BARUCH Z. MOROZ On the distribution of integral and prime divisors with equal norms

Annales de l'institut Fourier, tome 34, nº 4 (1984), p. 1-17 <http://www.numdam.org/item?id=AIF 1984 34 4 1 0>

© Annales de l'institut Fourier, 1984, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Fourier, Grenoble 34, 4 (1984), 1-17.

ON THE DISTRIBUTION OF INTEGRAL AND PRIME DIVISORS WITH EQUAL NORMS

by **B. Z.** MOROZ (*)

This is an exposition of the material presented in my lectures given at Orsay in March 1983.

1.

Consider r finite extensions k_1, \ldots, k_r of an algebraic number field k, a finite extension of Q, and fix an ideal class A_j in k_j , $1 \le j \le r$. Let

$$V(A) = \{ \mathfrak{a} \mid \mathfrak{a}_i \in A_i, \ N_{k_1/k} \mathfrak{a}_1 = \cdots = N_{k_r/k} \mathfrak{a}_r \}$$

be the set of *r*-tuples of divisors having equal norms. Following E. Hecke, [1], one associates to a divisor of a number field a point in Minkowski space, the real vector space corresponding to this field; we study the distribution of integral and prime divisors in V(A) regarded as points of a real manifold, in the spirit of [1]. For technical reasons we consider here only the case $k = \mathbf{Q}$ (compare [2] and the appendix to this paper).

We use the following notations: card S, or simply |S|, denotes the cardinality of a finite set S. Let L be an algebraic number field of degree n over \mathbf{Q} :

- v is the ring of integers of L,
- v* is its group of units,
- I is the group of fractional divisors of L,

 I_0 is the monoid of integral divisors,

(*) Supported in part by a French Government visiting grant.

 \mathcal{P} is the set of prime divisors,

$$\begin{split} \mathbf{S}_2 & \text{and } \mathbf{S}_1 \text{ are the sets of complex and real places of } \mathbf{L}, \\ \mathbf{S} &= \mathbf{S}_1 \cup \mathbf{S}_2, \ |\mathbf{S}_j| = : r_j \ (j=1,2), \ n &= r_1 + 2r_2, \\ \mathbf{L}_w &= \begin{cases} \mathbf{R}, \ w \in \mathbf{S}_1 \\ \mathbf{C}, \ w \in \mathbf{S}_2 \end{cases} \text{ denotes the completion of } \mathbf{L} \text{ at } w \in \mathbf{S}, \\ \|x\| &= \begin{cases} |x|, \ w \in \mathbf{S}_1 \\ |x|^2, \ w \in \mathbf{S}_2 \end{cases} \text{ for } x \in \mathbf{L}_w. \end{split}$$

Let us introduce the algebra $X = \prod_{w \in S} L_w$ of dimension *n* over **R**, refered to as Minkowski space associated with L. Let $\psi : L \to X$ be the componentwise embedding of L in X. The group v^* of units acts freely as a discrete group of transformations on the multiplicative group $X^* = \prod_{w \in S} L_w^*$ of non-zero elements of X; let $Y = X^*/\psi(v^*)$ be the group of its orbits. E. Hecke, [1], introduces « ideal numbers » (compare also, [3]-[6]) and defines Größencharaktere to be able to study the distribution of integral and prime divisors among the areas of Y. We recall this construction, as well as the results of [3]-[5] to be generalized here. Let N: $X \to \mathbf{R}_+$ and $N^{-1} \colon \mathbf{R}_+ \to X$ denote the norm map $N \colon x \to \prod_{w \in S} ||x_w||$ and its right inverse $N^{-1} \colon t \to (t^{1/n}, \ldots, t^{1/n})$. Since N is trivial on $\psi(v^*)$, one obtains $Y = \mathbf{R}_+ \times Y_0$, where

$$Y_0: = X_0/\psi(v^*), \qquad X_0: = \{x | x \in X, N(x) = 1\}$$

Let \hat{Y}_0 be the group of characters of Y_0 and $\lambda \in \hat{Y}_0$; one can regard λ as a character of X^{*} trivial on $\psi(v^*)$ and on $N^{-1}\mathbf{R}_+$. Thus

(1)
$$\lambda(x) = \prod_{w \in S} ||x_w||^{it_w} \left(\frac{x_w}{|x_w|}\right)^{a_w},$$

where $a_w \in \mathbb{Z}$, $t_w \in \mathbb{R}$, x_w denotes the projection of x on L_w , and, moreover, $\lambda(\varepsilon x) = \lambda(x)$ for $\varepsilon \in \psi(v^*)$,

$$\sum_{w \in S_1} t_{w} + 2 \sum_{w \in S_2} t_w = 0, \qquad a_w \in \{0,1\} \quad \text{for} \quad w \in S_1.$$

It follows from the Dirichlet theorem on units (compare [1], [6]) that $Y = \mathbf{R}_+ \times \mathfrak{T}_L \times (\mathbb{Z}/2\mathbb{Z})^{r_0}$, where \mathfrak{T}_L is a torus of dimension n-1, and $r_0 \leq r_1$. Therefore, $\hat{Y}_0 \cong \mathbb{Z}^{n-1} \times (\mathbb{Z}/2\mathbb{Z})^{r_0}$, and there exist characters $\lambda_1, \ldots, \lambda_{n-1}$ multiplicatively independent over \mathbb{Z} and such

2

that any $\lambda \in \hat{Y}_0$ has the form

(2)
$$\lambda = \prod_{v=1}^{n-1} \lambda_v^{m_v} \lambda', \qquad m_v \in \mathbb{Z},$$

where $\lambda'(x) = \prod_{w \in S_1} \left(\frac{x_w}{|x_w|} \right)^{a_w}, a_w \in \{0,1\}$. The map ψ induces an embedding

$$\varphi: L^*/\mathfrak{o}^* \to Y$$

of the group of principal divisors L^*/\mathfrak{v}^* of L in Y. Composing φ with the projection of Y on $\mathbf{R}_+ \times \mathfrak{T}_L$ one obtains an embedding

$$\varphi_0: L^*/\mathfrak{o}^* \to \mathbb{R}_+ \times \mathfrak{T}_L.$$

Since the group $H := I/L^*$ of ideal classes is finite, one can define an embedding

$$f: \mathbf{I} \to \mathbf{R}_+ \times \mathfrak{T}_{\mathbf{L}}$$

which coincides with φ_0 on L^*/v^* . It follows from the work cited above (see, in particular, [1] and [3]-[5]) that both integral and prime divisors are asymptotically equidistributed when identified by means of (3) with points of the real manifold $\mathbf{R}_+ \times \mathfrak{T}_L$. To be more precise, let us introduce a parametrisation of \mathfrak{T}_L induced by the basic characters $\lambda_j(x) = \exp(2\pi i \varphi_j(x)), \quad 1 \leq j \leq n-1, \quad 0 \leq \varphi_j(x) < 1$, and identify a point $x \in \mathfrak{T}_L$ with its image $(\lambda_1(x), \ldots, \lambda_{n-1}(x)) \in T^{n-1}$, where T denotes the unit circle in \mathbf{C}^* . We call a subset

$$\tau = \{x \mid \lambda_j \leq \varphi_j(x) < \lambda_j + \delta_j, \ 1 \leq j \leq n-1\}$$

of \mathfrak{T}_{L} elementary whenever $0 \leq \lambda_{j} < \lambda_{j} + \delta_{j} \leq 1$. A set $\tau \subseteq \mathfrak{T}_{L}$ is called *smooth* if there exists a constant $C(\tau) > 0$ such that for every $\Delta > 0$ one can find a system $t = \{\tau_{v}\}$ of elementary sets with the following properties : card $(t) < \Delta^{-(n-1)}$,

$$\tau_{\nu} \cap \tau_{\nu} = \emptyset \quad \text{for} \quad \nu \neq \nu', \quad \tau \subseteq \bigcup_{\tau_{\nu} \in I} \tau_{\nu}, \quad \text{mes}\left(\bigcup_{\tau_{\nu} \cap \partial \tau \neq \emptyset} \tau_{\nu}\right) < C(\tau)\Delta,$$

where mes is the normalized Haar measure on \mathfrak{T}_L (so that mes $(\mathfrak{T}_L)=1$) and $\partial \tau$ denotes the boundary of τ . The following theorem has been proved by J. P. Kubilius, [4], and, a few years later, by T. Mitsui, [5]. THEOREM 1. – For any smooth set $\tau \subseteq \mathfrak{T}_L$ and any ideal class $A \in H$

$$\operatorname{card} \left\{ \mathfrak{a} \,|\, \mathfrak{a} \in \mathrm{I}_{0} \,, \, f(\mathfrak{a}) \in (0, x) \times \tau \,, \, \mathfrak{a} \in \mathrm{A} \right\} = \frac{\omega_{\mathrm{L}} \operatorname{mes}(\tau)}{h} \, x + \mathrm{O}(x^{1-c_{1}})$$
$$\operatorname{card} \left\{ \mathfrak{p} \,|\, \mathfrak{p} \in \mathscr{P} \,, \, f(\mathfrak{p}) \in (0, x) \times \tau \,, \, \mathfrak{p} \in \mathrm{A} \right\}$$
$$= \frac{\operatorname{mes}(\tau)}{h} \int_{2}^{x} \frac{dx}{\log x} + \mathrm{O}(\exp\left(-c_{2} \sqrt{\log x}\right)x) \,,$$

where the constants c_1 , $c_2 > 0$ depend on L, but not on $x \to \infty$, and ω_L denotes the residue of the zeta-function of L at s = 1, h := |H| is the class number of L.

The characters $\mu_j = \lambda_j \circ f$ are called basic Größencharaktere; the group

$$\hat{I} = \left\{ \mu \, | \, \mu = \chi \prod_{j=1}^{n-1} \mu_j^{m_j}, \, m_j \in \mathbb{Z} \,, \, \chi \in \hat{H} \right\},\,$$

where \hat{H} is the group of ideal class characters, can be identified (see, e.g., [6]) with the set of unramified idele-class characters trivial on \mathbf{R}_+ . The map

$$(3') g': I \to \mathbf{R}_+ \times \mathbf{T}^{n-1}$$

given by

$$g': \mathfrak{a} \mapsto (\mathcal{N}_{L/O}\mathfrak{a}, \mu_1(\mathfrak{a}), \ldots, \mu_{n-1}(\mathfrak{a}))$$

is compatible with (3) under the above identification of \mathfrak{T}_{L} and \mathbb{T}^{n-1} . Theorem 1 may be viewed as a multidimensional equidistribution principle, in the spirit of the classic memoir of Hecke's, [1]. We should like to refer to [8], [9], [10] for some applications of this principle. One can improve the error term in the second formula using the method of trigonometric sums (see, [3], chapter 2, and [7]). About thirty years ago Yu. V. Linnik suggested (and communicated to his colleagues and students, [11]) that one could generalize Theorem 1 to treat the integral and prime divisors in V(A). As an example of this programme (compare [2] and references therein), we prove here the following result. Let I_0^j , \mathcal{P}_j , \mathfrak{T}_j and h_j denote the monoid of integral divisors, the set of prime divisors, the torus \mathfrak{T}_{k_j} and the class number of k_j respectively; let $h = \prod_{j=1}^{r} h_j$ and $\mathfrak{T} = \mathfrak{T}_1 \times \cdots \times \mathfrak{T}_r$, moreover, let $\mathcal{P} = \{\mathfrak{p} \mid \mathfrak{p}_j \in \mathcal{P}_j\}$ and $I_0 = \{\mathfrak{a} \mid a_j \in I_0^j\}$ be the sets of *r*-tuples of prime and integral divisors respectively; let $K = k_1 \dots k_r$ be the composite of the fields k_1, \dots, k_r , let n_j and D_j be the degree $[k_j: Q]$ and the discriminant of k_j and nbe the degree [K: Q] of K. Consider the map

$$g_j: \mathrm{I}_0^j \to \mathfrak{T}_j$$

induced by the embedding (3'), so that, when \mathfrak{T}_{i} is identified with $T^{n_{i}-1}$,

$$g_j: \mathfrak{a}_j \mapsto (\mu_{j1}(\mathfrak{a}_j), \ldots, \mu_{jn_j-1}(\mathfrak{a}_j)), \quad \mathfrak{a}_j \in \mathcal{I}_0^j,$$

where $\{\mu_{j\ell} | 1 \leq \ell \leq n_j - 1\}$ is the set of basic Größencharaktere of k_j , j = 1, ..., r, and introduce a zeta-function

(4)
$$Z(k_1,\ldots,k_r;s) = \sum_{m=1}^{\infty} a_m^{(1)} \ldots a_m^{(r)} m^{-s},$$

where $a_m^{(j)} = \operatorname{card} \{ a_j | a_j \in I_0^{(j)}, N_{k_j/Q} a_j = m \}$ is the number of integral divisors of k_j whose norm is equal to m. One can show (see [12], [13]) that if $n = \prod_{j=1}^r n_j$, then

(5)
$$Z(k_1,\ldots,k_r;s) = \frac{Z_K(s)}{L(s,\Phi)},$$

where $L(s,\Phi) = \prod_{p} \Phi^{(p)}(p^{-s})^{-1}$, $\Phi^{(p)}(t)$ is a rational function of t, pvaries over rational primes, and, moreover, $\Phi^{(p)}(p^{-s}) \neq 0$, ∞ for Re $s > \frac{1}{2}$; for almost all p the function $\Phi^{(p)}(t)$ is a polynomial of degree not larger than n-1 and such that $\Phi^{(p)}(0) = 1$, $\frac{d}{dt} \Phi^{(p)}|_{t=0} = 0$. In particular, the Euler product

$$\mathcal{L}(s,\Phi) = \prod_{p} \Phi^{(p)}(p^{-s})^{-1}$$

converges absolutely for $\operatorname{Re} s > \frac{1}{2}$.

THEOREM 2. – If k_j is Galois over **Q** for every j, $n = \prod_{j=1}^{r} n_j$ and $(D_j, D_j) = 1$ for $j \neq l$ (the discriminants are pairwise coprime), then for

any smooth set $\tau \subseteq \mathfrak{T}$ one has

 $\operatorname{card} \left\{ \mathfrak{a} \,|\, \mathfrak{a} \in \mathrm{V}(\mathrm{A}) \cap \mathrm{I}_{0} \,,\, |\mathfrak{a}| < x \,,\, g(\mathfrak{a}) \in \tau \right\} = \frac{\omega_{\mathrm{K}} \operatorname{mes}(\tau)}{hL(1,\Phi)} \,x \,+\, \mathrm{O}(x^{1-c_{1}}) \,,$ $\operatorname{card} \left\{ \mathfrak{p} \,|\, \mathfrak{p} \in \mathrm{V}(\mathrm{A}) \cap \mathscr{P} \,,\, |\mathfrak{p}| = x \,,\, g(\mathfrak{p}) \in \tau \right\}$ $= \frac{\operatorname{mes}(\tau)}{h} \,li(x) \,+\, \mathrm{O}(x \exp\left(-c_{2}\sqrt{\log x}\right))$

for some c_1 , $c_2 > 0$ depending on k_1, \ldots, k_r , but not on $x \to \infty$, where

$$|\mathfrak{a}| := \left(\sum_{j=1}^{r} N_{k_j Q} \mathfrak{a}_j\right) \frac{1}{r} \text{ for } \mathfrak{a} = \{\mathfrak{a}_1, \ldots, \mathfrak{a}_r | \mathfrak{a}_j \in I_0^j\},$$

and

$$li(x) := \int_2^x \frac{du}{\log u}; \quad g = (g_1, \ldots, g_r).$$

One can view Theorem 2 as a statement about statistical independence of the fields k_1, \ldots, k_r . To be more precise, let

$$\tau = \tau_1 \times \cdots \times \tau_r, \qquad \tau_j \subseteq \mathfrak{T}_j,$$

then (under the above assumptions) the probability to find $a \in V(A)$ with $g(a) \in \tau$ is equal to the product of the probabilities that $a_j \in A_j$ and $g_j(a_j) \in \tau_j$, j = 1, ..., r. Thus the condition

(6)
$$N_{k_1/0}a_1 = \cdots = N_{k_2/0}a_r$$

affects the probability of the event:

$$(\mathfrak{a}_1 \in \mathcal{A}_1, \ldots, \mathfrak{a}_r \in \mathcal{A}_r, g_1(\mathfrak{a}_1) \in \tau_1, \ldots, g_r(\mathfrak{a}_r) \in \tau_r)$$

neither for r-tuples of integral, nor of prime divisors. On the other hand, Theorem 2 may be regarded as an assertion on representation of integers by decomposable forms. As a special case of this theorem $(n_1 = \cdots = n_r = 2)$, one obtains the following result.

PROPOSITION 3. – Let f_1, \ldots, f_r be binary positive definite primitive quadratic forms with pairwise co-prime fundamental discriminants. Then the number of integral solutions

$$(x_1, x_2, \ldots, x_{2r-1}, x_{2r})$$

of the system of equations

$$f_1(x_1, x_2) = \cdots = f_r(x_{2r-1}, x_{2r})$$

subject to the condition $f_1(x_1, x_2) \leq N$ is equal to

 $AN + O(N^{1-c})$

for some A > 0, c > 0 independent on N.

It turns out that for two quadratic fields $(n_1 = n_2 = r = 2)$

$$L(s,\Phi) = L(2s,\chi_0),$$

where $\chi_0(n) = \left(\frac{D_1 D_2}{n}\right)$ (see, e.g., [13], § 5). Therefore we obtain the following result.

PROPOSITION 4. - Let $k_i = \mathbf{Q}(\sqrt{D_i}), \ j = 1, 2, \ (D_1, D_2) = 1$. Then

 $\operatorname{card} \left\{ \mathfrak{a} \, | \mathfrak{a} \in \mathrm{V}(\mathrm{A}) \cap \mathrm{I}_{0} \,, \, |\mathfrak{a}| < x, g(\mathfrak{a}) \in \tau \right\} = \frac{\omega_{\mathrm{K}} \, \mathrm{mes} \, (\tau)}{h \mathrm{L}(2, \chi_{0})} \, x \, + \, \mathrm{O}(x^{1-c_{1}})$

with $c_1 > 0$ independent on x.

We remark finally that the O-constants depend on τ only through the « constant of smoothness » $C(\tau)$, as can be readily observed from the proof of Theorem 2 given below.

2.

Further on we write $I_0(K)$, $\mathscr{P}(K)$, H(K), $\mu(K)$ for the monoid of the integral divisors, set of prime divisors, class group and the set of basic Größencharaktere of K. Theorem 2 will be deduced from the following four lemmas.

LEMMA 1. – Let φ_1 , φ_2 , ε satisfy the inequalities

$$0 \leq \varphi_1 - \varepsilon < \varphi_1 < \varphi_2 < \varphi_2 + \varepsilon \leq 1.$$

There exists a real valued function $f \in C^{\infty}[0,1]$ such that $0 \le f(t) \le 1$ for $t \in [0,1]$, f(t) = 1 for $t \in [\varphi_1, \varphi_2]$, f(t) = 0 for $t \notin [\varphi_1 - \varepsilon, \varphi_2 + \varepsilon]$,

 $f'(t) \neq 0$ for $\varphi_1 - \varepsilon < t < \varphi_1$ and $\varphi_2 < t < \varphi_2 + \varepsilon$:

This is a well-known lemma of elementary calculus; we choose one of such functions to be denoted by $f(\varphi_1, \varphi_2, \varepsilon; .)$.

Let C_j , C_K be the idele class groups of k_j , K, and χ_j be an idele class character of k_j trivial on \mathbf{R}_+ ; we define an idele class character

(7)
$$\chi := \prod_{j=1}^{r} \chi_j \circ \mathcal{N}_{\mathbf{K}/k_j}$$

in K, and an L-function

$$L(\chi_1,\ldots,\chi_r;s):=\sum_{\mathfrak{a}\in V}\chi_1(\mathfrak{a}_1)\ldots\chi_r(\mathfrak{a}_r)|\mathfrak{a}|^{-s},$$

where $V = \{ \mathfrak{a} | \mathfrak{a}_j \in I_0^j, N_{k_1/Q} \mathfrak{a}_1 = \cdots = N_{k_r/Q} \mathfrak{a}_r \}.$

LEMMA 2. - If $n = \prod_{j=1}^{r} n_j$, then $L(\chi_1, \ldots, \chi_r; s) = L(s, \chi)L(s, \Phi)^{-1}$, where $L(s, \chi) = \sum_{\alpha \in I_0(K)} \chi(\alpha) N_{K/Q} \alpha^{-s}$ for Res > 1, and $L(s, \Phi)$ as defined in (5) with $\Phi^{(p)}$ depending on χ_1, \ldots, χ_r and having the properties similar to those of the polynomials in (5).

This follows from the results cited before, [12] (or [13]).

LEMMA 3. - Let
$$n = \prod_{j=1}^{r} n_j$$
, then
(8) $\sum_{\substack{\alpha \in V, |\alpha| < x}} \chi_1(\alpha_1) \dots \chi_r(\alpha_r) = g(\chi) \frac{\omega_K x}{L(1,\Phi)} + O(a(\chi)^{\frac{3n+1}{2}} x^{1-c_1}),$
(9) $\sum_{\substack{\alpha \in V \cap \mathscr{P}, |\alpha| < x}} \chi_1(\alpha_1) \dots \chi_r(\alpha_r)$
 $= g(\chi) \int_2^x \frac{dx}{\log x} + O\left(x \exp\left(-c_2 \frac{\log x}{\log a(\chi) + \sqrt{\log x}}\right)\right)$

where c_1 , $c_2 > 0$, $g(\chi) = \begin{cases} 0, \ \chi \neq 1 \\ 1, \ \chi = 1 \end{cases}$ the O-constants and c_1 , c_2 depend on k_1, \ldots, k_r , but not on χ_1, \ldots, χ_r unless $\chi^2 = 1$, nor on χ ; $\sum_{w \in S} (|a_w| + |b_w|) = :a(\chi)$, when χ is given by

(10)
$$\chi(\alpha) = \prod_{w \in S} \left(\frac{\alpha_w}{|\alpha_w|} \right)^{a_w} . |\alpha_w|^{ib_w}$$

for $\alpha \equiv 1 \pmod{\mathfrak{f}(\chi)}$, $\alpha \in \mathbf{K}^*$, $a_w \in \mathbf{Z}$, $b_w \in \mathbf{R}$; α_w denotes the image of α in K_w for $w \in S$ and $\mathfrak{f}(\chi)$ is the conductor of χ .

Proof. — To prove (9) one remarks (see, e.g., [14], Lemma 1) that for any $a \in V \cap \mathscr{P}$ satisfying the condition $\langle |a| = q$ is a rational prime » there exists one and only one prime $p \in \mathscr{P}(K)$ such that $N_{K/k_j}p = a_j$. Therefore,

$$\sum_{a \in V \cap \mathscr{P}, |a| < x} \chi_1(a_1) \dots \chi_r(a_r) = \sum_{\substack{a \in V \cap \mathscr{P}, |a| = q \\ q < x}} \chi_1(a_1) \dots \chi_r(a_r) + O(x^{1/2})$$
$$= \sum_{\mathfrak{p} \in \mathscr{P}(K), N_{K/O}\mathfrak{p} < x} \chi(\mathfrak{p}) + O(x^{1/2})$$

and (9) follows from estimates obtained in the work cited above (see [4], ch. I, § 8, lemma 4, or [5], § 2, lemma 6) (*). By a standard argument one obtains (see, e.g., [15], lemma 3.12)

$$\begin{aligned} \mathsf{A}(x) &:= \sum_{\mathfrak{a} \in \mathsf{V}, \, |\mathfrak{a}| < x} \chi_1(\mathfrak{a}_1) \, \dots \, \chi_r(\mathfrak{a}_r) \\ &= \frac{1}{2\pi i} \int_{c-i\mathrm{T}}^{c+i\mathrm{T}} \frac{x^s}{s} \, \mathsf{L}(\chi_1, \dots, \chi_r; s) \, ds \, + \, \mathsf{O}_{\varepsilon}\left(\frac{x^{1+\varepsilon}}{\mathrm{T}}\right), \end{aligned}$$

where $c = 1 + (\log x)^{-1}$, T > 0. It follows from lemma 2 that

$$\begin{aligned} A(x) &= \frac{1}{2\pi i} \int_{1/2+\varepsilon-iT}^{1/2+\varepsilon+iT} \frac{x^s}{s} L(s,\chi) L(s,\Phi)^{-1} ds + g(\chi) \frac{\omega_K x}{L(1,\Phi)} \\ &+ O_{\varepsilon} \left(\frac{x^{1+\varepsilon}}{T} \right) + O_{\varepsilon} \left(\int_{1/2+\varepsilon}^{c} (|L(\sigma+iT,\chi)| + |L(\sigma-it,\chi)|) \frac{x^{\sigma}}{T} d\sigma \right) \end{aligned}$$

because $L(s,\Phi)^{-1} = O_{\varepsilon}(1)$ for $\operatorname{Re} s > \frac{1}{2} + \varepsilon$.

(*) Alternatively one can deduce (9) from lemma 2.

B. Z. MOROZ

By a Phragmén-Lindelöf type of argument (compare, [6], pp. 92-93 and [5], pp. 14-15) one deduces from the functional equation for $L(s,\chi)$ and Stirling's formula for the Γ -function an estimate

(11)
$$L(\sigma+it,\chi) = O_{\varepsilon}\left((1+|t|)^{\frac{3n}{2}(1-\sigma+\varepsilon)}a(\chi)^{\frac{3n}{2}+\varepsilon}\right)$$

in the region $0 \le \sigma \le c$. Substitution of (11) into the estimate for A(x) we have just written out leads to (8).

LEMMA 4. - Let k_j be Galois over Q for each j, $n = \prod_{j=1}^{r} n_j$, $(D_j, D_\ell) = 1$ for $j \neq \ell$, $\chi = 1$, and χ_j be unramified for each j. Then $\chi_j = 1$ for every j.

Proof. – Let us assume first that χ_j is of finite order for every j; then, being unramified, it is an ideal class character. One can deduce from class field theory, [17], that (under the above conditions)

$$\{(\mathbf{N}_{\mathbf{K}/k_1}\mathbf{A},\ldots,\mathbf{N}_{\mathbf{K}/k_r}\mathbf{A})|\mathbf{A}\in\mathbf{H}_{\mathbf{K}}\}=\mathbf{H}_1\times\cdots\times\mathbf{H}_r,$$

where H_j is the ideal class group of k_j ; in particular, for any $A_j \in H_j$ there exists $A \in H_K$ such that $N_{K/k_j}A = A_j$; $N_{K/k_\ell}A = 1$ for $\ell \neq j$. If $\chi = 1$, then

$$1 = \prod_{\ell=1}^{r} (\chi_{\ell} \circ N_{K/k_{\ell}})(A) = \chi_{j}(A_{j});$$

and we see that $\chi_j = 1$. Assuming $\chi = 1$ we deduce now that χ_j is of finite order for any j. Let G_j be the Galois group of k_j and G be the Galois group of K; since $n = \prod_{j=1}^r n_j$, we have $G \cong G_1 \times \cdots \times G_r$. The character

$$(\chi_j \circ \mathbf{N}_{\mathbf{K}/k_j})^{-1} = \prod_{\ell \neq j} \chi_\ell \circ \mathbf{N}_{\mathbf{K}/k_\ell}$$

is, therefore, G_{j} -invariant; since $[C_j: N_{K/k_j}C_K] = d_j$ is finite, we see that $\chi_j^{d_j}$ is G_j -invariant. Take $p \in \mathscr{P}_j$; since $\chi_j^{d_j}(p) = \chi_j^{d_j}(p^{\gamma})$ for $\gamma \in G_j$, we see that $(\chi_j(p))^{n/d_j} = (\chi_j(p))^{l/d_j}$, where $N_{k_j/Q}p = p^{l_j}$. But any idèle class character in **Q** is of finite order, and it follows, therefore, that $\chi_j^{\ell} = 1$ for some ℓ .

Theorem 2 can be deduced from lemma 3 and lemma 4 on purely formal lines. It is an easy consequence of these lemmas and the following form of the Weyl's equidistribution principle (compare [1], p. 37, and [18], Satz 3). To state it we appeal to lemma 1 and write

$$f(\varphi_1,\varphi_2,\varepsilon;t) = \sum_{n=-\infty}^{\infty} c_n \exp(2\pi i n t),$$

so that

(12)
$$c_0 = (\varphi_2 - \varphi_1) + \mathcal{O}(\varepsilon), \quad c_n = \mathcal{O}\left(\frac{1}{|n|^k \varepsilon^{k-1}}\right)$$

for any fixed integral $k \ge 1$.

Proposition 5. - Let

$$\mathfrak{T} = \{ \exp(2\pi i \varphi_1), \ldots, \exp(2\pi i \varphi_m) | 0 \leq \varphi_j < 1, j = 1, \ldots, m \}$$

be a torus of dimension m, τ be a smooth subset of \mathfrak{T} , G be a finite Abelian group with the group of characters \hat{G} and

$$\widehat{\mathfrak{T}} = \{\lambda_1^{\ell_1} \dots \lambda_m^{\ell_m} | \ell_j \in \mathbb{Z}, \lambda_j : x \mapsto x_j\}$$

be the group of characters of \mathfrak{T} , $x = (\dots, \exp(2\pi i \varphi_j) = x_j, \dots) \in \mathfrak{T}$. Consider a set W and three maps:

$$g_1: W \to \mathfrak{T}, \quad g_2: W \to G, \quad N: W \to \mathbf{R}_+;$$

we denote by \hat{W} the set of functions on W defined by

$$\hat{W} = \{\mu | \mu(\mathfrak{a}) = (\lambda \circ g_1)(\mathfrak{a})(\lambda' \circ g_2)(\mathfrak{a}), \lambda \in \hat{\mathfrak{T}}, \lambda' \in \hat{G}\},\$$

where a varies over the elements of W. If

(13)
$$\sum_{\operatorname{Na} < x} \chi(\mathfrak{a}) = g(\chi) A(x) + O(x B(x, a(\chi))^{-1})$$

for $\chi \in \hat{W}$, where

$$g(\chi) = \begin{cases} 1, \ \lambda = 1 \text{ and } \lambda' = 1 \\ 0, \text{ otherwise} \end{cases}; \qquad A(x) = O(x), \qquad a(\chi) := \sum_{j=1}^{m} |\ell_j|$$

for

$$\chi = (\lambda \circ g_1)(\lambda' \circ g_2), \qquad \lambda' \in \widehat{G}, \qquad \lambda = \prod_{j=1}^m \lambda_j^{\prime_j},$$

then for any smooth subset τ of \mathfrak{T} and any $\gamma \in G$ we have

(14) card {
$$\mathfrak{a} | \mathfrak{a} \in W, g_2(\mathfrak{a}) = \gamma, g_1(\mathfrak{a}) \in \tau, N\mathfrak{a} < x$$
}
= $A(x) \frac{\operatorname{mes}(\tau)}{|G|} + O\left(\frac{x}{b(x)}\right),$

where b(x) can be chosen to be equal to $b_1(x)^{\nu}$ with $\nu > 0$, and $b_1(x)$ is determined by

$$\sum_{\ell_1,\ldots,\ell_m=-\infty}^{\infty} \frac{1}{B(x,a(\ell))} \alpha(\ell) = b_1(x)^{-1}, \qquad a(\ell) = \sum_{j=1}^m |\ell_j|$$

with $\alpha(\ell) = \prod_{j=1}^{m} \alpha_j(\ell_j), \ \alpha_j(\ell_j) = \begin{cases} 1, \ \ell_j = 0 \\ \ell_j^{-k}, \ \ell_j \neq 0 \end{cases}$, k can be chosen to be any positive integer.

Proof. – We deduce (14) from (13) for rectangular τ by means of lemma 1 and then prove (14) for any smooth $\tau \subseteq \mathfrak{T}$. Let

$$\tau = \left\{ \varphi \,|\, \psi_j \leqslant \varphi_j < \psi_j + \delta_j, \, j = 1, \ldots, m \right\}.$$

Choose $\varepsilon > 0$ and set (using notations of lemma 1)

$$f_j^+(\varphi_j) = f(\psi_j, \psi_j + \delta_j, \varepsilon; \varphi_j),$$

$$f_j^-(\varphi_j) = f(\psi_j - \varepsilon, \psi_j - \varepsilon + \delta_j, \varepsilon; \varphi_j),$$

$$F^{\pm} = \prod_{j=1}^{m} f_j^{\pm}.$$

Let \mathcal{N} denote the left hand side in (14). Obviously,

$$\sum_{\substack{\mathbf{N}\mathfrak{a} < x\\ g_2(\mathfrak{a}) = \gamma}} \mathbf{F}^-(g_1(\mathfrak{a})) \leq \mathscr{N} \leq \sum_{\substack{\mathbf{N}\mathfrak{a} < x\\ g_2(\mathfrak{a}) = \gamma}} \mathbf{F}^+(g_1(\mathfrak{a})).$$

On the other hand,

(16)
$$\sum_{\substack{\mathsf{N}\mathfrak{a}$$

12

Write $f_j^{\pm}(t) = \sum_{n=-\infty}^{\infty} c_{nj}^{\pm} \exp(2\pi i nt)$ and denote the left hand side in (16) by \mathcal{N}^{\pm} . It follows from (16) that

$$\mathcal{N}^{\pm} = \sum_{\mu \in \hat{\mathbf{W}}} c^{\pm}(\mu) \sum_{\mathrm{Na} < x} \mu(\mathfrak{a}),$$

where

$$c^{\pm}(\mu) = \frac{1}{|G|} \overline{\chi}(\gamma) \prod_{j=1}^{m} c^{\pm}_{\ell j} \quad \text{for} \quad \mu = ((\lambda_1^{\ell_1} \dots \lambda_m^{\ell_m}) \circ g_1)(\chi \circ g_2).$$

Équation (13) and estimate (12) give

$$\mathcal{N}^{\pm} = \frac{1}{|G|} \left(\prod_{j=1}^{m} \delta_{j} \right) A(x) + O(x\varepsilon) + \sum_{\substack{\mu \in \hat{\mathbf{W}} \\ \mu \neq 1}} |c^{\pm}(\mu)| \left| \sum_{Na < x} \mu(a) \right|$$
$$= A(x) \frac{\operatorname{mes}(\tau)}{|G|} + O(x\varepsilon) + O\left(\sum_{\mu \in \hat{\mathbf{W}}} |c^{\pm}(\mu)| - B(x,a(\mu))^{-1} x \right).$$

Thus

$$\mathcal{N}^{\pm} = \mathbf{A}(x) \frac{\operatorname{mes}(\tau)}{|\mathbf{G}|} + \mathbf{O}(x\varepsilon) + \mathbf{O}(\varepsilon^{-km} x b_1(x)^{-1}).$$

By choosing $\varepsilon^{km+1} = b_1(x)^{-1}$ one obtains (14) with $b(x) = b_1(x)^{1/km+1}$. Now let $\tau \subseteq \mathfrak{T}$ be a smooth set and $t = \{\tau_v\}$ a system of elementary sets with the properties

card
$$(t) < \Delta^{-m}$$
, $\tau_{v} \cap \tau_{v} = \emptyset$ for $v \neq v'$,
 $\tau \subseteq \bigcup_{\tau_{v} \in t} \tau_{v}$, $\operatorname{mes}\left(\bigcup_{\tau_{v} \cap \tau \neq \emptyset} \tau_{v}\right) < C(\tau) \cdot \Delta$

for some $\Delta > 0$. Applying (14) to every $\tau_v \in t$ one obtains

$$\mathcal{N} = \mathbf{A}(x) \frac{\mathrm{mes}(\tau)}{|\mathbf{G}|} + \mathbf{O}(\mathbf{C}(\tau) \Delta x) + \mathbf{O}\left(\frac{x}{\Delta^m b(x)}\right),$$

and it is enough to choose $\Delta^{m+1} = \frac{1}{b(x)}$ to finish the proof.

To deduce Theorem 2 from Proposition 5 we take $G = H_1 \times \cdots \times H_r$, where H_j denotes the ideal class group of k_j , and define W to be either $V(A) \cap I_0$, or $V(A) \cap \mathcal{P}$. By lemma 3, one can take

$$A(x) = \frac{\omega_{K}}{L(1,\Phi)} x, \qquad B(x,a(\chi)) = \frac{x^{c_1}}{a(\chi)^{\frac{3n+1}{2}}}$$

in the former case, and

$$A(x) = \int_2^x \frac{dx}{\log x}, \qquad B(x,a(x)) = \exp\left(\frac{c_2 \log x}{\log a(\chi) + \sqrt{\log x}}\right)$$

in the latter case. Lemma 4 assures that $g(\chi) = 0$ for a non-trivial character (χ_1, \ldots, χ_r) of H; it can be checked easily that $a(\chi) \leq c_3 \sum_{j=1}^{r} a(\chi_j)$ for some constant c_3 depending only on the fields k_1, \ldots, k_r , and that in both cases $b(\chi)$ has the required form to assure the right error terms in theorem 2.

4.

The condition $(D_j, D_\ell) = 1$ for $j \neq \ell$ in theorem 2 and in lemma 4 can be replaced by a weaker one: for every rational prime p one has $(e_j(p), e_i(p)) = 1$ for $j \neq i$, where $e_j(p)$ denotes the ramification degree of p in k_j (compare [17]). Following the interpretation given to the scalar product of L-functions in [19] one may try to interpret theorem 2 as a statement about distribution of integral points on algebraic tori. Finally we should like to refer to [20]-[24], where the problem discussed here or similar questions were studied.

Acknowledgement. — We are grateful to Professor P. Deligne and Professor M. Gromov for several conversations related to this work, to Dr. R. Sczech for the reference [6], and to the referee for numerous remarks and comments.

Appendix.

Following [2] we discuss here the general situation making no a priori assumptions on k_j , $1 \le j \le r$, and k. As before, K denotes the

composite field of k_1, \ldots, k_r . Given any idele-class character $\chi_j : C_j \to \mathbb{C}^*$ normalized by the conditions $\chi_j \circ \mathbb{N}^{-1} = 1$ and $|\chi_j(\alpha)| = 1$, put

$$b_{\mathfrak{n}}(\chi_j) = \sum_{N_{k_j/k^{\mathfrak{a}}=\mathfrak{n}}} \chi_j(\mathfrak{a}),$$

and define

$$\mathbf{L}(s;\boldsymbol{\chi}_1,\ldots,\boldsymbol{\chi}_r)=\sum_{\boldsymbol{\mathfrak{n}}}b_{\boldsymbol{\mathfrak{n}}}(\boldsymbol{\chi}_1)\,\ldots\,b_{\boldsymbol{\mathfrak{n}}}(\boldsymbol{\chi}_r)|\boldsymbol{\mathfrak{n}}|^{-s},$$

where n, a vary over integral divisors of k, k_j . It follows then from the results cited above (see [12], [13]) that

(A.0)
$$L(s; \chi_1, ..., \chi_r) = \prod_{j=1}^{\nu} L(s, \psi_j) L(s, \Phi)^{-1},$$

where $L(s, \psi_i)$ are Hecke L-functions,

(A.1)
$$L(s,\Phi) = \prod_{p} \Phi^{(p)}(|p|^{-s})^{-1},$$

 $\Phi^{(p)}(t)$ is a rational function such that $\Phi^{(p)}(t) = 1 + t^2 g^{(p)}(t)$, $g^{(p)} \in \mathbb{C}[t]$ for almost all p (here p varies over the prime divisors of k). Moreover, both ψ_1, \ldots, ψ_v and $\Phi^{(p)}$ are exactly computable as soon as χ_1, \ldots, χ_r are given. In particular, the product (A.1) converges absolutely for Re $s > \frac{1}{2}$ and

$$L(s,\Phi) \neq 0, \infty$$

in this half-plane. If k_1, \ldots, k_r are linearly disjoint over k, then v = 1and $\psi_1 = \prod_{j=1}^r \chi_j \circ N_{K/k_j}$ is an idele-class character in K; if r = 2 and k_1, k_2 are quadratic extensions of k with co-prime discriminants, then $L(s,\Phi) = L(2s,\chi_0)$ for some idele class character χ_0 of k (depending on χ_1, χ_2). We now apply these results to obtain estimates for the sums

$$S = \sum_{\substack{\mathfrak{a} \in V_0 \\ |\mathfrak{a}| < x}} \chi_1(\mathfrak{a}_1) \dots \chi_r(\mathfrak{a}_r),$$

$$S_{pr} = \sum_{\substack{\mathfrak{p} \in V_{pr} \\ |\mathfrak{p}| < x}} \chi_1(\mathfrak{p}_1) \dots \chi_r(\mathfrak{p}_r),$$

B. Z. MOROZ

where
$$\mathbf{V}_0 = \{ \mathfrak{a} | \mathbf{N}_{k_1/k} \mathfrak{a}_1 = \cdots = \mathbf{N}_{k_r/k} \mathfrak{a}_r, \, \mathfrak{a}_j \in \mathbf{I}_0^j \},$$

$$\mathbf{V}_{pr} = \{ \mathfrak{p} | \mathfrak{p} \in \mathbf{V}_0, \, \mathfrak{p}_i \in \mathscr{P} \}.$$

The implied constants in O-symbols depend on χ_1, \ldots, χ_r ; this dependence can be expressed in terms of $a(\chi_1), \ldots, a(\chi_r)$ but we shall not do it here. Let v_0 be the number of trivial ψ_i :

$$v_0 = |\{j | \psi_j = 1\}|,$$

then

(A.2)
$$S = \sum_{k=1}^{v_0} (\log x)^{k-1} c_k x + O(x^{1-\gamma}),$$

(A.3)
$$S_{pr} = v_0 \int_2^x \frac{dx}{\log x} + O(x \exp(-\gamma' \sqrt{\log x}))$$

for some exactly computable constants c_1, \ldots, c_{v_0} and $\gamma > 0$, $\gamma' > 0$.

The estimates (A.2) and (A.3) follow from the properties of the L-functions (A.0) and (A.1) along the same lines as the corresponding estimates in the text.

BIBLIOGRAPHY

- [1] E. HECKE, Eine neue Art von Zetafunktionen und ihre Bezeihungen zur Verteilung der Primzahlen, Math. Zeitschrift, 6 (1920), 11-51.
- [2] B. Z. MOROZ, Distribution of integral ideals with equal norms in the fields of algebraic numbers, *I.H.E.S. Preprint*, October 1982.
- [3] H. RADEMACHER, Primzahlen reel-quadratischer Zahlkörper in Winkelräumen Math. Annalen, 111 (1935), 209-228.
- [4] J. P. KUBILIUS, One some problems in geometry of numbers, Math. Sbornik USSR, 31 (1952), 507-542.
- [5] T. MITSUI, Generalized Prime Number Theorem, Japanese Journal of Mathematics, 26 (1956), 1-42.
- [6] H. HASSE, Zetafunktionen und L-funktionen zu Funktionenkörpern vom Fermatschen Typus, § 9, Gesammelte Werke, Bd. II, p. 487-497.
- [7] T. MITSUI, Some prime number theorems for algebraic number fields, Proc. Sympos. Res. Inst. Math. Sci., Kyoto Univ., Kyoto 1977, N. 294, p. 100-123 (MR 57 # 3092).
- [8] Yu. V. LINNIK, Ergodic properties of algebraic fields, Springer Verlag, 1968, Chapter IX.
- [9] E. P. GOLUBEVA, On representation of large numbers by ternary quadratic forms, *Doklady Acad. of Sci. of the U.S.S.R.*, 191 (1970), 519-521.

- [10] W.-Ch. W. Li, On converse theorems for GL(2) and GL(1), American Journal of Mathematics, 103 (1981), 883.
- [11] Yu. V. LINNIK, Private communications.
- [12] N. KUROKAWA, On Linnik's Problem, Proc. Japan Academy, 54 A (1978), 167-169 (see also: Tokyo Institute of Technology Preprint, 1977).
- [13] B. Z. MOROZ, Scalar products of L-functions with Grössencharacters, J. für die reine und angewandte Mathematik, Bd. 332 (1982), 99-117.
- [14] B. Z. Moroz, On the convolution of L-functions, Mathematika, 27 (1980), 312-320.
- [15] E. C. TITCHMARSH, Theory of Riemann Zeta-function, Oxford, 1951.
- [16] H. FOGELS, On the zeros of Hecke's L-functions I, Acta Arithmetica, 7 (1961/62), 87-106.
- [17] W.-Ch. W. Li, B. Z. MOROZ, On ideal classes of number fields containing integral ideals of equal norms, *Journal of Number Theory*, to appear.
- [18] H. WEYL, Über die Gleichverteilung von Zahlen mod Eins. Math. Annalen, 77 (1916), 313-352.
- [19] P. K. J. DRAXL, L-funktionen Algebraischer Tori, Journal of Number Theory, 3 (1971), 444-467.
- [20] A. I. VINOGRADOV On the extension to the left half-plane of the scalar product of Hecke's L-series with Grössencharacters, *Izvestia U.S.S.R. Acad. of Sci.*, *Math. Series*, 29 (1965), 485-492.
- [21] P. K. J. DRAXL, Functions L et représentation simultanée d'un nombre premier par plusieurs formes quadratiques, Séminaire Delange-Pisot-Poitou, 12^e année, 1970/71.
- [22] K. CHANDRASEKHARAN, R. NARASIMHAN, The approximate functional equation for a class of zeta-functions, *Math. Ann.*, 152 (1963), 30-64.
- [23] K. CHANDRASEKHARAN, A. GOOD, On the number of Integral Ideals in Galois Extensions, *Monatshefte für Mathematik*, 95 (1983), 99-109.
- [24] R. A. RANKIN, Sums of powers of cusp form coefficients, Math. Ann., 263 (1983), 227-236.

Manuscrit reçu le 27 avril 1983 révisé le 16 novembre 1983.

Dr. B. Z. Moroz,

Mathématique, Bât. 425 Université de Paris-Sud Centre d'Orsay 91405 Orsay Cedex, France.