Annales de l'institut Fourier

Baruch Z. Moroz
 On the distribution of integral and prime divisors with equal norms

Annales de l'institut Fourier, tome 34, no 4 (1984), p. 1-17

http://www.numdam.org/item?id=AIF_1984__34_4_1_0
© Annales de l'institut Fourier, 1984, tous droits réservés.
L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

ON THE DISTRIBUTION OF INTEGRAL AND PRIME DIVISORS WITH EQUAL NORMS

by B. Z. MOROZ (*)

This is an exposition of the material presented in my lectures given at Orsay in March 1983.

1.

Consider r finite extensions k_{1}, \ldots, k_{r} of an algebraic number field k, a finite extension of \mathbf{Q}, and fix an ideal class \mathbf{A}_{j} in $k_{j}, 1 \leqslant j \leqslant r$. Let

$$
V(A)=\left\{a \mid a_{j} \in A_{j}, N_{k_{1} / k} a_{i}=\cdots=\mathbf{N}_{k_{r} / k} a_{r}\right\}
$$

be the set of r-tuples of divisors having equal norms. Following E. Hecke, [1], one associates to a divisor of a number field a point in Minkowski space, the real vector space corresponding to this field; we study the distribution of integrall and prime divisors in $V(A)$ regarded as points of a real manifold, in the spirit of [1]. For technical reasons we consider here only the case $k=\mathbf{Q}$ (compare [2] and the appendix to this paper).

We use the following notations: card S, or simply $|S|$, denotes the cardinality of a firfite set S. Let L be an algebraic number field of degree n over \mathbf{Q} :
\mathfrak{v} is the ring of integers of L ,
\mathfrak{v}^{*} is its group of units,
I is the group of fractional divisors of L, I_{0} is the monoid of integral divisors,
(*) Supported in part by a French Government visiting grant.
\mathscr{P} is the set of prime divisors,
S_{2} and S_{1} are the sets of complex and real places of L, $S=S_{1} \cup S_{2}, \quad\left|S_{j}\right|=: r_{j}(j=1,2), \quad n=r_{1}+2 r_{2}$, $L_{w}=\left\{\begin{array}{l}\mathbf{R}, w \in S_{1} \\ \mathbf{C}, w \in S_{2}\end{array}\right.$ denotes the completion of L at $w \in S$,
$\|x\|=\left\{\begin{array}{ll}|x|, & w \in S_{1} \\ |x|^{2}, & w \in S_{2}\end{array} \quad\right.$ for $\quad x \in L_{w}$.

Let us introduce the algebra $X=\prod_{w \in S} L_{w}$ of dimension n over \mathbf{R}, refered to as Minkowski space associated with L. Let $\psi: L \rightarrow X$ be the componentwise embedding of L in X. The group \mathfrak{v}^{*} of units acts freely as a discrete group of transformations on the multiplicative group $X^{*}=\prod_{w \in S} L_{w}^{*}$ of non-zero elements of X ; let $\mathrm{Y}=\mathrm{X}^{*} / \Psi\left(\mathfrak{v}^{*}\right)$ be the group of its orbits. E. Hecke, [1], introduces «ideal numbers» (compare also, [3][6]) and defines Größencharaktere to be able to study the distribution of integral and prime divisors among the areas of Y . We recall this construction, as well as the results of [3]-[5] to be generalized here. Let \mathbf{N} : $\mathrm{X} \rightarrow \mathbf{R}_{+}$and $\mathrm{N}^{-1}: \mathbf{R}_{+} \rightarrow \mathbf{X}$ denote the norm map $\mathrm{N}: x \rightarrow \prod_{w \in \mathrm{~S}}\left\|x_{w}\right\|$ and its right inverse $\mathrm{N}^{-1}: t \rightarrow\left(t^{1 / n}, \ldots, t^{1 / n}\right)$. Since N is trivial on $\psi\left(\mathfrak{p}^{*}\right)$, one obtains $\mathrm{Y}=\mathbf{R}_{+} \times \mathrm{Y}_{0}$, where

$$
\mathbf{Y}_{0}:=\mathbf{X}_{0} / \psi\left(\mathfrak{p}^{*}\right), \quad \mathbf{X}_{0}:=\{x \mid x \in \mathbf{X}, \mathbf{N}(x)=1\}
$$

Let $\hat{\mathrm{Y}}_{0}$ be the group of characters of Y_{0} and $\lambda \in \hat{\mathrm{Y}}_{0}$; one can regard λ as a character of X^{*} trivial on $\psi\left(\mathfrak{v}^{*}\right)$ and on $\mathbf{N}^{-1} \mathbf{R}_{+}$. Thus

$$
\begin{equation*}
\lambda(x)=\prod_{w \in \mathbf{S}}\left\|x_{w}\right\|^{i t_{w}}\left(\frac{x_{w}}{\left|x_{w}\right|}\right)^{a_{w}} \tag{1}
\end{equation*}
$$

where $a_{w} \in \mathbf{Z}, t_{w} \in \mathbf{R}, x_{w}$ denotes the projection of x on L_{w}, and, moreover, $\lambda(\varepsilon x)=\lambda(x)$ for $\varepsilon \in \psi\left(\mathfrak{v}^{*}\right)$,

$$
\sum_{w \in \mathrm{~S}_{1}} t_{w}+2 \sum_{w \in \mathrm{~S}_{2}} t_{w}=0, \quad a_{w} \in\{0,1\} \quad \text { for } \quad w \in \mathrm{~S}_{1} .
$$

It follows from the Dirichlet theorem on units (compare [1], [6]) that $\mathbf{Y}=\mathbf{R}_{+} \times \mathfrak{I}_{\mathbf{L}} \times(\mathbf{Z} / 2 Z)^{r_{0}}$, where $\mathfrak{I}_{\mathrm{L}}$ is a torus of dimension $n-1$, and $\quad r_{0} \leqslant r_{1}$. Therefore, $\hat{Y}_{0} \cong Z^{n-1} \times(Z / 2 Z)^{r_{0}}$, and there exist characters $\lambda_{1}, \ldots, \lambda_{n-1}$ multiplicatively independent over Z and such
that any $\lambda \in \hat{\mathrm{Y}}_{0}$ has the form

$$
\begin{equation*}
\lambda=\prod_{v=1}^{n-1} \lambda_{v}^{m_{v}} \lambda^{\prime}, \quad m_{v} \in \mathbf{Z} \tag{2}
\end{equation*}
$$

where $\quad \lambda^{\prime}(x)=\prod_{w \in \mathrm{~S}_{1}}\left(\frac{x_{w}}{\left|x_{w}\right|}\right)^{a_{w}}, \quad a_{w} \in\{0,1\}$. The $\operatorname{map} \psi$ induces an embedding

$$
\varphi: L^{*} / \mathbf{o}^{*} \rightarrow Y
$$

of the group of principal divisors $\mathrm{L}^{*} / \mathbf{v}^{*}$ of L in Y . Composing φ with the projection of Y on $\mathbf{R}_{+} \times \mathfrak{I}_{\mathrm{L}}$ one obtains an embedding

$$
\varphi_{0}: \mathrm{L}^{*} / \mathbf{o}^{*} \rightarrow \mathbf{R}_{+} \times \mathfrak{I}_{\mathrm{L}}
$$

Since the group $\mathrm{H}:=\mathrm{I} / \mathrm{L}^{*}$ of ideal classes is finite, one can define an embedding

$$
\begin{equation*}
f: \mathbf{I} \rightarrow \mathbf{R}_{+} \times \mathfrak{I}_{\mathbf{L}} \tag{3}
\end{equation*}
$$

which coincides with φ_{0} on L^{*} / \mathfrak{v}^{*}. It follows from the work cited above (see, in particular, [1] and [3]-[5]) that both integral and prime divisors are asymptotically equidistributed when identified by means of (3) with points of the real manifold $\mathbf{R}_{+} \times \mathfrak{I}_{\mathrm{L}}$. To be more precise, let us introduce a parametrisation of $\mathfrak{I}_{\mathrm{L}}$ induced by the basic characters $\lambda_{j}(x)=\exp \left(2 \pi i \varphi_{j}(x)\right), \quad 1 \leqslant j \leqslant n-1,0 \leqslant \varphi_{j}(x)<1$, and identify a point $x \in \mathfrak{I}_{L}$ with its image $\left(\lambda_{1}(x), \ldots, \lambda_{n-1}(x)\right) \in \mathrm{T}^{n-1}$, where T denotes the unit circle in \mathbf{C}^{*}. We call a subset

$$
\tau=\left\{x \mid \lambda_{j} \leqslant \varphi_{j}(x)<\lambda_{j}+\delta_{j}, \quad 1 \leqslant j \leqslant n-1\right\}
$$

of $\mathfrak{I}_{\mathrm{L}}$ elementary whenever $0 \leqslant \lambda_{j}<\lambda_{j}+\delta_{j} \leqslant 1$. A set $\tau \subseteq \mathfrak{I}_{\mathrm{L}}$ is called smooth if there exists a constant $C(\tau)>0$ such that for every $\Delta>0$ one can find a system $t=\left\{\tau_{v}\right\}$ of elementary sets with the following properties: $\operatorname{card}(t)<\Delta^{-(n-1)}$,

$$
\tau_{v} \cap \tau_{v}=\varnothing \text { for } v \neq v^{\prime}, \quad \tau \subseteq \bigcup_{\tau_{v} \in t} \tau_{v}, \quad \operatorname{mes}\left(\bigcup_{\tau_{v} \cap \partial \tau \neq \varnothing} \tau_{v}\right)<C(\tau) \Delta,
$$

where mes is the normalized Haar measure on $\mathfrak{I}_{\mathrm{L}}$ (so that mes $\left(\mathfrak{I}_{\mathrm{L}}\right)=1$) and $\partial \tau$ denotes the boundary of τ. The following theorem has been proved by J. P. Kubilius, [4], and, a few years later, by T. Mitsui, [5].

Theorem 1.-For any smooth set $\tau \subseteq \mathfrak{I}_{\mathrm{L}}$ and any ideal class $\mathrm{A} \in \mathrm{H}$
$\operatorname{card}\left\{\mathfrak{a} \mid \mathfrak{a} \in \mathrm{I}_{0}, \quad f(\mathfrak{a}) \in(0, x) \times \tau, \quad \mathfrak{a} \in \mathrm{A}\right\}=\frac{\omega_{\mathrm{L}} \operatorname{mes}(\tau)}{h} x+\mathbf{O}\left(x^{1-c_{1}}\right)$
$\operatorname{card}\{\mathfrak{p} \mid \mathfrak{p} \in \mathscr{P}, f(\mathfrak{p}) \in(0, x) \times \tau, \mathfrak{p} \in \mathrm{A}\}$

$$
=\frac{\operatorname{mes}(\tau)}{h} \int_{2}^{x} \frac{d x}{\log x}+\mathrm{O}\left(\exp \left(-c_{2} \sqrt{\log x}\right) x\right)
$$

where the constants $c_{1}, c_{2}>0$ depend on L , but not on $x \rightarrow \infty$, and ω_{L} denotes the residue of the zeta-function of L at $s=1, h:=|\mathrm{H}|$ is the class number of L .

The characters $\mu_{j}=\lambda_{j} \circ f$ are called basic Größencharaktere; the group

$$
\hat{\mathrm{I}}=\left\{\mu \mid \mu=\chi \prod_{j=1}^{n-1} \mu_{j}^{m_{j}}, m_{j} \in \mathbf{Z}, \chi \in \hat{\mathbf{H}}\right\}
$$

where \hat{H} is the group of ideal class characters, can be identified (see, e.g., [6]) with the set of unramified idele-class characters trivial on \mathbf{R}_{+}. The map

$$
g^{\prime}: \mathrm{I} \rightarrow \mathbf{R}_{+} \times \mathrm{T}^{n-1}
$$

given by

$$
g^{\prime}: \mathfrak{a} \mapsto\left(\mathrm{N}_{\mathrm{L} / \mathfrak{Q}} \mathfrak{a}, \mu_{1}(\mathfrak{a}), \ldots, \mu_{n-1}(\mathfrak{a})\right)
$$

is compatible with (3) under the above identification of $\mathfrak{I}_{\mathrm{L}}$ and T^{n-1}. Theorem 1 may be viewed as a multidimensional equidistribution principle, in the spirit of the classic memoir of Hecke's, [1]. We should like to refer to [8], [9], [10] for some applications of this principle. One can improve the error term in the second formula using the method of trigonometric sums (see, [3], chapter 2, and [7]). About thirty years ago Yu. V. Linnik suggested (and communicated to his colleagues and students, [11]) that one could generalize Theorem 1 to treat the integral and prime divisors in $\mathrm{V}(\mathrm{A})$. As an example of this programme (compare [2] and references therein), we prove here the following result. Let $I_{0}^{j}, \mathscr{P}_{j}, \mathfrak{I}_{j}$ and h_{j} denote the monoid of integral divisors, the set of prime divisors, the torus $\mathfrak{I}_{k_{j}}$ and the class number of k_{j} respectively; let $h=\prod_{j=1}^{r} h_{j}$ and $\mathfrak{I}=\mathfrak{I}_{1} \times \cdots \times \mathfrak{I}_{r}, \quad$ moreover, let $\quad \mathscr{P}=\left\{\mathfrak{p} \mid \mathfrak{p}_{j} \in \mathscr{P}_{j}\right\} \quad$ and $\mathrm{I}_{0}=\left\{\mathfrak{a} \mid \mathfrak{a}_{j} \in \mathrm{I}_{0}^{j}\right\} \quad$ be the sets of r-tuples of prime and integral divisors
respectively; let $\mathrm{K}=k_{1} \ldots k_{r}$ be the composite of the fields k_{1}, \ldots, k_{r}, let n_{j} and D_{j} be the degree $\left[k_{j}: \mathbf{Q}\right.$] and the discriminant of k_{j} and n be the degree $[\mathrm{K}: \mathbf{Q}]$ of K . Consider the map

$$
g_{j}: \mathrm{I}_{\mathrm{o}}^{\mathrm{j}} \rightarrow \mathfrak{I}_{j}
$$

induced by the embedding (3^{\prime}), so that, when \mathfrak{I}_{j} is identified with $\mathrm{T}^{n_{j}-1}$,

$$
g_{j}: \mathfrak{a}_{j} \mapsto\left(\mu_{j 1}\left(\mathfrak{a}_{j}\right), \ldots, \mu_{j_{j}-1}\left(\mathfrak{a}_{j}\right)\right), \quad \mathfrak{a}_{j} \in \mathbb{I}_{0}^{j},
$$

where $\left\{\mu_{j} \mid 1 \leqslant \ell \leqslant n_{j}-1\right\}$ is the set of basic Größencharaktere of k_{j}, $j=1, \ldots, r$, and introduce a zeta-function

$$
\begin{equation*}
\mathrm{Z}\left(k_{1}, \ldots, k_{r} ; s\right)=\sum_{m=1}^{\infty} a_{m}^{(1)} \ldots a_{m}^{(r)} m^{-s} \tag{4}
\end{equation*}
$$

where $a_{m}^{(j)}=\operatorname{card}\left\{\mathfrak{a}_{j} \mid \mathfrak{a}_{j} \in I_{o}^{(j)}, \mathbf{N}_{k_{j} / \mathfrak{o}} \mathfrak{a}_{j}=m\right\}$ is the number of integral divisors of k_{j} whose norm is equal to m. One can show (see [12], [13]) that if $n=\prod_{j=1}^{r} n_{j}$, then

$$
\begin{equation*}
\mathrm{Z}\left(k_{1}, \ldots, k_{r} ; s\right)=\frac{\mathrm{Z}_{\mathrm{K}}(s)}{\mathrm{L}(s, \Phi)}, \tag{5}
\end{equation*}
$$

where $\mathrm{L}(s, \Phi)=\prod_{p} \Phi^{(p)}\left(p^{-s}\right)^{-1}, \Phi^{(p)}(t)$ is a rational function of t, p varies over rational primes, and, moreover, $\Phi^{(p)}\left(p^{-s}\right) \neq 0, \infty$ for Re $s>\frac{1}{2}$; for almost all p the function $\Phi^{(p)}(t)$ is a polynomial of degree not larger than $n-1$ and such that $\Phi^{(p)}(0)=1,\left.\frac{d}{d t} \Phi^{(p)}\right|_{t=0}=0$. In particular, the Euler product

$$
\mathrm{L}(s, \Phi)=\prod_{p} \Phi^{(p)}\left(p^{-s}\right)^{-1}
$$

converges absolutely for $\operatorname{Re} s>\frac{1}{2}$.
Theorem 2. - If k_{j} is Galois over \mathbf{Q} for every $j, n=\prod_{j=1}^{r} n_{j}$ and $\left(\mathrm{D}_{j}, \mathrm{D}_{\ell}\right)=1$ for $j \neq \ell \quad$ (the discriminants are pairwise coprime), then for
any smooth set $\tau \subseteq \mathfrak{I}$ one has

$$
\begin{aligned}
& \operatorname{card}\left\{\mathfrak{a}\left|\mathfrak{a} \in \mathrm{V}(\mathrm{~A}) \cap \mathrm{I}_{0},|\mathfrak{a}|<x, g(\mathfrak{a}) \in \tau\right\}=\frac{\omega_{\mathrm{K}} \operatorname{mes}(\tau)}{h \mathrm{~L}(1, \Phi)} x+\mathrm{O}\left(x^{1-c_{1}}\right),\right. \\
& \begin{aligned}
& \operatorname{card}\{\mathfrak{p}|\mathfrak{p} \in \mathrm{V}(\mathrm{~A}) \cap \mathscr{P},|\mathfrak{p}|=x, g(\mathfrak{p}) \in \tau\} \\
&= \frac{\operatorname{mes}(\tau)}{h} l i(x)+\mathrm{O}\left(x \exp \left(-c_{2} \sqrt{\log x}\right)\right)
\end{aligned}
\end{aligned}
$$

for some $c_{1}, c_{2}>0$ depending on k_{1}, \ldots, k_{r}, but not on $x \rightarrow \infty$, where

$$
|\mathfrak{a}|:=\left(\sum_{j=1}^{r} \mathbf{N}_{k_{j} / \mathbf{Q}} \mathfrak{a}_{j}\right) \frac{1}{r} \text { for } \mathfrak{a}=\left\{\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{r} \mid \mathfrak{a}_{j} \in \mathrm{I}_{0}^{j}\right\}
$$

and

$$
l i(x):=\int_{2}^{x} \frac{d u}{\log u} ; g=\left(g_{1}, \ldots, g_{r}\right)
$$

One can view Theorem 2 as a statement about statistical independence of the fields k_{1}, \ldots, k_{r}. To be more precise, let

$$
\tau=\tau_{1} \times \cdots \times \tau_{r}, \quad \tau_{j} \subseteq \mathfrak{I}_{j}
$$

then (under the above assumptions) the probability to find $a \in V(A)$ with $g(a) \in \tau$ is equal to the product of the probabilities that $\mathfrak{a}_{j} \in \mathrm{~A}_{j}$ and $g_{j}\left(\mathfrak{a}_{j}\right) \in \tau_{j}, \quad j=1, \ldots, r$. Thus the condition

$$
\begin{equation*}
\mathbf{N}_{k_{1} / \mathbf{Q}} \mathfrak{a}_{1}=\cdots=\mathbf{N}_{k_{r} / \mathbf{Q}} \mathbf{a}_{r} \tag{6}
\end{equation*}
$$

affects the probability of the event:

$$
« a_{1} \in A_{1}, \ldots, a_{r} \in A_{r}, g_{1}\left(a_{1}\right) \in \tau_{1}, \ldots, g_{r}\left(a_{r}\right) \in \tau_{r} »
$$

neither for r-tuples of integral, nor of prime divisors. On the other hand, Theorem 2 may be regarded as an assertion on representation of integers by decomposable forms. As a special case of this theorem ($n_{1}=\cdots=n_{r}=2$), one obtains the following result.

Proposition 3. - Let f_{1}, \ldots, f_{r} be binary positive definite primitive quadratic forms with pairwise co-prime fundamental discriminants. Then the number of integral solutions

$$
\left(x_{1}, x_{2}, \ldots, x_{2 r-1}, x_{2 r}\right)
$$

of the system of equations

$$
f_{1}\left(x_{1}, x_{2}\right)=\cdots=f_{r}\left(x_{2 r-1}, x_{2 r}\right)
$$

subject to the condition $f_{1}\left(x_{1}, x_{2}\right) \leqslant \mathrm{N}$ is equal to

$$
A N+O\left(N^{1-c}\right)
$$

for some $\mathrm{A}>0, c>0$ independent on N .
It turns out that for two quadratic fields $\left(n_{1}=n_{2}=r=2\right)$

$$
\mathrm{L}(s, \Phi)=\mathrm{L}\left(2 s, \chi_{0}\right)
$$

where $\chi_{0}(n)=\left(\frac{D_{1} D_{2}}{n}\right)$ (see, e.g., [13], § 5). Therefore we obtain the following result.

Proposition 4. - Let $k_{j}=\mathbf{Q}\left(\sqrt{\mathrm{D}_{j}}\right), j=1,2,\left(\mathrm{D}_{1}, \mathrm{D}_{2}\right)=1$. Then
$\operatorname{card}\left\{\mathfrak{a}\left|\mathfrak{a} \in \mathrm{V}(\mathrm{A}) \cap \mathrm{I}_{0},|\mathfrak{a}|<x, g(\mathfrak{a}) \in \tau\right\}=\frac{\omega_{\mathrm{K}} \operatorname{mes}(\tau)}{h \mathrm{~L}\left(2, \chi_{0}\right)} x+\mathrm{O}\left(x^{1-c_{1}}\right)\right.$
with $c_{1}>0$ independent on x.
We remark finally that the O-constants depend on τ only through the «constant of smoothness» $\mathrm{C}(\tau)$, as can be readily observed from the proof of Theorem 2 given below.
2.

Further on we write $\mathrm{I}_{0}(\mathrm{~K}), \mathscr{P}(\mathrm{K}), \mathrm{H}(\mathrm{K}), \mu(\mathrm{K})$ for the monoid of the integral divisors, set of prime divisors, class group and the set of basic Größencharaktere of K . Theorem 2 will be deduced from the following four lemmas.

Lemma 1. - Let $\varphi_{1}, \varphi_{2}, \varepsilon$ satisfy the inequalities

$$
0 \leqslant \varphi_{1}-\varepsilon<\varphi_{1}<\varphi_{2}<\varphi_{2}+\varepsilon \leqslant 1
$$

There exists a real valued function $f \in \mathrm{C}^{\infty}[0,1]$ such that $0 \leqslant f(t) \leqslant 1$ for $t \in[0,1], f(t)=1$ for $t \in\left[\varphi_{1}, \varphi_{2}\right], f(t)=0$ for $t \notin\left[\varphi_{1}-\varepsilon, \varphi_{2}+\varepsilon\right]$,

$$
f^{\prime}(t) \neq 0 \text { for } \varphi_{1}-\varepsilon<t<\varphi_{1} \text { and } \varphi_{2}<t<\varphi_{2}+\varepsilon \text { : }
$$

This is a well-known lemma of elementary calculus; we choose one of such functions to be denoted by $f\left(\varphi_{1}, \varphi_{2}, \varepsilon ;\right.$.).

Let $\mathrm{C}_{j}, \mathrm{C}_{\mathrm{K}}$ be the idele class groups of $k_{j}, \mathrm{~K}$, and χ_{j} be an idele class character of $\boldsymbol{k}_{\boldsymbol{j}}$ trivial on \mathbf{R}_{+}; we define an idele class character

$$
\begin{equation*}
\chi:=\prod_{j=1}^{r} \chi_{j} \circ \mathbf{N}_{\mathbf{K} / k_{j}} \tag{7}
\end{equation*}
$$

in K, and an L-function

$$
\mathrm{L}\left(\chi_{1}, \ldots, \chi_{r} ; s\right):=\sum_{a \in \mathrm{~V}} \chi_{1}\left(\mathfrak{a}_{1}\right) \ldots \chi_{r}\left(\mathfrak{a}_{r}\right)|\mathfrak{a}|^{-s}
$$

where $\quad V=\left\{\mathfrak{a} \mid \mathfrak{a}_{j} \in I_{0}^{j}, N_{k_{1} / \mathbf{Q}} \mathfrak{a}_{1}=\cdots=N_{k_{r} / \mathbf{Q}} \mathfrak{a}_{r}\right\}$.
Lemma 2. - If $n=\prod_{j=1}^{r} n_{j}$, then $\mathrm{L}\left(\chi_{1}, \ldots, \chi_{r} ; s\right)=\mathrm{L}(s, \chi) \mathrm{L}(s, \Phi)^{-1}$, where $\mathrm{L}(s, \chi)=\sum_{a \in \mathrm{I}_{0}(\mathrm{~K})} \chi(\mathfrak{a}) \mathrm{N}_{\mathrm{K} / \mathrm{Q}^{2}} \mathfrak{a}^{-s}$ for $\operatorname{Re} s>1$, and $\mathrm{L}(s, \Phi)$ as defined in (5) with $\Phi^{(p)}$ depending on $\chi_{1}, \ldots, \chi_{r}$ and having the properties similar to those of the polynomials in (5).

This follows from the results cited before, [12] (or [13]).
Lemma 3. - Let $n=\prod_{j=1}^{r} n_{j}$, then
(8) $\sum_{a \in V,|a|<x} \chi_{1}\left(a_{1}\right) \ldots \chi_{r}\left(a_{r}\right)=g(\chi) \frac{\omega_{K} x}{\mathrm{~L}(1, \Phi)}+\mathrm{O}\left(a(\chi)^{\frac{3 n+1}{2}} x^{1-c_{1}}\right)$,
(9) $\sum_{a \in V \cap \text { P, }|a|<x} \chi_{1}\left(\mathfrak{a}_{1}\right) \ldots \chi_{r}\left(a_{r}\right)$

$$
=g(\chi) \int_{2}^{x} \frac{d x}{\log x}+\mathrm{O}\left(x \exp \left(-c_{2} \frac{\log x}{\log a(\chi)+\sqrt{\log x}}\right)\right)
$$

where $c_{1}, c_{2}>0, g(\chi)=\left\{\begin{array}{l}0, \chi \neq 1 \\ 1, \chi=1\end{array}\right.$, the 0 -constants and c_{1}, c_{2} depend on k_{1}, \ldots, k_{r}, but not on $\chi_{1}, \ldots, \chi_{r}$ unless $\chi^{2}=1$, nor on x; $\sum_{w \in S}\left(\left|a_{w}\right|+\left|b_{w}\right|\right)=: a(\chi)$, when χ is given by

$$
\begin{equation*}
\chi(\alpha)=\prod_{w \in S}\left(\frac{\alpha_{w}}{\left|\alpha_{w}\right|}\right)^{a_{w}} \cdot\left|\alpha_{w}\right|^{i b_{w}} \tag{10}
\end{equation*}
$$

for $\alpha \equiv 1(\bmod \mathfrak{f}(\chi)), \alpha \in \mathbf{K}^{*}, a_{w} \in \mathbf{Z}, b_{w} \in \mathbf{R} ; \alpha_{w}$ denotes the image of α in K_{w} for $w \in S$ and $f(\chi)$ is the conductor of χ.

Proof. - To prove (9) one remarks (see, e.g., [14], Lemma 1) that for any $\mathfrak{a} \in \mathrm{V} \cap \mathscr{P}$ satisfying the condition $«|\mathfrak{a}|=q$ is a rational prime» there exists one and only one prime $\mathfrak{p} \in \mathscr{P}(\mathrm{K})$ such that $\mathrm{N}_{\mathbf{K} / \mathfrak{k}_{j}} \mathfrak{p}=\mathfrak{a}_{j}$. Therefore,

$$
\begin{aligned}
\sum_{a \in \mathrm{~V} \cap \mathcal{G},|a|<x} \chi_{1}\left(\mathfrak{a}_{1}\right) \ldots \chi_{r}\left(\mathfrak{a}_{r}\right) & =\sum_{\mathfrak{a} \in \mathrm{V} \cap \mathscr{S}_{,|a|=q}^{q<x}} \chi_{1}\left(\mathfrak{a}_{1}\right) \ldots \chi_{r}\left(\mathfrak{a}_{r}\right)+\mathrm{O}\left(x^{1 / 2}\right) \\
& =\sum_{\mathfrak{p} \in \mathcal{P}(\mathbf{K}), N_{K} / \mathcal{Q}^{\mathfrak{p}<x}} \chi(\mathfrak{p})+\mathrm{O}\left(x^{1 / 2}\right)
\end{aligned}
$$

and (9) follows from estimates obtained in the work cited above (see [4], ch. I, §8, lemma 4, or [5], § 2, lemma 6) (*). By a standard argument one obtains (see, e.g., [15], lemma 3.12)

$$
\begin{aligned}
\mathrm{A}(x):=\sum_{a \in \mathrm{~V},|a|<x} \chi_{1}\left(\mathfrak{a}_{1}\right) \ldots & \chi_{r}\left(a_{r}\right) \\
& =\frac{1}{2 \pi i} \int_{c-i \mathbf{T}}^{c+\pi} \frac{\chi^{s}}{s} \mathrm{~L}\left(\chi_{1}, \ldots, \chi_{r} ; s\right) d s+\mathrm{O}_{\varepsilon}\left(\frac{x^{1+\varepsilon}}{\mathrm{T}}\right),
\end{aligned}
$$

where $c=1+(\log x)^{-1}, \mathrm{~T}>0$. It follows from lemma 2 that

$$
\begin{aligned}
\mathrm{A}(x)= & \frac{1}{2 \pi i} \int_{1 / 2+\varepsilon-i \mathrm{~T}}^{1 / 2+\varepsilon+i \mathrm{~T}} \frac{x^{s}}{s} \mathrm{~L}(s, \chi) \mathrm{L}(s, \Phi)^{-1} d s+g(\chi) \frac{\omega_{\mathrm{K}} x}{\mathrm{~L}(1, \Phi)} \\
& +\mathrm{O}_{\varepsilon}\left(\frac{x^{1+\varepsilon}}{\mathrm{T}}\right)+\mathrm{O}_{\varepsilon}\left(\int_{1 / 2+\varepsilon}^{c}(|\mathrm{~L}(\sigma+i \mathrm{~T}, \chi)|+|\mathrm{L}(\sigma-i t, \chi)|) \frac{x^{\sigma}}{\mathrm{T}} d \sigma\right)
\end{aligned}
$$

because $\mathrm{L}(s, \Phi)^{-1}=\mathrm{O}_{\varepsilon}(1)$ for $\operatorname{Re} s>\frac{1}{2}+\varepsilon$.
(*) Alternatively one can deduce (9) from lemma 2.

By a Phragmén-Lindelöf type of argument (compare, [6], pp. 92-93 and [5], pp. 14-15) one deduces from the functional equation for $L(s, \chi)$ and Stirling's formula for the Γ-function an estimate

$$
\begin{equation*}
\mathrm{L}(\sigma+i t, \chi)=\mathrm{O}_{\varepsilon}\left((1+|t|)^{\frac{3 n}{2}(1-\sigma+\varepsilon)} a(\chi)^{\frac{3 n}{2}+\varepsilon}\right) \tag{11}
\end{equation*}
$$

in the region $0 \leqslant \sigma \leqslant c$. Substitution of (11) into the estimate for $A(x)$ we have just written out leads to (8).

Lemma 4. - Let k_{j} be Galois over Q for each $j, \quad n=\prod_{j=1}^{r} n_{j}$, $\left(\mathrm{D}_{j}, \mathrm{D}_{\ell}\right)=1$ for $j \neq \ell, \chi=1$, and χ_{j} be unramified for each j. Then $\chi_{j}=1$ for every j.

Proof. - Let us assume first that χ_{j} is of finite order for every j; then, being unramified, it is an ideal class character. One can deduce from class field theory, [17], that (under the above conditions)

$$
\left\{\left(\mathbf{N}_{K / k} 1 \mathbf{A}, \ldots, \mathbf{N}_{\mathbf{K} / k_{r}} \mathbf{A}\right) \mid \mathbf{A} \in \mathbf{H}_{\mathrm{K}}\right\}=\mathbf{H}_{1} \times \cdots \times \mathrm{H}_{r}
$$

where H_{j} is the ideal class group of k_{j}; in particular, for any $A_{j} \in H_{j}$ there exists $\mathrm{A} \in \mathrm{H}_{\mathrm{K}}$ such that $\mathbf{N}_{\mathbf{K} / \mathbf{k}_{j}} \mathbf{A}=\mathbf{A}_{j} ; \mathbf{N}_{\mathbf{K} / \mathrm{k}_{\ell}} \mathbf{A}=1$ for $\ell \neq j$. If $\chi=1$, then

$$
1=\prod_{\ell=1}^{r}\left(\chi_{\ell} \circ \mathrm{N}_{\mathbf{K} / k_{\ell}}\right)(\mathrm{A})=\chi_{j}\left(\mathrm{~A}_{j}\right)
$$

and we see that $\chi_{j}=1$. Assuming $\chi=1$ we deduce now that χ_{j} is of finite order for any j. Let G_{j} be the Galois group of k_{j} and G be the Galois group of K; since $n=\prod_{j=1}^{r} n_{j}$, we have $G \cong G_{1} \times \cdots \times G_{r}$. The character

$$
\left(\chi_{j} \circ \mathbf{N}_{\mathrm{K} / \mathrm{k}_{j}}\right)^{-1}=\prod_{\ell \neq j} \chi_{\ell} \circ \mathbf{N}_{\mathrm{K} / \mathrm{k}_{\ell}}
$$

is, therefore, G_{j}-invariant; since $\left[\mathrm{C}_{j}: \mathrm{N}_{\mathrm{K} / \mathrm{k}_{j}} \mathrm{C}_{\mathrm{K}}\right]=d_{j}$ is finite, we see that $\chi_{j}^{d_{j}}$ is G_{j}-invariant. Take $\mathfrak{p} \in \mathscr{P}_{j}$; since $\chi_{j}^{d_{j}}(\mathfrak{p})=\chi_{j}^{d_{j}}\left(\mathfrak{p}^{\gamma}\right)$ for $\gamma \in \mathrm{G}_{j}$, we see that $\left(\chi_{j}(\mathfrak{p})\right)^{n_{j} d_{j}}=\left(\chi_{j}(p)\right)^{f_{j}}$, where $\mathbf{N}_{k_{j} / \mathbf{Q}} \mathfrak{p}=p^{f_{j}}$. But any idèle class character in \mathbf{Q} is of finite order, and it follows, therefore, that $\chi_{j}^{\ell}=1$ for some ℓ.

3.

Theorem 2 can be deduced from lemma 3 and lemma 4 on purely formal lines. It is an easy consequence of these lemmas and the following form of the Weyl's equidistribution principle (compare [1], p. 37, and [18], Satz 3). To state it we appeal to lemma 1 and write

$$
f\left(\varphi_{1}, \varphi_{2}, \varepsilon ; t\right)=\sum_{n=-\infty}^{\infty} c_{n} \exp (2 \pi \mathrm{int})
$$

so that

$$
\begin{equation*}
c_{0}=\left(\varphi_{2}-\varphi_{1}\right)+\mathrm{O}(\varepsilon), \quad c_{n}=\mathrm{O}\left(\frac{1}{|n|^{k} \varepsilon^{k-1}}\right) \tag{12}
\end{equation*}
$$

for any fixed integral $k \geqslant 1$.
Proposition 5. - Let

$$
\mathfrak{I}=\left\{\exp \left(2 \pi i \varphi_{1}\right), \ldots, \exp \left(2 \pi i \varphi_{m}\right) \mid 0 \leqslant \varphi_{j}<1, j=1, \ldots, m\right\}
$$

be a torus of dimension m, τ be a smooth subset of \mathfrak{T}, G be a finite Abelian group with the group of characters G and

$$
\mathfrak{I}=\left\{\lambda_{1}^{\ell_{1}} \ldots \lambda_{m}^{\ell_{m}} \mid \ell_{j} \in \mathbf{Z}, \lambda_{j}: x \mapsto x_{j}\right\}
$$

be the group of characters of $\mathfrak{I}, x=\left(\ldots, \exp \left(2 \pi i \varphi_{j}\right)=x_{j}, \ldots\right) \in \mathfrak{I}$. Consider a set W and three maps :

$$
g_{1}: \mathrm{W} \rightarrow \mathfrak{I}, \quad g_{2}: \mathrm{W} \rightarrow \mathrm{G}, \quad \mathrm{~N}: \mathrm{W} \rightarrow \mathbf{R}_{+}
$$

we denote by $\hat{\mathrm{W}}$ the set of functions on W defined by

$$
\hat{\mathbb{W}}=\left\{\mu \mid \mu(\mathfrak{a})=\left(\lambda \circ g_{1}\right)(\mathfrak{a})\left(\lambda^{\prime} \circ g_{2}\right)(\mathfrak{a}), \lambda \in \mathfrak{I}, \lambda^{\prime} \in \hat{G}\right\}
$$

where \mathfrak{a} varies over the elements of W . If

$$
\begin{equation*}
\sum_{\mathrm{N} a<x} \chi(\mathfrak{a})=g(\chi) \mathrm{A}(x)+\mathrm{O}\left(x \mathrm{~B}(x, a(\chi))^{-1}\right) \tag{13}
\end{equation*}
$$

for $\chi \in \hat{W}$, where

$$
g(\chi)=\left\{\begin{array}{l}
1, \lambda=1 \text { and } \lambda^{\prime}=1 \\
0, \text { otherwise }
\end{array} ; \quad \mathbf{A}(x)=\mathrm{O}(x), \quad a(\chi):=\sum_{j=1}^{m}\left|\ell_{j}\right|\right.
$$

for

$$
\chi=\left(\lambda \circ g_{1}\right)\left(\lambda^{\prime} \circ g_{2}\right), \quad \lambda^{\prime} \in \hat{G}, \quad \lambda=\prod_{j=1}^{m} \lambda_{j}^{j_{j}},
$$

then for any smooth subset τ of \mathfrak{I} and any $\gamma \in \mathrm{G}$ we have
(14) $\operatorname{card}\left\{\mathfrak{a} \mid \mathfrak{a} \in \mathrm{W}, g_{2}(\mathfrak{a})=\gamma, g_{1}(\mathfrak{a}) \in \tau, \mathrm{Na}<x\right\}$

$$
=\mathrm{A}(x) \frac{\operatorname{mes}(\tau)}{|\mathrm{G}|}+\mathrm{O}\left(\frac{x}{b(x)}\right)
$$

where $b(x)$ can be chosen to be equal to $b_{1}(x)^{v}$ with $v>0$, and $b_{1}(x)$ is determined by

$$
\sum_{\ell_{1}, \ldots, \ell_{m}=-\infty}^{\infty} \frac{1}{\mathrm{~B}(x, a(\ell))} \alpha(\ell)=b_{1}(x)^{-1}, \quad a(\ell)=\sum_{j=1}^{m}\left|\ell_{j}\right|
$$

with $\alpha(\ell)=\prod_{j=1}^{m} \alpha_{j}\left(\ell_{j}\right), \alpha_{j}\left(\ell_{j}\right)=\left\{\begin{array}{l}1, \ell_{j}=0 \\ \ell_{j}^{-k}, \ell_{j} \neq 0\end{array}, k\right.$ can be chosen to be any positive integer.

Proof. - We deduce (14) from (13) for rectangular τ by means of lemma 1 and then prove (14) for any smooth $\tau \subseteq \mathfrak{T}$. Let

$$
\tau=\left\{\varphi \mid \psi_{j} \leqslant \varphi_{j}<\psi_{j}+\delta_{j}, j=1, \ldots, m\right\}
$$

Choose $\varepsilon>0$ and set (using notations of lemma 1)

$$
\begin{gathered}
f_{j}^{+}\left(\varphi_{j}\right)=f\left(\psi_{j}, \psi_{j}+\delta_{j}, \varepsilon ; \varphi_{j}\right) \\
f_{j}^{-}\left(\varphi_{j}\right)=f\left(\psi_{j}-\varepsilon, \psi_{j}-\varepsilon+\delta_{j}, \varepsilon ; \varphi_{j}\right) \\
\mathrm{F}^{ \pm}=\prod_{j=1}^{m} f_{j}^{ \pm}
\end{gathered}
$$

Let \mathscr{N} denote the left hand side in (14). Obviously,

$$
\sum_{\substack{N a<x \\ g_{2}(a)=\gamma}} F^{-}\left(g_{1}(a)\right) \leqslant \mathscr{N} \leqslant \sum_{\substack{N a<x \\ g_{2}(a)=\gamma}} F^{+}\left(g_{1}(\mathfrak{a})\right) .
$$

On the other hand,

$$
\begin{equation*}
\sum_{\substack{N a<x \\ g_{2}(a)=\gamma}} F^{ \pm}\left(g_{1}(\mathfrak{a})\right)=\frac{1}{|G|} \sum_{N a<x} \sum_{x \in \mathrm{G}} \overline{\chi(\gamma)} \mathrm{F}^{ \pm}\left(g_{1}(\mathfrak{a})\right) \chi\left(g_{2}(\mathfrak{a})\right) . \tag{16}
\end{equation*}
$$

Write $f_{j}^{ \pm}(t)=\sum_{n=-\infty}^{\infty} c_{n j}^{ \pm} \exp (2 \pi \mathrm{int})$ and denote the left hand side in (16) by $\mathscr{N}^{ \pm}$. It follows from (16) that

$$
\mathcal{N}^{ \pm}=\sum_{\mu \in \mathbb{W}} c^{ \pm}(\mu) \sum_{N a<x} \mu(\mathfrak{a})
$$

where

$$
c^{ \pm}(\mu)=\frac{1}{|G|} \bar{\chi}(\gamma) \prod_{j=1}^{m} c_{\ell_{j} j}^{ \pm} \quad \text { for } \quad \mu=\left(\left(\lambda_{1}^{\ell_{1}} \ldots \lambda_{m}^{\ell_{m}}\right) \circ g_{1}\right)\left(\chi \circ g_{2}\right)
$$

Équation (13) and estimate (12) give

$$
\begin{aligned}
\mathscr{N}^{ \pm} & =\frac{1}{|\mathrm{G}|}\left(\prod_{j=1}^{m} \delta_{j}\right) \mathrm{A}(x)+\mathrm{O}(x \varepsilon)+\sum_{\substack{\mu \in \mathbb{W} \\
\mu \neq 1}}\left|c^{ \pm}(\mu)\right|\left|\sum_{\mathrm{N} a<x} \mu(\mathfrak{a})\right| \\
& =\mathrm{A}(x) \frac{\operatorname{mes}(\tau)}{|\mathrm{G}|}+\mathrm{O}(x \varepsilon)+\mathrm{O}\left(\sum_{\mu \in \mathbb{W}}\left|c^{ \pm}(\mu)\right| \mathrm{B}(x, a(\mu))^{-1} x\right) .
\end{aligned}
$$

Thus

$$
\mathscr{N}^{ \pm}=\mathrm{A}(x) \frac{\operatorname{mes}(\tau)}{|\mathrm{G}|}+\mathrm{O}(x \varepsilon)+\mathrm{O}\left(\varepsilon^{-k m} x b_{1}(x)^{-1}\right)
$$

By choosing $\varepsilon^{k m+1}=b_{1}(x)^{-1}$ one obtains (14) with $b(x)=b_{1}(x)^{1 / k m+1}$. Now let $\tau \subseteq \mathfrak{I}$ be a smooth set and $t=\left\{\tau_{v}\right\}$ a system of elementary sets with the properties

$$
\begin{aligned}
\operatorname{card}(t)<\Delta^{-m}, & \tau_{v} \cap \tau_{v^{\prime}}=\varnothing \quad \text { for } \quad v \neq v^{\prime} \\
\tau & \subseteq \bigcup_{\tau_{v} \in t} \tau_{v},
\end{aligned} \quad \operatorname{mes}\left(\bigcup_{\tau_{v} \cap \tau \neq \varnothing} \tau_{v}\right)<C(\tau) . \Delta, ~ l
$$

for some $\Delta>0$. Applying (14) to every $\tau_{v} \in t$ one obtains

$$
\mathscr{N}=\mathrm{A}(x) \frac{\operatorname{mes}(\tau)}{|\mathrm{G}|}+\mathrm{O}(\mathrm{C}(\tau) \Delta x)+\mathrm{O}\left(\frac{x}{\Delta^{m} b(x)}\right)
$$

and it is enough to choose $\Delta^{m+1}=\frac{1}{b(x)}$ to finish the proof.

To deduce Theorem 2 from Proposition 5 we take $\mathrm{G}=\mathrm{H}_{1} \times \cdots \times \mathrm{H}_{r}$, where H_{j} denotes the ideal class group of k_{j}, and define W to be either $\mathrm{V}(\mathrm{A}) \cap \mathrm{I}_{0}$, or $\mathrm{V}(\mathrm{A}) \cap \mathscr{P}$. By lemma 3, one can take

$$
\mathrm{A}(x)=\frac{\omega_{\mathrm{K}}}{\mathrm{~L}(1, \Phi)} x, \quad \mathrm{~B}(x, a(\chi))=\frac{x^{c_{1}}}{a(\chi)^{\frac{3 n+1}{2}}}
$$

in the former case, and

$$
\mathbf{A}(x)=\int_{2}^{x} \frac{d x}{\log x}, \quad \mathbf{B}(x, a(x))=\exp \left(\frac{c_{2} \log x}{\log a(\chi)+\sqrt{\log x}}\right)
$$

in the latter case. Lemma 4 assures that $g(\chi)=0$ for a non-trivial character $\left(\chi_{1}, \ldots, \chi_{r}\right)$ of H; it can be checked easily that $a(\chi) \leqslant c_{3} \sum_{j=1}^{r} a\left(\chi_{j}\right)$ for some constant c_{3} depending only on the fields k_{1}, \ldots, k_{r}, and that in both cases $b(x)$ has the required form to assure the right error terms in theorem 2.

4.

The condition $\left(\mathrm{D}_{j}, \mathrm{D}_{\ell}\right)=1$ for $j \neq \ell$ in theorem 2 and in lemma 4 can be replaced by a weaker one : for every rational prime p one has $\left(e_{j}(p), e_{i}(p)\right)=1$ for $j \neq i$, where $e_{j}(p)$ denotes the ramification degree of p in k_{j} (compare [17]). Following the interpretation given to the scalar product of L-functions in [19] one may try to interpret theorem 2 as a statement about distribution of integral points on algebraic tori. Finally we should like to refer to [20]-[24], where the problem discussed here or similar questions were studied.

Acknowledgement. - We are grateful to Professor P. Deligne and Professor M. Gromov for several conversations related to this work, to Dr. R. Sczech for the reference [6], and to the referee for numerous remarks and comments.

Appendix.

Following [2] we discuss here the general situation making no a priori assumptions on $k_{j}, \quad 1 \leqslant j \leqslant r$, and k. As before, K denotes the
composite field of k_{1}, \ldots, k_{r}. Given any idele-class character $\chi_{j}: C_{j} \rightarrow C^{*}$ normalized by the conditions $\chi_{j} \circ \mathrm{~N}^{-1}=1$ and $\left|\chi_{j}(\alpha)\right|=1$, put

$$
b_{n}\left(\chi_{j}\right)=\sum_{N_{k_{j} / k^{a}=n}} \chi_{j}(\mathfrak{a})
$$

and define

$$
\mathrm{L}\left(s ; \chi_{1}, \ldots, \chi_{r}\right)=\sum_{\mathrm{n}} b_{\mathrm{n}}\left(\chi_{1}\right) \ldots b_{\mathrm{n}}\left(\chi_{\mathrm{r}}\right)|\mathfrak{n}|^{-s}
$$

where n, a vary over integral divisors of k, k_{j}. It follows then from the results cited above (see [12], [13]) that

$$
\begin{equation*}
\mathrm{L}\left(s ; \chi_{1}, \ldots, \chi_{r}\right)=\prod_{j=1}^{v} \mathrm{~L}\left(s, \psi_{j}\right) \mathrm{L}(s, \Phi)^{-1} \tag{A.0}
\end{equation*}
$$

where $L\left(s, \psi_{j}\right)$ are Hecke L-functions,

$$
\begin{equation*}
\mathrm{L}(s, \Phi)=\prod_{p} \Phi^{(p)}\left(|p|^{-s}\right)^{-1} \tag{A.1}
\end{equation*}
$$

$\Phi^{(p)}(t)$ is a rational function such that $\Phi^{(p)}(t)=1+t^{2} g^{(p)}(t), \quad g^{(p)} \in \mathbf{C}[t]$ for almost all p (here p varies over the prime divisors of k). Moreover, both $\psi_{1}, \ldots, \psi_{v}$ and $\Phi^{(p)}$ are exactly computable as soon as $\chi_{1}, \ldots, \chi_{r}$ are given. In particular, the product (A.1) converges absolutely for $\operatorname{Re} s>\frac{1}{2}$ and

$$
\mathrm{L}(s, \Phi) \neq 0, \infty
$$

in this half-plane. If k_{1}, \ldots, k_{r} are linearly disjoint over k, then $v=1$ and $\psi_{1}=\prod_{j=1}^{r} \chi_{j} \circ \mathrm{~N}_{\mathrm{K} / k_{j}}$ is an idele-class character in K ; if $r=2$ and k_{1}, k_{2} are quadratic extensions of k with co-prime discriminants, then $\mathrm{L}(s, \Phi)=\mathrm{L}\left(2 s, \chi_{0}\right)$ for some idele class character χ_{0} of k (depending on χ_{1}, χ_{2}). We now apply these results to obtain estimates for the sums

$$
\begin{aligned}
S & =\sum_{\substack{a \in v_{0} \\
|a|<x}} \chi_{1}\left(\mathfrak{a}_{1}\right) \ldots \chi_{r}\left(a_{r}\right), \\
S_{p r} & =\sum_{\substack{p \in v_{p r} \\
|\mathfrak{p}|<x}} \chi_{1}\left(p_{1}\right) \ldots \chi_{r}\left(\mathfrak{p}_{r}\right),
\end{aligned}
$$

where $\mathrm{V}_{0}=\left\{\mathfrak{a} \mid \mathbf{N}_{k_{1} / k} a_{1}=\cdots=\mathbf{N}_{k_{r} / k} a_{r}, a_{j} \in I_{0}^{j}\right\}$,

$$
\mathbf{V}_{p r}=\left\{\mathfrak{p} \mid \mathfrak{p} \in \mathbf{V}_{0}, \mathfrak{p}_{j} \in \mathscr{P}\right\} .
$$

The implied constants in O-symbols depend on $\chi_{1}, \ldots, \chi_{r}$; this dependence can be expressed in terms of $a\left(\chi_{1}\right), \ldots, a\left(\chi_{r}\right)$ but we shall not do it here. Let v_{0} be the number of trivial ψ_{j} :

$$
v_{0}=\left|\left\{j \mid \psi_{j}=1\right\}\right|,
$$

then

$$
\begin{equation*}
\mathrm{S}=\sum_{k=1}^{v_{0}}(\log x)^{k-1} c_{k} x+\mathbf{O}\left(x^{1-\gamma}\right) \tag{A.2}
\end{equation*}
$$

$$
S_{p r}=v_{0} \int_{2}^{x} \frac{d x}{\log x}+O\left(x \exp \left(-\gamma^{\prime} \sqrt{\log x}\right)\right)
$$

for some exactly computable constants $c_{1}, \ldots, c_{v_{0}}$ and $\gamma>0, \gamma^{\prime}>0$.
The estimates (A.2) and (A.3) follow from the properties of the L functions (A.0) and (A.1) along the same lines as the corresponding estimates in the text.

BIBLIOGRAPHY

[1] E. Hecke, Eine neue Art von Zetafunktionen und ihre Bezeihungen zur Verteilung der Primzahlen, Math. Zeitschrift, 6 (1920), 11-51.
[2] B. Z. Moroz, Distribution of integral ideals with equal norms in the fields of algebraic numbers, I.H.E.S. Preprint, October 1982.
[3] H. Rademacher, Primzahlen reel-quadratischer Zahlkörper in Winkelräumen Math. Annalen, 111 (1935), 209-228.
[4] J. P. Kubilius, One some problems in geometry of numbers, Math. Sbornik USSR, 31 (1952), 507-542.
[5] T. Mitsui, Generalized Prime Number Theorem, Japanese Journal of Mathematics, 26 (1956), 1-42.
[6] H. Hasse, Zetafunktionen und L-funktionen zu Funktionenkörpern vom Fermatschen Typus, § 9, Gesammelte Werke, Bd. II, p. 487-497.
[7] T. Mirsui, Some prime number theorems for algebraic number fields, Proc. Sympos. Res. Inst. Math. Sci., Kyoto Univ., Kyoto 1977, N. 294, p. 100-123 (MR 57 \# 3092).
[8] Yu. V. Linnik, Ergodic properties of algebraic fields, Springer Verlag, 1968, Chapter IX.
[9] E. P. Golubeva, On representation of large numbers by ternary quadratic forms, Doklady Acad. of Sci. of the U.S.S.R., 191 (1970), 519-521.
[10] W.-Ch. W. Li, On converse theorems for GL(2) and GL(1), American Journal of Mathematics, 103 (1981), 883.
[11] Yu. V. Linnik, Private communications.
[12] N. Kurokawa, On Linnik's Problem, Proc. Japan Academy, 54 A (1978), 167169 (see also: Tokyo Institute of Technology Preprint, 1977).
[13] B. Z. Moroz, Scalar products of L-functions with Grössencharacters, J. für die reine und angewandte Mathematik, Bd. 332 (1982), 99-117.
[14] B. Z. Moroz, On the convolution of L-functions, Mathematika, 27 (1980), 312-320.
[15] E. C. Titchmarsh, Theory of Riemann Zeta-function, Oxford, 1951.
[16] H. Fogels, On the zeros of Hecke's L-functions I, Acta Arithmetica, 7 (1961/62), 87-106.
[17] W.-Ch. W. Li, B. Z. Moroz, On ideal classes of number fields containing integral ideals of equal norms, Journal of Number Theory, to appear.
[18] H. Weyl, Über die Gleichverteilung von Zahlen mod Eins. Math. Annalen, 77 (1916), 313-352.
[19] P. K. J. Draxl, L-funktionen Algebraischer Tori, Journal of Number Theory, 3 (1971), 444-467.
[20] A. I. Vinogradov On the extension to the left half-plane of the scalar product of Hecke's L-series with Grössencharacters, Izvestia U.S.S.R. Acad. of Sci., Math. Series, 29 (1965), 485-492.
[21] P. K. J. Draxl, Functions L et représentation simultanée d'un nombre premier par plusieurs formes quadratiques, Séminaire Delange-Pisot-Poitou, $12^{\text {e }}$ année, 1970/71.
[22] K. Chandrasekharan, R. Narasimhan, The approximate functional equation for a class of zeta-functions, Math. Ann., 152 (1963), 30-64.
[23] K. Chandrasekharan, A. Good, On the number of Integral Ideals in Galois Extensions, Monatshefte für Mathematik, 95 (1983), 99-109.
[24] R. A. Rankin, Sums of powers of cusp form coefficients, Math. Ann., 263 (1983), 227-236.

Manuscrit reçu le 27 avril 1983 révisé le 16 novembre 1983.

Dr. B. Z. Moroz,
Mathématique, Bât. 425
Université de Paris-Sud
Centre d'Orsay
91405 Orsay Cedex. France.

