\mathrm{E}_{0}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \subset \mathrm{E}$ such that $\mathrm{E} \subset \bigcup_{i=1}^{n}\left(x_{i}+\mathrm{W}_{0}\right)$ and $x_{j} \notin x_{i}+\mathrm{W}_{0}$ for $i \neq j$. Let $\sigma^{\prime}=\left(\frac{1}{8}+2 \kappa\right) \sigma$. Then $\mathrm{C}_{\sigma^{\prime}, \mathrm{W}}\left(\mathrm{E}_{0}, \mathrm{D}\right)$ is a finite set. We will show that every function $h \in \mathrm{C}_{\sigma^{\prime}, \mathrm{W}}\left(\mathrm{E}_{0}, \mathrm{D}\right)$ can be extended to a function $\tilde{h} \in \mathrm{C}_{3 \sigma^{\prime}, \mathrm{w}_{0}}(\mathrm{E}, \mathrm{C})$ with $\|\tilde{h}\|_{\mathbf{C (E)}}=1$.

In fact, choose a finite partition of unity $\left\{\varphi_{i}\right\}_{i}$ of continuous functions φ_{i} on E such that $\operatorname{supp} \varphi_{i} \subset\left(x_{i}+W_{0}\right), 0 \leqslant \varphi_{i} \leqslant 1$ and $\varphi_{i}\left(x_{i}\right)=1$ for $i=1, \ldots, n$, and let $\tilde{h}=\Sigma \boldsymbol{\Sigma}\left(x_{i}\right) \varphi_{i}$. Then \tilde{h} of course extends h, $\|\tilde{h}\|_{\mathrm{C}(\mathrm{E})} \leqslant\|h\|_{\mathrm{C}_{\left(\mathrm{E}_{0}\right)}}=1$, and an easy estimate shows that $h \in \mathrm{C}_{\mathrm{o}^{\prime}, \mathrm{w}}\left(\mathrm{E}_{0}, \mathrm{D}\right)$ implies $\bar{h} \in \mathrm{C}_{3 \sigma^{\prime}, w_{0}}(\mathrm{E}, \mathrm{C})$.

Now let $f \in \mathrm{C}_{\mathrm{o} / 8, \mathrm{w}}(\mathrm{E}, \mathrm{T})$, and choose $h: \mathrm{E}_{0} \rightarrow \mathrm{D}$ such that $\|h-f\|_{C\left(E_{0}\right)}<\kappa \sigma$. Then it follows easily that $h \in \mathrm{C}_{\sigma^{\prime}, \mathrm{W}}\left(\mathrm{E}_{0}, \mathrm{D}\right)$, hence $\tilde{h} \in \mathrm{C}_{3 \sigma^{\prime}, w_{0}}(\mathrm{E}, \mathrm{C}) \subset \mathrm{C}_{\sigma / 2, w_{0}}(\mathrm{E}, \mathrm{C})$ and $\|\tilde{h}\|_{\mathrm{C}(\mathrm{E})}=1$. Moreover, if $x \in \mathrm{E}$, then
(2) $|f(x)-\tilde{h}(x)| \leqslant\left|f(x)-f\left(x_{i}\right)\right|+\left|f\left(x_{i}\right)-h\left(x_{i}\right)\right|+\left|\tilde{h}\left(x_{i}\right)-\tilde{h}(x)\right|$

$$
\leqslant \sigma / 8+\kappa \sigma+\sigma^{\prime} \leqslant \sigma / 3
$$

if $x_{i} \in \mathrm{E}_{0}$ is chosen such that $x \in x_{i}+\mathrm{W}_{0}$.
So (1) holds with $\left\{\tilde{g}_{1}, \ldots, \tilde{g}_{m}\right\}=\left\{\tilde{h}: h \in \mathrm{C}_{\sigma^{\prime}, \mathrm{W}}\left(\mathrm{E}_{0}, \mathrm{D}\right)\right\}$.

Now choose $\beta>\alpha(\mathrm{E})$. There exist functions $g_{1}, \ldots, g_{m} \in \mathrm{~A}(\mathrm{G})$ such that $\left.g_{i}\right|_{\mathrm{E}}=\tilde{g}_{i}$ and $\left\|g_{i}\right\|_{\mathrm{A}}<\beta$. Choose a neighborhood V of the neutral element in G such that for $i=1, \ldots, m$,
(3) $\left|g_{i}(x)-g_{i}(x+z)\right|<\sigma / 12 \quad$ for $\quad x \in \mathrm{E} \quad$ and $\quad z \in \mathrm{~V}$.

If then $f \in \mathrm{C}_{\sigma / 8, \mathrm{~W}}(\mathrm{E}, \mathrm{T})$, if \tilde{g}_{i} is chosen according to (1) for f, and if g_{i} denotes the above extension of \tilde{g}_{i}, then (1) and (3) yield

$$
\left|f(x)-g_{i}(x+z)\right|<\frac{5}{12} \sigma \quad \text { for } \quad x \in \mathrm{E} \quad \text { and } \quad z \in \mathrm{~V}
$$

Assuming that $\beta>\alpha(\mathrm{E})$ had been chosen close enough to $\alpha(\mathrm{E})$, we may take g to be a multiple (at most slightly different from one) of g_{i}. Replacing finally σ by 2σ, the lemma is proved.

Proposition 1. - Let E be a compact Helson set in the locally compact abelian group G. Let $0<\varepsilon<1$ and $\sigma>0$, and let W be a symmetric neighborhood of the neutral element in G . Then there exist neighborhoods $\mathrm{V}=\mathrm{V}(\mathrm{E}, \sigma, \mathrm{W})$ and $\mathrm{U}=\mathrm{U}(\mathrm{E}, \varepsilon, \sigma, \mathrm{W})$ of the neutral element in G such that for any function $f \in \mathrm{C}_{\sigma / 8, \mathrm{~W}}(\mathrm{E}, \mathrm{T})$ there exists some $g \in \mathrm{~A}(\mathrm{G})$ with
(i) $|f(x)-g(x+z)|<\sigma$ for $x \in \mathrm{E}$ and $z \in \mathrm{U}$;
(ii) $||g(x+z)| f(x)-g(x+z)|<\alpha(\mathrm{E})^{4} \varepsilon^{-1 / 2} \sigma$ for $x \in \mathrm{E}$ and $z \in \mathrm{~V}$;
(iii) $|g(y)| \leqslant \alpha(\mathrm{E})^{5} \varepsilon$ for $y \notin \mathrm{E}+\mathrm{V}$;
(iv) $\|g\|_{A} \leqslant \alpha(E)^{5} \varepsilon^{-1 / 2}$.

Proof. - Let $\mathrm{E}, \varepsilon, \sigma$ and W be given as above. Fix $\beta>\alpha(\mathrm{E})$. Following the proof of Lemma 1 , there exist functions $g_{1}, \ldots, g_{m} \in A(G)$ with $\left\|g_{i}\right\|_{\mathrm{A}}<\beta$ and a neighborhood $\mathrm{V}=\mathrm{V}(\mathrm{E}, \sigma, \mathrm{W})$ of the neutral element in G such that for any $f \in \mathrm{C}_{\sigma / 8, \mathrm{~W}}(\mathrm{E}, \mathrm{T})$

$$
\begin{equation*}
\left|f(x)-g_{i}(x+z)\right|<\frac{5}{12} \sigma \quad \text { for } \quad x \in \mathrm{E} \quad \text { and } \quad z \in \mathrm{~V} \tag{4}
\end{equation*}
$$

for some suitable g_{i}.
Moreover, after the separation-theorem 2.1.3 in [1] there exists a function $\chi_{1} \in \mathbf{A}(\mathrm{G})$ such that $\chi_{1}=1$ on $\mathrm{E}, \quad\left|\chi_{1}(y)\right| \leqslant \beta^{2} \varepsilon^{1 / 2}$ for $y \notin \mathrm{E}+\mathrm{V}$ and $\left\|\chi_{1}\right\|_{\mathrm{A}} \leqslant \beta^{2} \varepsilon^{-1 / 4}$. Let $\chi=\left|\chi_{1}\right|^{2}$. Then $0 \leqslant \chi \leqslant \beta^{4} \varepsilon^{-1 / 2}$, $\chi=1$ on $\mathrm{E},|\chi(y)| \leqslant \beta^{4} \varepsilon$ for $y \notin \mathrm{E}+\mathrm{V}$ and $\|\chi\|_{\mathrm{A}} \leqslant \beta^{4} \varepsilon^{-1 / 2}$.

Finally choose a neighborhood $\mathrm{U} \subset \mathrm{V}$ of the neutral element in G such that

$$
\begin{equation*}
|1-\chi(x+z)|<\sigma / 3 \beta \text { for } x \in \mathrm{E} \text { and } z \in \mathrm{U} . \tag{5}
\end{equation*}
$$

Let $f \in \mathrm{C}_{\sigma / 8, \mathrm{w}}(\mathrm{E}, \mathrm{T})$, choose g_{i} as in (4) and set $g=\chi g_{i}$. Then

$$
|f(x)-g(x+z)|<\frac{5}{12} \sigma+\frac{\sigma}{3 \beta} \beta<\frac{3}{4} \sigma, \quad \text { if } \quad x \in \mathrm{E}, z \in \mathrm{U}
$$

and
where \tilde{g}_{i} is chosen as in the proof of Lemma 1, hence

$$
\| g(x+z)|f(x)-g(x+z)| \leqslant \beta^{4} \varepsilon^{-1 / 2}\left(\frac{5}{12} \sigma+\frac{1}{3} \sigma+\frac{1}{12} \sigma\right)=\frac{5}{6} \beta^{4} \varepsilon^{-1 / 2} \sigma
$$

for $x \in \mathrm{E}$ and $z \in \mathrm{~V}$ (compare with (1), (3) and (4)). Since $|g(y)| \leqslant \beta^{4} \varepsilon \beta=\beta^{5} \varepsilon$ for $y \notin \mathrm{E}+\mathrm{V}$ and $\|g\|_{A} \leqslant \beta^{4} \varepsilon^{-1 / 2} \beta=\beta^{5} \varepsilon^{-1 / 2}$, again we see that if β has been chosen close enough to $\alpha(E)$ we may replace g be a suitable multiple of itself to obtain (i) to (iv) of Proposition 1.

Remark. - The final remark in [7] would even allow us to replace (ii) in Proposition 1 by
(ii) $\| g(x+z)|f(x)-g(x+z)|<\alpha(\mathrm{E})^{4} \sigma \quad$ for $\quad x \in \mathrm{E} \quad$ and $\quad z \in \mathrm{~V}$ (if $\varepsilon<\frac{1}{4}$), but we do not need this in the following.

4.

The next proposition is a simple extension of Theorem 3.2 in [5] and is proved by the same method. We will nevertheless include a proof, because in combination with the other results of this paper it will indicate the possibility for an inductive proof for the existence of a Helson hypersurface in any $\mathbf{R}^{\boldsymbol{n}}$.

Proposition 2. - Assume that real numbers $a_{1}<a_{2}<\cdots<a_{n}$ and $d>0$ are given. There exist non-decreasing functions f_{1}, \ldots, f_{n} in Lip (1) $([0,1])$ such that
(i) $\left\|f_{j}-a_{j}\right\|_{\mathrm{C}_{(0,1])}} \leqslant d$ for $j=1, \ldots, n$,
(ii) $\mathrm{L}\left(f_{j}\right) \leqslant d$ for $j=1, \ldots, n$, and
(iii) $\alpha(\Gamma) \leqslant 3^{3 / 2}$, where $\Gamma=\cup G\left(f_{j}\right)$.

Proof. - Let

$$
\mathrm{D}=\left\{d_{1}<d_{2}<\cdots<d_{m}\right\} \text { and } \mathrm{E}=\left\{e_{1}<e_{2}<\cdots<e_{m}\right\}
$$

be two subsets of \mathbf{R} which are independent over \mathbf{Q}.
Let $\tau=(1,0) \in \mathbf{R}^{2}$. If $\eta=\left(\eta_{1}, \eta_{2}\right) \in \mathbf{R}^{2}$ is a second unit vector with $\eta_{i}>0$, then let $\mathrm{P}(\mathrm{D}, \mathrm{E} ; \eta)$ denote the polygonial path in \mathbf{R}^{2} whose $2 m-1$ vertices, in order, are $d_{1} \tau+e_{1} \eta, d_{1} \tau+e_{2} \eta, d_{2} \tau+e_{2} \eta$, $d_{2} \tau+e_{3} \eta, \ldots, d_{m} \tau+e_{m} \eta$. As in [5], such a path P will be called an Ipolygonial path. Let $s(\mathbf{P})$ denote the largest distance between two consecutive vertices of P.

Let η^{\prime} and τ^{\prime} be unit vectors perpendicular to η and τ, respectively.
In the following we will assume that all I-polygonial paths P which we will consider contain the graph of a function $f_{\mathrm{P}} \in \operatorname{Lip}(1)([0,1])$, and further that

$$
3 d<\min _{j}\left(a_{j+1}-a_{j}\right)
$$

We fix a unit vector $\eta=\left(\eta_{1}, \eta_{2}\right)$ such that $\eta_{2} / \eta_{1}<d / 2$, and denote $\mathrm{P}(\mathrm{D}, \mathrm{E} ; \eta)$ by $\mathrm{P}(\mathrm{D}, \mathrm{E})$. Note that then $\mathrm{L}\left(f_{\mathrm{P}}\right) \leqslant d / 2$.

Fix $0<\varepsilon \leqslant 1$. If $\mathrm{P}^{j}=\mathrm{P}\left(\mathrm{D}^{j}, \mathrm{E}^{j}\right), j=1, \ldots, n$, are I-polygonial paths such that $D=\cup D^{j}$ and $E=\cup E^{j}$ are independent, then also $\tilde{\mathrm{D}}=\left\{d \tau \cdot \eta^{\prime}: d \in \mathrm{D}\right\}$ and $\tilde{\mathrm{E}}=\left\{e \eta \cdot \tau^{\prime}: e \in \mathrm{E}\right\}$ are independent. Thus, by Proposition 1, for every $\sigma>0$ there exist

$$
\delta=\delta\left(\mathrm{P}^{1}, \ldots, \mathrm{P}^{n}, \varepsilon, \sigma\right)>0, \quad \rho=\rho\left(\mathrm{P}^{1}, \ldots, \mathrm{P}^{n}, \sigma\right)>0
$$

such that for any function $f: \mathrm{D} \rightarrow \mathrm{T}$ there exists $g \in \mathrm{~A}(\mathbf{R})$ with
(6) $|f(s)-g(s+t)|<\sigma$ for $s \in D$ and $t \in U(\delta)$;
(7) $||g(x+t)| f(s)-g(s+t)|<\varepsilon^{-1 / 2} \sigma$ for $s \in \tilde{D}$ and $t \in U(\rho)$;
(8) $|g(s)| \leqslant \varepsilon$ for $s \notin \mathrm{D}+\mathrm{U}(\rho)$;
(9) $\|g\|_{A} \leqslant \varepsilon^{-1 / 2}$,
and such that the analogue of (6) to (9) also holds for \tilde{E} instead of \tilde{D}. (Notice that $\tilde{\mathrm{D}}$ and $\tilde{\mathrm{E}}$ are Kronecker sets, hence $\alpha(\tilde{\mathrm{D}})=\alpha(\tilde{\mathrm{E}})=1$.)

In order to construct functions f_{1}, \ldots, f_{n}, divise for each $j=1, \ldots, n$ a sequence of I-polygonial paths $\mathrm{P}_{m}^{j}=\mathrm{P}\left(\mathrm{D}_{m}^{j}, \mathrm{E}_{m}^{j}\right)$ such that

$$
\begin{align*}
& \text { (10) } \mathrm{D}_{m}=\bigcup_{j} \mathrm{D}_{m}^{j} \text { and } \mathrm{E}_{m}=\bigcup_{j} \mathrm{E}_{m}^{j} \text { are independent for each } m ; \tag{10}\\
& \text { (11) } s_{m}=\max _{j} s\left(\mathrm{P}_{m}^{j}\right) \downarrow 0 \text { as } m \rightarrow \infty ; \\
& \text { (12) every point of } \mathrm{P}_{m+1}^{j} \text { lies within distance }
\end{align*}
$$

$$
\delta_{m}=2^{-1} \delta\left(\mathrm{P}_{m}^{1}, \ldots, \mathrm{P}_{m}^{n}, \varepsilon, \mathrm{~m}^{-1}\right) \quad \text { away from } \quad \mathrm{P}_{m}^{j}
$$

(13) $\left\|f_{\mathcal{P}_{m}^{\prime}}-a_{j}\right\|_{\mathrm{C}_{\mathrm{C}(0,1]}}<d$ for all j and m.

Since $\delta_{m} \downarrow 0$ as $m \rightarrow \infty$, the functions $f_{\mathrm{P}_{m}}$ converge for fixed j uniformly towards a $\operatorname{Lip}(1)$ functions f_{j} on $[0,1]$, which clearly satisfies (i) and (ii) of Proposition 2.

In order to prove (iii), let $\mu \in M(\Gamma)$ be a measure of norm one. Fix $\sigma>0$, let Q be a compact rectangle whose interior contains Γ, and choose a continuous function $h: \mathbf{Q} \rightarrow \mathbf{T}$ such that $\|h \mu-|\mu|\|<\sigma$. Pick $\alpha>0$ such that $h \in \mathrm{C}_{\sigma, \mathrm{U}(\alpha)}(\mathrm{Q}, \mathrm{T})$, and choose m large enough such that

$$
m^{-1}<\sigma, \quad s_{m}<\alpha / 2 \quad \text { and } \quad \rho_{m}=\rho\left(\mathrm{P}_{m}^{1}, \ldots, \mathrm{P}_{m}^{n}, \sigma\right)<\alpha / 12
$$

For $d \in \mathrm{D}_{m}$ and $e \in \mathrm{E}_{m}$ let

$$
\begin{aligned}
& \mathbf{R}_{d}^{1}=\left\{a \eta^{\prime}+b \eta: b \in \mathbf{R},\left|a-d \tau \cdot \eta^{\prime}\right|<2 \delta_{m}\right\}, \\
& \mathbf{R}_{e}^{2}=\left\{a \tau+b \tau^{\prime}: a \in \mathbf{R},\left|b-e \eta \cdot \tau^{\prime}\right|<2 \delta_{m}\right\}, \\
& \mathbf{S}_{d}^{1}=\left\{a \eta^{\prime}+b \eta: b \in \mathbf{R},\left|a-d \tau \cdot \eta^{\prime}\right|<\rho_{m}\right\}, \\
& \mathbf{S}_{e}^{2}=\left\{a \tau+b \tau^{\prime}: a \in \mathbf{R},\left|b-e \eta \cdot \tau^{\prime}\right|<\rho_{m}\right\},
\end{aligned}
$$

and let

$$
\mathrm{R}^{1}=\bigcup_{d \in \mathrm{D}} \mathrm{R}_{d}^{1}, \quad \mathrm{R}^{2}=\bigcup_{e \in \mathrm{E}} \mathrm{R}_{e}^{2}, \quad \mathrm{~S}^{1}=\bigcup_{d \in \mathrm{D}} \mathrm{~S}_{d}^{1}, \quad \mathrm{~S}^{2}=\bigcup_{e \in \mathrm{E}} \mathrm{~S}_{e}^{2}
$$

Because of the choice of η we may assume the following important property :
(14) If $d \in \mathrm{D}_{m}^{j}$, then $\mathrm{S}_{d}^{1} \cap \mathrm{G}\left(f_{\mathrm{P}_{m}^{\prime}}\right)=\varnothing$ for $\ell \neq j$, and if $e \in \mathrm{E}_{m}^{j}, \quad$ then $\quad \mathrm{S}_{e}^{2} \cap \mathrm{G}\left(f_{\mathrm{P}_{m}^{\ell}}\right)=\varnothing \quad$ for $\quad \ell \neq j$.

Since Γ lies within distance $2 \delta_{m}$ from $\bigcup_{j} G\left(f_{P_{m}^{j}}\right), \quad \Gamma \subset R^{1} \cup R^{2}$. Therefore, either $|\mu|\left(R^{1}\right) \geqslant \frac{1}{2}$ of $|\mu|\left(R^{2}\right) \geqslant \frac{1}{2}$. We shall assume the former, the other case being equivalent to deal with.

For $d \in \mathrm{D}$, there exist exactly two vertices $d \tau+e_{d} \eta$ and $d \tau+e_{d}^{\prime} \eta$ (with $e_{d}<e_{d}^{\prime}$) of $\bigcup_{j} \mathrm{P}_{m}^{j}$ which have d as τ-component. We define a function f on $\tilde{\mathrm{D}}^{j}$ by $f\left(d \tau \cdot \eta^{\prime}\right)=h\left(d \tau+e_{d} \eta\right)$. Choose $g \in \mathbf{A}\left(\mathbf{R}^{2}\right)$ corresponding to f with properties (6) to (9), and define g_{1} on \mathbf{R}^{2} by $g_{1}\left(t \eta^{\prime}+s \eta\right)=g(t)$. Then $g_{1} \in \mathbf{B}\left(\mathbf{R}^{2}\right)$ with $\left\|g_{1}\right\|_{\mathrm{B}} \leqslant \varepsilon^{-1 / 2}$, where $\mathbf{B}\left(\mathbf{R}^{2}\right)$ denotes the Banach algebra of Fourier-Stieltjes transforms of bounded Radon measures on \mathbf{R}^{2}. Since $s_{m}<\alpha / 2$ and $\rho_{m}<\alpha / 12$, and since $\operatorname{dist}\left(\Gamma \cap S_{d}^{1}, G\left(f_{\mathrm{P}_{m}^{j}}\right)\right)<\sigma / 12$ for $d \in \mathrm{D}_{m}^{j}$, we conclude from (14) that

$$
\begin{equation*}
|x-y|<\alpha \text { for any } d \in \mathbf{D} \text { and } x, y \in \Gamma \cap \mathbf{S}_{d}^{1} \tag{15}
\end{equation*}
$$

This together with (6) and (7) implies

$$
\begin{equation*}
\left|h(x)-g_{1}(x)\right| \leqslant 2 \sigma \text { for } x \in \mathbf{R}^{1} \cap \Gamma \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\| g_{1}(x)\left|h(x)-g_{1}(x)\right| \leqslant 2 \varepsilon^{-1 / 2} \sigma \text { for } x \in S^{1} \cap \Gamma \tag{17}
\end{equation*}
$$

Finally we have $\left|g_{1}(y)\right|<\varepsilon$ for $y \notin \mathbf{S}^{1}$.
Since $\Gamma \backslash \mathbf{S}^{1} \subset \mathbf{R}^{\mathbf{2}}$, all this together implies

$$
\|\mu\|_{\mathrm{PM}} \varepsilon^{-1 / 2} \geqslant\left|\int_{\Gamma} g_{1} d \mu\right| \geqslant\left|\int_{\mathrm{S}^{1}} g_{1} d \mu\right|-\frac{1}{2} \varepsilon
$$

and

$$
\begin{aligned}
\int_{\mathbf{S}^{1}} g_{1} d \mu=\int_{\mathbf{R}^{1}} h d \mu+\int_{\mathbf{R}^{1}}\left(g_{1}-h\right) d \mu & +\int_{\mathbf{S}^{1} \backslash \mathbf{R}^{1}}\left|g_{1}\right| d(h \mu-|\mu|) \\
& +\int_{\mathbf{S}^{1} \backslash \mathbf{R}^{1}}\left|g_{1}\right| d|\mu|+\int_{\mathbf{S}^{1} \backslash \mathbf{R}^{1}}\left(g_{1}-\left|g_{1}\right| h\right) d \mu,
\end{aligned}
$$

hence

$$
\left|\int_{\mathrm{S}^{1}} g_{1} d \mu\right|>\left(|\mu|\left(\mathrm{R}^{1}\right)-\sigma\right)-2 \sigma-\varepsilon^{-1 / 2} \sigma-2 \varepsilon^{-1 / 2} \sigma
$$

i.e.

$$
\|\mu\|_{\mathrm{PM}} \varepsilon^{-1 / 2} \geqslant \frac{1}{2}-\left(3+3 \varepsilon^{-1 / 2}\right) \sigma-\frac{1}{2} \varepsilon .
$$

Since $\sigma>0$ was arbitrary, we get

$$
\|\mu\|_{P M} \geqslant \frac{1}{2}\left(\varepsilon^{1 / 2}-\varepsilon^{3 / 2}\right)
$$

which is at maximum $3^{-3 / 2}$ for $\varepsilon=1 / 3$. This proves (iii).

Lemma 2. - Let $\sigma>0$, and let $v(n)=2^{n-1}+1$. There exists a double sequence $\left\{f_{k}^{n}\right\}_{n \geqslant 1,1 \leqslant k \leqslant v(n)}$ of non-decreasing Lip (1) functions on $[0,1]$ with the following properties:
(18) $\Gamma_{k}^{n} \cap \Gamma_{\ell}^{n}=\varnothing$ for $k \neq \ell$, where $\Gamma_{k}^{n}=\mathrm{G}\left(f_{k}^{n}\right)$.
(19) $\alpha\left(\Gamma^{n}\right) \leqslant 3^{6}$ for every $n \geqslant 1$, where $\Gamma^{n}=\bigcup_{k} \Gamma_{k}^{n}$.
(20) If $k_{1}, k_{2}, \ldots, k_{v(n)}$ are chosen such that

$$
f_{k_{1}}^{n}<f_{k_{2}}^{n}<\cdots<f_{k_{v(n)}}^{n}, \quad \text { and if } \quad h_{j}^{n}=\frac{1}{2}\left(f_{k_{j}}^{n}+f_{k_{j+1}}^{n}\right)
$$

for $j=1, \ldots, v(n)-1$, then

$$
\left\|f_{k}^{n}-f_{k}^{n+1}\right\|_{c}<\delta_{n} \quad \text { for } \quad k=1, \ldots, v(n)
$$

and

$$
\left\|h_{j}^{n}-f_{v(n)+j}^{n+1}\right\|_{c}<\delta_{n} \quad \text { for } \quad j=1, \ldots, v(n)-1
$$

where δ_{n} is determined as follows:
Let $\delta=\delta\left(\Gamma^{n}, \sigma, n^{-1}\right)$ be chosen corresponding to Lemma 1 such that for any $f \in \mathrm{C}_{\sigma / 4, \cup\left(n^{-1}\right)}\left(\Gamma^{n}, \mathbf{T}\right)$ there is a $g \in \mathbf{A}\left(\mathbf{R}^{2}\right)$ with $\|g\|_{\mathrm{A}} \leqslant 3^{6}$ and $|f(x)-g(x+z)|<\sigma$ for $x \in \Gamma^{n}$ and $z \in \mathrm{U}(\delta)$. Then $\delta_{n}>0$ is chosen such that $2 \delta_{n}<\delta, 6 \delta_{n}<\delta_{n-1}$ and
$6 \delta_{n}<\min \left\{\left|f_{k_{j+1}}^{n}(x)-f_{k_{j}}^{n}(x)\right|: x \in[0,1], \quad j=1, \ldots, v(n)-1\right\}$.

$$
\begin{equation*}
\mathrm{L}\left(f_{k}^{n}\right) \leqslant 1 \text { for } n \geqslant 1 \text { and } 1 \leqslant k \leqslant v(n) \tag{21}
\end{equation*}
$$

Proof. - Fix $\sigma>0$, and choose an increasing sequence $0<d_{1}<d_{2}<\ldots$ of real numbers $d_{j}<1$. We will define $\left\{f_{k}^{n}\right\}$ by induction over n.

For $n=1$ choose any two non-decreasing functions f_{1}^{1} and f_{2}^{1} on $[0,1] \quad$ with $\quad \mathrm{L}\left(f_{k}^{1}\right) \leqslant d_{1}, \quad f_{1}^{1}<f_{2}^{1}<f_{1}^{1}+1 \quad$ and $\alpha\left(G\left(f_{1}^{1}\right) \cup G\left(f_{2}^{1}\right)\right) \leqslant 3^{3 / 2}$. This is possible by Proposition 2 .

Assume that functions f_{k}^{m} for $m \leqslant n$ and $1 \leqslant k \leqslant v(m)$ have been defined which satisfy (18) to (20) and

$$
\begin{equation*}
\mathrm{L}\left(f_{k}^{m}\right) \leqslant d_{m} \text { for } m \leqslant n \tag{21}
\end{equation*}
$$

instead of (21).
Choose δ_{n} as in (20) of Lemma 2.
Similarly as in the proof of Proposition 2, let $\tau=(1,0)$ and $\eta=\left(\eta_{1}, \eta_{2}\right)$ be unit vectors in \mathbf{R}^{2} such that $\eta_{i}>0$ and $\eta_{2} / \eta_{1}=d_{n}$, and let τ^{\prime} and η^{\prime} be unit vectors perpendicular to τ and η, respectively. If we define the functions h_{j}^{n} as in (20), then $f_{1}^{n}, \ldots, f_{v(n)}^{n}$ and $h_{1}^{n}, \ldots, h_{v(n)-1}^{n}$ are non-decreasing functions on $[0,1]$ with $\mathrm{L}\left(f_{k}^{n}\right) \leqslant d_{n}$ and $\mathrm{L}\left(h_{j}^{n}\right) \leqslant d_{n}$. It is easily seen that this allows us to find Ipolygonial paths $\mathrm{P}_{k}=\mathrm{P}\left(\mathrm{D}_{k}, \mathrm{E}_{k} ; \eta\right)$ for $k=1, \ldots, v(n+1)$ such that each path P_{k} contains the graph of a continuous function $f_{\mathrm{P}_{k}}$ on $[0,1]$, and such that
(22) $\left\|f_{k}^{n}-f_{\mathrm{P}_{k}}\right\|_{\mathrm{C}} \leqslant \delta_{n} / 2$ for $k=1, \ldots, v(n)$
and

$$
\left\|h_{j}^{n}-f_{\mathrm{P}_{\mathrm{v}(n)+j}}\right\|_{\mathrm{c}} \leqslant \delta_{n} / 2 \quad \text { for } \quad j=1, \ldots, v(n)-1
$$

(In fact we even do not need that the sets D_{k} and E_{k} are independent.)
We will now replace the line segments in the paths P_{k} by pieces of Helson curves. Let $D=\cup D_{k}$ and $E=\cup E_{k}$, and choose $\alpha>0$ such that $3 \alpha<\min \left\{\left|d-d^{\prime}\right|: d, d^{\prime} \in \mathrm{D}, d \neq d^{\prime}\right\}, 3 \alpha<\min \left\{\left|e-e^{\prime}\right|: e, e^{\prime} \in \mathrm{E}, e \neq e^{\prime}\right\}$ and $\alpha<\delta_{n} / 4$. By Proposition 2 there exist non-decreasing functions $g_{e}^{2} \in \operatorname{Lip}(1)([0,1])$ such that

$$
\left\|g_{e}^{2}-e \eta \cdot \tau^{\prime}\right\|_{\mathrm{C}} \leqslant \alpha, \quad \mathrm{~L}\left(g_{e}^{2}\right) \leqslant d_{n+1}-d_{n} \quad \text { and } \quad \alpha\left(\Gamma_{\mathrm{E}}^{2}\right) \leqslant 3^{3 / 2}
$$

where $\Gamma_{E}^{2}=\bigcup_{e \in E} G\left(g_{e}^{2}\right)$. And similarly there exist non-decreasing functions $g_{d}^{1} \in \operatorname{Lip}(1)([0,1])$ such that $\left\|g_{d}^{1}-\ell_{d}\right\|_{C} \leqslant \alpha$, where ℓ_{d} denotes the affine linear function $\ell_{d}(x)=d+\eta_{2} x / \eta_{1}$ whose graph is the line $\mathbf{R} \eta+d \tau \cdot \eta^{\prime}$, and such that $\mathrm{L}\left(g_{d}^{1}\right) \leqslant d_{n}+\left(d_{n+1}-d_{n}\right)=d_{n+1}$ and $\alpha\left(\Gamma_{\mathrm{D}}^{1}\right) \leqslant 3^{3 / 2}$,
where $\Gamma_{\mathrm{D}}^{1}=\bigcup_{d \in \mathrm{D}} \mathrm{G}\left(g_{d}^{1}\right)$. By the union Theorem 2.1.2 for Helson sets in [1], the set $\Gamma_{D}^{1} \cup \Gamma_{E}^{2}$ is a Helson set with $\alpha\left(\Gamma_{D}^{1} \cup \Gamma_{E}^{2}\right) \leqslant 3^{6}$.

It is easy to see that $\Gamma_{D}^{1} \cup \Gamma_{E}^{2}$ contains the graphs of $v(n+1)$ nondecreasing Lip (1) functions f_{k}^{n+1} on $[0,1]$ with
(23) $\left\|f_{k}^{n+1}-f_{\mathrm{P}_{k}}\right\|_{\mathrm{C}} \leqslant \delta_{n} / 2$ for $k=1, \ldots, v(n+1)$, which agree piecewise with the functions g_{d}^{1} or g_{e}^{2}. Of eourse we then have $\mathrm{L}\left(f_{k}^{n+1}\right) \leqslant d_{n+1}$ for $k=1, \ldots, v(n+1)$, which implies (21)' for $n+1$, and from (22) and (23) we get

$$
\left\|f_{k}^{n+1}-f_{k}^{n}\right\|_{C}<\delta_{n} \quad \text { for } \quad k=1, \ldots, v(n)
$$

and $\left\|h_{j}^{n}-f_{v(n)+j}^{n+1}\right\|_{c}<\delta_{n}$ for $j=1, \ldots, v(n)-1$. This, together with the choice of δ_{n}, guarantees (18) for $n+1$, and thus also (20) holds for $n+1$. Finally, (19) holds for Γ^{n+1}, since Γ^{n+1} is a closed subset of $\Gamma_{\mathrm{D}}^{1} \cup \Gamma_{\mathrm{E}}^{1}$.

Theorem 1. - For any $\beta>3^{6}$ there exists a sequence $\left\{f_{k}\right\}_{k \geqslant 1}$ of nondecreasing functions $f_{k} \in \operatorname{Lip}(1)([0,1])$ with $\mathrm{L}\left(f_{k}\right) \leqslant 1$ such that:
(i) $f_{1}<f_{k}<f_{2}$ for all $k \geqslant 3$, and
$G\left(f_{k}\right) \cap G\left(f_{\ell}\right)=\varnothing$ for $\ell \neq k$.
(ii) For each $\varepsilon>0$ and $k \neq \ell$ with $f_{k}<f_{\ell}$ there exist $k_{1}, k_{2}, \ldots, k_{n}$ such that

$$
f_{k}=f_{k_{1}}<f_{k_{2}}<\cdots<f_{k_{n}}=f_{\ell} \quad \text { and } \quad\left\|f_{k_{j+1}}-f_{k_{j}}\right\|_{C} \leqslant \varepsilon
$$

(iii) $\alpha\left(\bigcup_{k=1}^{n} G\left(f_{k}\right)\right) \leqslant \beta$ for every $n \geqslant 1$.

Proof. - Fix $\beta>3^{6}$. Choose $\sigma>0$ such that $\beta(1-9 \sigma / 4)>3^{6}$, and choose a double sequence $\left\{f_{k}^{n}\right\}_{n \geqslant 1,1 \leqslant k \leqslant v(n)}$ of non-decreasing functions on $[0,1]$ with the properties stated in Lemma 2. Assume in addition that $f_{1}^{1}<f_{2}^{1}$.

Because of (20), for each $k \geqslant 1$ there exists an $f_{k} \in \mathbf{C}([0,1])$ such that
(24) $\left\|f_{k}-f_{k}^{n}\right\|_{C} \leqslant \frac{6}{5} \delta_{n}$, if $v(n) \geqslant k$.

Since $L\left(f_{k}^{n}\right) \leqslant 1$, this implies $L\left(f_{k}\right) \leqslant 1$, and of course f_{k} is nondecreasing. (24) also implies that $\mathbf{G}\left(f_{k}\right) \cap \mathbf{G}\left(f_{\ell}\right)=\varnothing$ if $\ell \neq k$, since for any n with $v(n) \geqslant \max (k, \ell)$ and any $x \in[0,1]$

$$
\begin{aligned}
\left|f_{k}(x)-f_{l}(x)\right| & \geqslant\left|f_{k}^{n}(x)-f_{l}^{n}(x)\right|-\left\|f_{k}-f_{k}^{n}\right\|_{\mathrm{C}}-\left\|f_{\ell}-f_{l}^{n}\right\|_{\mathrm{C}} \\
& \geqslant 6 \delta_{n}-\frac{6}{5} \delta_{n}-\frac{6}{5} \delta_{n}>3 \delta_{n}
\end{aligned}
$$

Proceeding inductively we prove:

$$
\begin{equation*}
f_{k_{j}}^{n}+\delta_{n-1}<f_{k_{j+1}}^{n}+4\left(\frac{2}{3}\right)^{n} \tag{25}
\end{equation*}
$$

For $n=1$ this is true if we choose $\delta_{0}<1$ suitably. Assuming that (25) holds for some $n \geqslant 1$ we pick for instance a particular $\boldsymbol{k}_{\boldsymbol{i}}$. Then the smallest of the functions f_{ℓ}^{n+1} with $\ell \neq k_{j}$ and $f_{k_{j}}^{n+1}<f_{\ell}^{n+1}$ is $f_{v(n)+j}^{n+1}$, and the equalities

$$
\begin{aligned}
f_{v(n)+j}^{n+1}-f_{k_{j}}^{n+1} & =\left(h_{j}^{n}-f_{k_{j}}^{n}\right)+\left(f_{v(n)+j}^{n+1}-h_{j}^{n}\right)+\left(f_{k_{j}}^{n}-f_{k_{j}}^{n+1}\right) \\
& =\frac{1}{2}\left(f_{k_{j+1}}^{n}-f_{k_{j}}^{n}\right)+\left(f_{v(n)+j}^{n+1}-h_{j}^{n}\right)+\left(f_{k_{j}}^{n}-f_{k_{j}}^{n+1}\right)
\end{aligned}
$$

together with (20) and (25) imply

$$
f_{k_{j}}^{n+1}+\delta_{n}<f_{v(n)+j}^{n+1}<f_{k_{j}}^{n+1}+4\left(\frac{2}{3}\right)^{n+1}
$$

Since (i) and (ii) of Theorem 1 are easy consequences of (24) and (25), we are left with the proof of (iii).

Fix $N \geqslant 1$, let $E=\bigcup_{k=1}^{N} G\left(f_{k}\right)$, and let $\mu \in M(E)$ be a measure of norm one. Let Q be a compact cube whose interior contains E , and choose a continuous function $h \in C(Q, T)$ such that $\|h \mu-|\mu|\|<\sigma$.

Pick $\alpha>0$ such that $h \in \mathrm{C}_{\sigma / 4, \mathrm{U}(\alpha)}(\mathrm{Q}, \mathrm{T})$, choose n large enough so that $n^{-1}<\alpha$ and $v(n) \geqslant \mathrm{N}$, and write $\delta=\delta\left(\Gamma^{n}, \sigma, n^{-1}\right)$ as in Lemma 2.

Since $\left.h\right|_{\Gamma^{n}} \in \mathrm{C}_{\sigma / 4, \mathrm{U}\left(n^{-1}\right)}\left(\Gamma^{n}, \mathbf{T}\right)$, we can find, after (20), a function $g \in A\left(\mathbf{R}^{2}\right)$ with $\|g\|_{\mathrm{A}} \leqslant 3^{6}$ and $|h(x)-g(x+z)|<\sigma$ for $x \in \Gamma^{n}$ and $z \in \mathrm{U}(\delta)$. Moreover, (24) implies that

$$
\operatorname{dist}\left(\mathrm{E}, \bigcup_{k=1}^{N} \Gamma_{k}^{n}\right) \leqslant \frac{6}{5} \delta_{n} \leqslant \min \left(\delta, n^{-1}\right) \text { for } n \geqslant 2
$$

Hence for any $x \in \mathrm{E}$ there exists $y \in \Gamma^{n}$ such that

$$
|x-y| \leqslant n^{-1} \quad \text { and } \quad|x-y|<\delta
$$

which implies

$$
\begin{aligned}
|g(x)-h(x)| & \leqslant|g(x)-h(y)|+|h(y)-h(x)| \\
& \leqslant \sigma+\sigma / 4=5 \sigma / 4 .
\end{aligned}
$$

Thus we get

$$
\|\mu\|_{P M} 3^{6} \geqslant\left|\int_{E} g d \mu\right| \geqslant\left|\int_{E} h d \mu\right|-\left|\int_{E}(h-g) d \mu\right| \geqslant 1-\sigma-\frac{5 \sigma}{4},
$$

or

$$
\|\mu\| \leqslant \frac{3^{6}}{1-9 \sigma / 4}\|\mu\|_{P M} \leqslant \beta\|\mu\|_{P M} .
$$

This proves Theorem 1.
Theorem 2. - For every $\gamma>3^{93 / 2}$ there exists a surface $\Sigma \subset \mathbf{R}^{3}$ which is the graph of $a \operatorname{Lip}(1)$ function and such that $\alpha(\Sigma) \leqslant \gamma$.

Proof. - The proof is similar to the proof of Proposition 2. Fix $\beta>3^{6}$ such that $3^{3 / 2} \beta^{15 / 2}<\gamma$, and choose a sequence $\left\{f_{k}\right\}_{k \geqslant 1}$ of nondecreasing Lip (1) functions on $[0,1]$ with the properties stated in Theorem 1. Let $\mathscr{Z}=\left\{f_{k}: k \geqslant 1\right\}$. Let $\xi=(1,0,0), \tau=(0,1,0)$ and $\eta=\left(0, \eta_{2}, \eta_{3}\right)$ be unit vectors, and assume $\eta_{2}>0, \eta_{3}>0$.

If $\mathrm{D}=\left\{d_{1}<d_{2}<\ldots<d_{m}\right\}$ and $\mathrm{E}=\left\{e_{1}<e_{2}<\ldots<e_{m}\right\}$ are finite subsets of \mathscr{Z}, then let $\mathrm{Q}(\mathrm{D}, \mathrm{E})$ denote the surface in \mathbf{R}^{3} whose trace in the plane $H_{x}=\left\{(x, y, z) \in \mathbf{R}^{3}: y, z \in \mathbf{R}\right\}$ is the polygonial path $P_{x}=P\left(D_{x}, E_{x},\left(\eta_{2}, \eta_{3}\right)\right)$ for every $x \in[0,1]$, where $\mathrm{D}_{x}=\left\{d_{1}(x)<d_{2}(x)<\cdots<d_{m}(x)\right\}$ and $\mathrm{E}_{x}=\left\{e_{1}(x)<e_{2}(x)<\ldots<e_{m}(x)\right\}$,
and where P_{x} is defined as in the proof of Proposition 2. Such surfaces $\mathrm{Q}=\mathrm{Q}(\mathrm{D}, \mathrm{E})$ will be called \mathscr{Z}-surfaces, and we will assume that all \mathscr{Z} surfaces Q considered in the following will contair the graph of a function $f_{\mathrm{Q}} \in \mathrm{C}\left([0,1]^{2}\right)$. This can be achieved by applying, if necessary, a suitable affine linear transformation to \mathbf{R}^{3}. Since $Q(D, E)$ is contained in the union of the surfaces

$$
\Sigma_{d}^{1}=\{x \xi+d(x) \tau+t \eta: x \in[0,1], t \in \mathbf{R}\}
$$

and

$$
\Sigma_{e}^{2}=\{x \xi+e(x) \eta+t \tau: x \in[0,1], t \in \mathbf{R}\}
$$

for $d \in \mathrm{D}$ and $e \in \mathrm{E}$, the functions f_{Q} are $\operatorname{Lip}(1)$ functions with $\mathrm{L}\left(f_{\mathrm{Q}}\right)<\max \left(1, \eta_{3} / \eta_{2}\right)$. Let finally $s(\mathrm{Q})=\max _{x} s\left(\mathrm{P}_{x}\right)$, where $s(\mathrm{P})$ is defined as in the proof of Proposition 2.

To construct Σ, fix $0<\varepsilon \leqslant 1$ and $\sigma>0$. If $Q=Q(D, E)$ is a \mathscr{Z}-surface, then let $\mathrm{G}(\mathrm{D})=\bigcup_{d \in \mathrm{D}} \mathrm{G}(d)$ and $\mathrm{G}(\mathrm{E})=\bigcup_{e \in \mathrm{E}} \mathrm{G}(e)$. By Proposition 1 for any $\alpha>0$ there exist $\delta=\delta(Q, \alpha, \varepsilon, \sigma)>0$ and $\rho=\rho(\mathrm{Q}, \alpha, \sigma)>0$ such that for any function $f \in \mathrm{C}_{\sigma / 8, \mathrm{U}(\alpha)}(\mathrm{G}(\mathrm{D}), \mathrm{T})$ there exists $g \in A\left(\mathbf{R}^{2}\right)$ with
(26) $|f(w)-g(w+z)|<\sigma$ for $w \in G(D)$ and $z \in U(\delta)$,
(27) $||g(w+z)| f(w)-g(w+z)|<\beta^{4} \varepsilon^{-1 / 2} \sigma \quad$ for $\quad w \in \mathrm{G}(\mathrm{D}) \quad$ and $z \in U(\rho)$,
(28) $|g(v)| \leqslant \beta^{5} \varepsilon$ for $v \notin G(D)+U(\rho)$,
and
(29) $\|g\|_{A} \leqslant \beta^{5} \varepsilon^{-1 / 2}$,
and such that the analogue of (26) to (29) also holds for $G(E)$ instead of G(D) .

Divise a sequence $\mathrm{Q}_{m}=\mathrm{Q}\left(\mathrm{D}_{m}, \mathrm{E}_{m}\right)$ of \mathscr{Z}-surfaces such that
(30) $s\left(\mathrm{Q}_{m}\right) \downarrow 0$
and
(31) every point of $\mathrm{Q}_{\boldsymbol{m + 1}}$ lies within distance

$$
\delta_{m}=2^{-1} \eta_{3} \delta\left(Q_{m}, m^{-1}, \varepsilon, \sigma\right) \quad \text { away from } \quad Q_{m}
$$

This is possible because of (ii) of Theorem 1. Since $\delta_{m} \downarrow 0$, the surfaces $\mathrm{G}\left(f_{\mathrm{Q}_{m}}\right) \subset \mathrm{Q}_{m}$ converge uniformly towards a surface Σ which is the graph of a $\operatorname{Lip}(1)$ function on $[0,1]^{2}$.

To prove that Σ is a Helson surface, let $\mu \in \mathbf{M}(\Sigma)$ be a measure of
norm one. Let Δ be a compact cube in \mathbf{R}^{3} whose interior contains Σ, and let $h: \Delta \rightarrow \mathbf{T}$ be a continuous function such that $\|h \mu-|\mu|\|<\sigma$. Choose $\alpha>\sigma$ such that $h \in \mathrm{C}_{\sigma / 8, \mathrm{U}(\alpha)}(\mathrm{Q}, \mathrm{T})$, and choose m large enough so that $s\left(\mathrm{Q}_{m}\right)<\alpha / 2,2 m^{-1}<\alpha$ and. $\rho_{m}=\rho\left(\mathrm{Q}_{m}, m^{-1}, \sigma\right)<\alpha / 12$. For $\mathrm{Q}=\mathrm{Q}_{m}$ let Σ_{d}^{1} and Σ_{e}^{2} be defined as before, and write

$$
\begin{array}{ll}
\mathrm{R}^{1}=\bigcup_{d \in \mathrm{D}} \Sigma_{d}^{1}+\mathrm{U}\left(2 \delta_{m}\right), & \mathrm{S}^{1}=\bigcup_{d \in \mathrm{D}} \Sigma_{d}^{1}+\mathrm{U}\left(\eta_{3} \rho_{m}\right), \\
\mathrm{R}^{2}=\bigcup_{e \in \mathrm{E}} \Sigma_{e}^{2}+\mathrm{U}\left(2 \delta_{m}\right), & \mathrm{S}^{2}=\bigcup_{e \in \mathrm{E}} \Sigma_{e}^{2}+\mathrm{U}\left(\eta_{3} \rho_{m}\right) .
\end{array}
$$

Since $\Sigma \subset R^{1} \cup R^{2}$, either $|\mu|\left(R^{1}\right) \geqslant \frac{1}{2}$ or $|\mu|\left(R^{2}\right) \geqslant \frac{1}{2}$. We will assume the former. We define a function $f \in \mathrm{C}_{\sigma / 8, \mathrm{U}\left(m^{-1}\right)}(\mathrm{G}(\mathrm{D}), T)$ by

$$
f\left(x, d_{j}(x)\right)=h\left(x \xi+d_{j}(x) \tau+e_{j}(x) \eta\right)
$$

where we wrote

$$
\mathrm{D}=\mathrm{D}_{m}=\left\{d_{1}<\ldots<d_{k}\right\} \text { and } \mathrm{E}=\mathrm{E}_{m}=\left\{e_{1}<\ldots<e_{k}\right\}
$$

Choose $g \in \mathbf{A}\left(\mathbf{R}^{2}\right)$ such that properties (26) to (29) hold for f and g with $\alpha=m^{-1}$, and define g_{1} on \mathbf{R}^{3} by $g_{1}(x \xi+y \tau+z \eta)=g(x, y)$. Then $g_{1} \in \mathbf{B}\left(\mathbf{R}^{3}\right)$,

$$
\left\|g_{1}\right\|_{\mathrm{B}} \leqslant \beta^{5} \varepsilon^{-1 / 2} \quad \text { and } \quad\left|g_{1}(v)\right| \leqslant \beta^{5} \varepsilon
$$

for $v \notin S^{1}$. And, by fixing the ξ-component of w, a similar argument as in the proof of Proposition 2 yields

$$
\text { (32) }\left|h(w)-g_{1}(w)\right| \leqslant 2 \sigma \quad \text { for } \quad w \in R^{1} \cap \Sigma
$$

and
(33) $\left|\left|g_{1}(w)\right| h(w)-g_{1}(w)\right| \leqslant 2 \beta^{4} \varepsilon^{-1 / 2} \sigma$ for $w \in S^{1} \cap \Sigma$.

Now we can split up $\int_{\mathbf{S}^{1}} g_{1} d \mu$ the same way as in Proposition 2 and obtain the estimate

$$
\begin{aligned}
\|\mu\|_{\mathrm{PM}} \beta^{5} \varepsilon^{-1 / 2} \geqslant & \left|\int_{\Sigma} g_{1} d \mu\right| \\
& \geqslant\left(|\mu|\left(\mathrm{R}^{1}\right)-\sigma\right)-2 \sigma-\beta^{5} \varepsilon^{-1 / 2} \sigma-2 \beta^{4} \varepsilon^{-1 / 2} \sigma-\frac{1}{2} \beta^{5} \varepsilon
\end{aligned}
$$

or

$$
\|\mu\|_{\mathrm{PM}} \geqslant \beta^{-5} \frac{1}{2}\left(\varepsilon^{1 / 2}-\beta^{5} \varepsilon^{3 / 2}\right)-\left(2 \beta^{-5} \varepsilon^{1 / 2}+1+2 \beta^{-1}\right) \sigma
$$

For $\varepsilon=\left(3 \beta^{5}\right)^{-1}$ the first term of the last sum is at maximum $\left(3 \beta^{5}\right)^{-3 / 2}$. So, if we choose $\varepsilon=\left(3 \beta^{5}\right)^{-1}$ and σ sufficiently small for the construction of Σ, then $\|\mu\|_{\mathrm{PM}} \geqslant \gamma^{-1}$, which proves the theorem.

BIBLIOGRAPHY

[1] C. C. Graham and O. C. McGehee, Essays in Commutative Harmonic Analysis, Springer-Verlag, New York, 1979.
[2] C. S. Herz, Drury's Lemma and Helson sets, Studia Math., 42 (1972), 207-219.
[3] J. P. Kahane, Sur les réarrangements de fonctions de la classe A, Studia Math., 31 (1968), 287-293.
[4] O. C. McGehee, Helson sets in T^{n}, in : Conference on Harmonic Analysis, College Park, Maryland, 1971; Springer-Verlag, New York, 1972, 229-237.
[5] O. C. McGehee and G. S. Woodward, Continuous manifolds in $\mathbf{R}^{\boldsymbol{n}}$ that are sets of interpolation for the Fourier algebra, Ark, Mat., 20 (1982), 169-199.
[6] W. Rudin, Fourier Analysis on Groups, Wiley, New York, 1962.
[7] S. Saeki, On the union of two Helson sets, J. Math. Soc. Japan, 23 (1971), 636648.
[8] N. Th. Varopoulos, Sidon sets in \mathbf{R}^{n}, Math. Scand., 27 (1970), 39-49.
[9] N. Th. Varopoulos, Groups of continuous functions in harmonic analysis, Acta Math., 125 (1970), 109-152.

Manuscrit reçu le 7 septembre 1983.
Detlef Muller,
Fakultät für Mathematik
Universität Bielefeld
Universitätsstr. 25
4800 Bielefeld 1 (R.F.A.).

