MIHNEA COLTOIU The Levi problem for cohomology classes

Annales de l'institut Fourier, tome 34, nº 1 (1984), p. 141-154 <http://www.numdam.org/item?id=AIF_1984__34_1_141_0>

© Annales de l'institut Fourier, 1984, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

THE LEVI PROBLEM FOR COHOMOLOGY CLASSES

by Mihnea COLTOIU

Introduction.

The aim of this paper is to extend some of the results of Andreotti and Norguet from [4] to complex spaces.

The paper is divided into two paragraphs :

1) The local problem

2) The global problem

In the first paragraph we prove the following

THEOREM 1. – Let X be a perfect complex space, $Y \subseteq X$ an open subset, $x_0 \in \partial Y$ and \mathfrak{F} a sheaf which is locally free in a neighbourhood of x_0 . Suppose Y is strongly pseudoconcave in x_0 and let $n_0 = \dim \mathfrak{O}_{X,x_0} > 0$. Then $H^{n_0-1}(Y, x_0, \mathfrak{F})$ contains an infinitely dimensional vector subspace all of whose non-zero elements are not extendable in x_0 .

When X is a complex manifold this result was proved in [4] using a generalization of an integral formula of E. Martinelli. In the proof of Theorem 1 we use elementary results of local cohomology (one needs only supports consisting of a point) and the local structure theorems of a strongly pseudoconcave domain from [2].

The second paragraph is devoted to the generalization of Theorem 3 from [4]. More precisely we prove

THEOREM 2. – Let X be a complex space and $Y \subseteq \subset X$ an open subset which is strongly q-pseudoconvex. Suppose Y is strictly q-pseudoconvex in every point of $\partial Y \cap \text{Reg}(X)$ and let $\mathfrak{F} \in \text{Coh}(X)$ such that $\partial Y \subseteq \text{supp}(\mathfrak{F})$. Then there exists an element in $H^q(Y, \mathfrak{F})$ which is not extendable in any point of ∂Y . We thank C. Banica for suggesting these problems and for helpful conversations.

1. The local problem.

Let us briefly recall some definitions from [4] which will be used throughout this paper.

Let \mathfrak{V} be a sheaf of vector spaces on a topological space X, $Y \subset X$ an open subset and x_0 a point in ∂Y . Put:

$$\begin{aligned} H^{r}(Y, x_{0}, \mathfrak{F}) &= \lim_{U \in \mathfrak{V}_{x_{0}}} H^{r}(Y \cap U, \mathfrak{F}) \\ H^{r}_{+}(Y \cup \{x_{0}\}, \mathfrak{F}) &= \lim_{U \in \mathfrak{V}_{x_{0}}} H^{r}(Y \cup U, \mathfrak{F}) \\ H^{r}(x_{0}, \mathfrak{F}) &= \lim_{U \in \mathfrak{V}_{x_{0}}} H^{r}(U, \mathfrak{F}) \end{aligned}$$

where \mathfrak{V}_{x_0} = the set of all open neighbourhoods U of x_0 in X. We have $H^0(x_0, \mathfrak{F}) = \mathfrak{F}_{x_0}$ and $H^r(x_0, \mathfrak{F}) = \{0\}$ for $r \ge 1$ (cf. [6, pp. 192-193]). Consider the natural restriction maps :

$$\begin{aligned} r_1 &: \mathrm{H}^r(x_0, \mathscr{Y}) \longrightarrow \mathrm{H}^r(\mathrm{Y}, x_0, \mathscr{Y}) \\ r_2 &: \mathrm{H}^r_+(\mathrm{Y} \cup \{x_0\}, \mathscr{F}) \longrightarrow \mathrm{H}^r(\mathrm{Y}, \mathscr{F}) \,. \end{aligned}$$

An element in $H^{r}(Y, x_{0}, \mathfrak{F})$ (in $H^{r}(Y, \mathfrak{F})$) will be called extendable in $x_{0} \in \partial Y$ if it belongs to the image of the map r_{1} (r_{2} respectively).

Suppose now that X is a complex space. We say that Y is strongly pseudoconcave in x_0 if there exist an open neighbourhood U of x_0 in X and $\varphi \in C^{\infty}(U, \mathbf{R})$ a strongly plurisubharmonic function such that $U \cap Y = \{x \in U | \varphi(x) > \varphi(x_0)\}$.

If $x_0 \in \text{Reg}(X)$ we say that Y is strictly *q*-pseudoconvex in x_0 if there exist an open neighbourhood U of x_0 and $\varphi \in C^{\infty}(U, \mathbf{R})$ such that :

- i) $(d\varphi)_{x_0} \neq 0$
- ii) $U \cap Y = \{x \in U | \varphi(x) < \varphi(x_0)\}$

iii) the restriction of the Levi form $\mathcal{L}(\varphi)$ to the analytic tangent hyperplane to ∂Y at x_0 is nondegenerate and admits precisely q strictly negative eigenvalues.

Let us also recall that a complex space X is called perfect if $\mathcal{O}_{X,x}$ is Cohen-Macauley for any $x \in X$. We denote by $H_{x_0}^{\cdot}(X, \cdot)$ the cohomology groups with support in $\{x_0\}$. In order to prove Theorem 1 we shall need the following statement

PROPOSITION 1. - Let X be a perfect complex space (not necessarily reduced), $x_0 \in X$ and $n_0 = \dim \mathfrak{O}_{X,x_0} > 0$. put $L_{x_0} = \lim_{U \in \mathfrak{V}_{x_0}} H_{x_0}^{n_0}(U, \mathfrak{O}_X)$. Then $\dim_{\mathbb{C}} L_{x_0} = \infty$.

The above proposition is an immediate consequence of [5, pp. 86, Corollaire 4.5.].

Remark 1. - If $U \in \mathcal{V}_{x_0}$ we have the exact sequence $H^{n_0-1}(U, \mathcal{O}_X) \longrightarrow H^{n_0-1}(U \setminus \{x_0\}, \mathcal{O}_X)$ $\longrightarrow H^{n_0}_{x_0}(U, \mathcal{O}_X) \longrightarrow H^{n_0}(U, \mathcal{O}_X).$

Taking inductive limit we get

$$\mathbf{L}_{\mathbf{x}_0} \cong \mathbf{H}^{n_0-1}(\mathbf{X} \setminus \{\mathbf{x}_0\}, \mathbf{x}_0, \mathcal{O}_{\mathbf{X}}) \text{ for } n_0 \ge 2.$$

THEOREM 1. – Let X be a perfect complex space, $Y \subseteq X$ an open subset, $x_0 \in \partial Y$ and \mathfrak{F} a sheaf which is locally free in a neighbourhood of x_0 . Suppose Y is strongly pseudoconcave in x_0 and let $n_0 = \dim \mathfrak{O}_{X,x} > 0$. Then $H^{n_0-1}(Y, x_0, \mathfrak{F})$ contains an infinitely dimensional vector subspace all of whose non-zero elements are not extendable in x_0 .

Proof. – Obviously, we may suppose $\mathfrak{F} = \mathfrak{O}_X$. Since the problem is local we also may suppose that X is a closed analytic subset of some open set $G \subset \mathbf{C}^N$ and that

$$\mathbf{Y} = \{ x \in \mathbf{X} | \varphi(x) > \varphi(x_0) \},\$$

where $\varphi \in C^{\infty}(G, \mathbb{R})$ is a strongly plurisubharmonic function.

Writing the Taylor expansion of φ at x_0 we get :

 $\varphi(x) = \varphi(x_0) + 2\operatorname{Ref}(x) + \mathcal{L}(\varphi)(x) + O(||x - x_0||^3)$

where f is a polynomial of degree two in x and $\mathcal{L}(\varphi)$ is the Levi form. Let $g = f|_X$ and $Z_0 = \{x \in X | g(x) = 0\}$.

Replacing G by a smaller subset we may suppose that $Z_0 \setminus \{x_0\} \subset Y$. Moreover, using the perturbation argument in [7, pp. 357-358], we may suppose that the image of g in $\mathcal{O}_{X,x}$ is

not a zero-divisor for any $x \in X$. Consider the space (Z_0, \mathcal{O}_{Z_0}) where $\mathcal{O}_{Z_0} = \mathcal{O}_X / g \mathcal{O}_X$. Since X is a perfect space and the image of g in $\mathcal{O}_{X,x}$ is not a zero-divisor for any $x \in X$ it follows that (Z_0, \mathcal{O}_{Z_0}) is also perfect.

Put $n_0 = \dim \mathcal{O}_{X,x_0}$, hence $n_0 - 1 = \dim \mathcal{O}_{Z_0,x_0}$, and let $L_{x_0} = \lim_{U' \in \psi' x_0} H_{x_0}^{n_0-1}(U', \mathcal{O}_{Z_0})$ where $\mathcal{V}'_{x_0} =$ the set of all open neighbourhoods U' of x_0 in Z_0 .

Consider the exact sequence of sheaves on Y

$$0 \longrightarrow \mathcal{O}_{\mathbf{X}} \xrightarrow{\cdot g} \mathcal{O}_{\mathbf{X}} \longrightarrow \mathcal{O}_{\mathbf{Z}_{0}} \longrightarrow 0.$$
 (1)

If $U \subset X$ is an open neighbourhood of x_0 , then (1) together with the long exact sequence of cohomology provide the exact sequence

$$H^{q}(Y \cap U, \mathcal{O}_{X}) \longrightarrow H^{q}(U' \setminus \{x_{0}\}, \mathcal{O}_{Z_{0}}) \longrightarrow H^{q+1}(Y \cap U, \mathcal{O}_{X})$$

$$(2)$$

where $U' = U \cap Z_0$ (recall that by choice of Z_0 we have $Y \cap U' = U' \setminus \{x_0\}$).

Consider first the case $n_0 \ge 3$. Making $q = n_0 - 2$ in (2) and taking inductive limit we get the exact sequence

$$H^{n_0-2}(Y, x_0, \mathcal{O}_X) \longrightarrow H^{n_0-2}(Z_0 \setminus \{x_0\}, x_0, \mathcal{O}_{Z_0}) \longrightarrow H^{n_0-1}(Y, x_0, \mathcal{O}_X).$$
(3)

By [2, Théorème 9] we get $H^{n_0-2}(Y, x_0, \mathcal{O}_X) = 0$. Since $H^{n_0-2}(Z_0 \setminus \{x_0\}, x_0, \mathcal{O}_{Z_0}) \cong L_{x_0}$, Proposition 1 implies that $\dim_{\mathbb{C}} H^{n_0-1}(Y, x_0, \mathcal{O}_X) = \infty$ hence the theorem is proved for $n_0 \ge 3$.

For $n_0 = 1$ the theorem is obvious, hence to conclude the proof we only have to deal with the case $n_0 = 2$. If $U \subset X$ is an open neighbourhood of x_0 , then by (1) and the long exact sequence of cohomology we get the exact sequence

 $H^{0}(Y \cap U, \mathcal{O}_{X}) \longrightarrow H^{0}(U' \setminus \{x_{0}\}, \mathcal{O}_{Z_{0}}) \longrightarrow H^{1}(Y \cap U, \mathcal{O}_{X})$ where $U' = U \cap Z_{0}$. (4)

By [2, Théorème 10] there exists a fundamental system of Stein neighbourhoods U of x_0 in X such that the restriction map $H^0(U, \mathcal{O}_X) \longrightarrow H^0(Y \cap U, \mathcal{O}_X)$ is bijective. The commutative diagram

$$\begin{array}{ccc} \mathrm{H}^{\mathbf{0}}(\mathrm{U}\,,\,\mathfrak{O}_{\mathrm{X}}\,) \xrightarrow{\sim} \mathrm{H}^{\mathbf{0}}(\mathrm{Y} \cap \mathrm{U}\,,\,\mathfrak{O}_{\mathrm{X}}\,) \\ \downarrow & \downarrow \\ \mathrm{H}^{\mathbf{0}}(\mathrm{U}'\,,\,\mathfrak{O}_{\mathrm{Z}_{0}}\,) \longrightarrow \mathrm{H}^{\mathbf{0}}(\mathrm{U}' \setminus \{x_{0}\}\,,\,\mathfrak{O}_{\mathrm{Z}_{0}}\,) \end{array}$$

and the surjectivity of the map $H^0(U, \mathcal{O}_X) \longrightarrow H^0(U', \mathcal{O}_{Z_0})$ imply that

$$Im(H^{0}(Y \cap U, \mathcal{O}_{X}) \longrightarrow H^{0}(U' \setminus \{x_{0}\}, \mathcal{O}_{Z_{0}}))$$

= Im(H⁰(U', $\mathcal{O}_{Z_{0}}) \longrightarrow H^{0}(U' \setminus \{x_{0}\}, \mathcal{O}_{Z_{0}})),$

hence there is a natural injection $H^1_{x_0}(U', \mathfrak{O}_{z_0}) \longrightarrow H^1(Y \cap U, \mathfrak{O}_X)$. Taking inductive limit it follows that the map $L_{x_0} \longrightarrow H^1(Y, x_0, \mathfrak{O}_X)$ is injective, hence by Proposition 1 we get $\dim_{\mathbb{C}} H^1(Y, x_0, \mathfrak{O}_X) = \infty$, and we are done.

COROLLARY 1 [4, Proposition 6]. – Let Y be an open subset of a complex manifold X, $x_0 \in \partial Y$ and suppose Y is strictly q-pseudoconvex in x_0 . Let \mathfrak{F} be a sheaf which is locally free in a neighbourhood of x_0 . Then $H^q(Y, x_0, \mathfrak{F})$ contains an infinitely dimensional vector subspace all of whose non-zero elements are not extendable in x_0 .

Proof. – We may suppose $\mathcal{F} = \mathcal{O}_X$ and q > 0 (the case q = 0 is obvious).

By definition of strictly q-pseudoconvexity it immediately follows that :

i) Y is strongly q-pseudoconvex in a neighbourhood of x_0 .

ii) In some neighbourhood of x_0 there exists an analytic submanifold B containing x_0 such that dim B = q + 1 and $B \cap Y$ is strongly pseudoconcave in x_0 . By [2, Théorème 5] we deduce that the map

 $\mathrm{H}^{q}(\mathrm{Y}, x_{0}, \mathfrak{O}_{\mathrm{X}}) \longrightarrow \mathrm{H}^{q}(\mathrm{B} \cap \mathrm{Y}, x_{0}, \mathfrak{O}_{\mathrm{B}})$

is surjective and using Theorem 1 we get $\dim_{\mathbf{C}} H^{q}(\mathbf{Y}, x_{0}, \mathfrak{O}_{\mathbf{X}}) = \infty$.

Remark 2. – Let φ be a strongly plurisubharmonic function in some neighbourhood U of the origin in \mathbb{C}^n $(n \ge 2)$, $(d\varphi)_0 \ne 0$ and put $Y = \{z \in U | \varphi(z) > \varphi(0)\}$. In suitable coordinates the Taylor expansion of φ at 0 has the form

$$\varphi(z) = \varphi(0) + 2\operatorname{Rez}_1 + \sum_{1 \leq j, k \leq n} \frac{\partial^2 \varphi}{\partial z_j \partial \overline{z}_k} (0) \, z_j \, \overline{z}_k + O(||z||^3) \, .$$

Put exactly as in [4]

$$\psi_{\alpha} = \left(\sum_{1 \leq j \leq n} z_j^{\alpha_j} \bar{z}_j^{\alpha_j}\right)^{-n} \sum_{1 \leq j \leq n} (-1)^{j-1} \bar{z}_j^{\alpha_j} \bigwedge_{\substack{1 \leq k \leq n \\ k \neq j}} d(\bar{z}_k^{\alpha_k}).$$

By [4, Proposition 5] it follows that the images of the differential forms $\psi_{\alpha+1}$ ($\alpha \in \mathbb{N}^n$) in $H^{n-1}(Y \cap U, \mathcal{O})$ are linearly independent. Let M be the linear span of the above images.

We shall now investigate the relation between M and the vector space considered in the proof of Theorem 1 (which we denote now by L_1). Recall that L_1 is the kernel of the map α_1 = multiplication by z_1 ,

$$\alpha_1: \mathrm{H}^{n-1}(\mathrm{Y} \cap \mathrm{U}, \mathfrak{O}) \longrightarrow \mathrm{H}^{n-1}(\mathrm{Y} \cap \mathrm{U}, \mathfrak{O}).$$

In the same way we define $\alpha_k =$ multiplication by z_1^k ,

 $\alpha_k: \mathrm{H}^{n-1} \; (\mathrm{Y} \cap \mathrm{U} \; , \mathfrak{O}) \longrightarrow \mathrm{H}^{n-1} \; (\mathrm{Y} \cap \mathrm{U} \; , \mathfrak{O})$

and put $L_k = \ker \alpha_k$, $L = \bigcup_{k=1}^{\infty} L_k$. We claim that $M \subset L$. To prove this inclusion we use the relation $z_1^{\alpha_1} \psi_{\alpha} = \bar{\partial} \mu_{\alpha}$ where

$$\mu_{\alpha} = \frac{1}{n-1} \left(\sum_{1 \leq j \leq n} z_j^{\alpha_j} \overline{z}_j^{\alpha_j} \right)^{1-n} \wedge \sum_{2 \leq j \leq n} (-1)^j \overline{z}_j^{\alpha_j} d(\overline{z}_k^{\alpha_k}).$$

This equality shows that the image of $\psi_{\alpha+1}$ in $H^{n-1}(Y \cap U, \mathfrak{O})$ is contained in L_{α_1+1} , hence $M \subset L$.

2. The global problem.

 α) Let U be an open subset of \mathbb{C}^n and $\varphi \in \mathbb{C}^{\infty}(U, \mathbb{R})$. Recall that φ is called strongly q-pseudoconvex $(0 \le q \le n-1)$ if the Levi form $\mathscr{L}(\varphi)$ has at least (n-q) strictly positive eigenvalues at any point in U. Using local embeddings in the Zarisky tangent space one easily extends the notion of strongly q-pseudoconvex function in the case of complex spaces (for details see [1, pp. 12-13]).

Remark 3. – Let X be a complex space and $\varphi: X \longrightarrow R$ a strongly q-pseudoconvex function. For any $x \in X$ put $\mu(x) = \min \dim X_x^i$ where X_x^i are the irreducible components of $X_x(X_x)$ denotes the germ of X in x). From the above definitions it immediately follows that $q < \min_{x \in Y} \mu(x)$.

To state our theorem recall the following definition : an open subset $Y \subset C X$ is called strongly *q*-pseudoconvex if there exist an open neighbourhood V of ∂Y and $\varphi \in C^{\infty}(V, \mathbb{R})$ a strongly *q*-pseudoconvex function such that $V \cap Y = \{x \in V | \varphi(x) < 0\}$.

If $\mathfrak{F} \in \operatorname{Coh}(X)$ and $Y \subset \subset X$ is strongly *q*-pseudoconvex we have [2, Théorème 11] dim_c $\operatorname{H}^{r}(Y, \mathfrak{F}) < \infty$ if $r \ge q + 1$.

As we already annouced in the introduction the aim of this paragraph is to prove the following

THEOREM 2. - Let X be a complex space and $Y \subseteq X$ an open subset which is strongly q-pseudoconvex. Suppose Y is strictly q-pseudoconvex in every point of $\partial Y \cap \text{Reg}(X)$ and let $\mathfrak{F} \in \text{Coh}(X)$ such that $\partial Y \subseteq \text{supp}(\mathfrak{F})$. Then there exists an element in $H^q(Y, \mathfrak{F})$ which is not extendable in any point of ∂Y .

 β) LEMMA 1. – Let $Y \subseteq C X$ be an open subset such that Y is strongly q-pseudoconvex and let $A \subseteq X$ be an analytic closed subset such that $\dim_x A < \dim_x X$ for any $x \in A$. Then $\partial Y \setminus A$ is dense in ∂Y .

Proof. – Let V be an open neighbourhood of ∂Y and $\varphi \in C^{\infty}(V, \mathbf{R})$ a strongly *q*-pseudoconvex function such that $V \cap Y = \{x \in V | \varphi(x) < 0\}$. Let's make a couple of remarks :

1) For any point $x \in A$ with X_x irreducible there exists a fundamental system of open neighbourhoods $(U_i)_{i \in \mathbb{N}}$ of x such that $U_i \setminus A$ is connected.

2) For any point $x \in \partial Y$ there exists a germ of analytic set Q_x passing through x, dim_x $Q_x \ge 1$ and $\varphi | Q_x$ is strongly plurisub-harmonic.

Assertion 1) is well known and 2) may be deduced from [8, pp. 46, Corollary 4] using the condition $q < \min_{x \in \partial Y} \dim \mathcal{O}_{X,x}$ (which is a consequence of Remark 3). Let's show now that $\partial Y \setminus A$ is dense in ∂Y .

a) Take first $x_0 \in \partial Y \cap A$ such that X_{x_0} is irreducible and

let $(U_i)_{i \in \mathbb{N}}$ be a fundamental system of open neighbourhoods of x_0 such that $U_i \setminus A$ is connected and $U_i \subset V$. We must prove that for any $i \quad \partial Y \cap U_i \not\subset A \cap U_i$. If there existed an i_0 such that $\partial Y \cap U_{i_0} \subset A \cap U_{i_0}$ we would get

 $\mathbf{U_{i_0} \backslash A} = [(\mathbf{U_{i_0} \cap Y}) \backslash \mathbf{A}] \cup [(\mathbf{U_{i_0} \cap \mathbf{f}} \ \overline{\mathbf{Y}}) \backslash \mathbf{A}]$

and since $U_{i_0} \setminus A$ is connected we would get $(U_{i_0} \cap \mathbf{C} \overline{Y}) \setminus A = \phi$, hence $U_{i_0} \subset \overline{Y}$. In particular we would have $\varphi \leq 0$ on U_{i_0} .

Since $\varphi(x_0) = 0$ and $\varphi|_{Q_{x_0}}$ is strongly plurisubharmonic the maximum principle yields a contradiction and we are done.

b) Take now $x_0 \in \partial Y \cap A$ and suppose that X_{x_0} is not irreducible. Let $X_{x_0} = \bigcup_{i=1}^{k_0} X_{x_0}^i$ be the decomposition of X_{x_0} into irreducible components. One may easily deduce that there exist $i_0 \in \{1, \ldots, k_0\}$ and an open neighbourhood $U = U(x_0)$ of x_0 such that $X_{x_0}^{i_0}$ is induced in U by an irreducible subspace $Z = Z(x_0)$ with $x_0 \in \partial(Y \cap Z)$. On the other hand by Remark 3 we get that $q < \dim Z$. If we put $A' = A \cap Z$ and $\varphi' = \varphi|_Z$ it follows that $\dim A' < \dim Z$ and φ' is strongly q-pseudoconvex. Hence there exists a germ of analytic set Q'_{x_0} passing through x_0 with $\dim_{x_0} Q'_{x_0} \ge 1, Q'_{x_0} \subset Z$ and $\varphi'|_{Q'_{x_0}}$ is strongly plurisub-harmonic. Since Z_{x_0} is irreducible the same reasoning as in a) shows that we may find a sequence $(x_n)_{n \in \mathbb{N}}, x_n \longrightarrow x_0$ and $x_n \in \partial(Y \cap Z) \setminus A'$. Lemma 1 is completely proved.

COROLLARY 2. — Let $Y \subseteq X$ be an open subset such that Y is strongly q-pseudoconvex and let $\mathcal{F} \in Coh(X)$ such that $\partial Y \subseteq supp(\mathcal{F})$. Then there exists an open subset $D \subseteq X$ such that:

a) $D \subset \text{Reg}(X)$

b) $\mathfrak{F}|_{D}$ is locally free of rank ≥ 1 (the rank not being necessarily constant)

c) $\partial Y \cap D$ is dense in ∂Y .

Proof. - Put $A_1 = \{x \in X | \mathcal{G}_x \text{ is not a free } \mathcal{O}_{X,x} \text{-module}\}$. It is well known that A_1 is an analytic closed subset of X and $\dim_x A_1 < \dim_x X$ for any $x \in A_1$. Put $D_1 = X \setminus (A_1 \cup \text{Sing}(X))$ and $D = D_1 \cap \text{supp}(\mathfrak{F})$. By Lemma 1 we immediately deduce that D satisfies conditions a), b), c) and we are done.

 γ) Let X be a complex space, $\mathfrak{F} \in \operatorname{Coh}(X)$, $\mathfrak{U} = (U_i)_{i \in \mathbb{N}}$ a locally finite open covering of X. Put :

 $Z^{p}(\mathfrak{U}, \mathfrak{F}) =$ the group of *p*-cocycles with values in \mathfrak{F} , with its natural topology of Fréchet space

 $H^{p}(\mathcal{U}, \mathcal{F}) =$ the *p*-th group of Čech cohomology of \mathcal{F} with respect to \mathcal{U}

 $H^{p}(X, \mathfrak{F}) =$ the *p*-th cohomology group of \mathfrak{F} computed using the canonical resolution of Godement

 $\Theta_{\mathfrak{U}}: \mathrm{H}^{p}(\mathfrak{U}, \mathfrak{F}) \longrightarrow \mathrm{H}^{p}(\mathrm{X}, \mathfrak{F})$ the natural maps between the above groups.

If U_i is Stein for any *i* then Θ_u are isomorphisms. Let now $X' \subset X$ be an open subset and $\mathfrak{U}' = (U'_i)_{i \in \mathbb{N}}$ the covering defined by $U'_i = U_i \cap X'$. We have a commutative diagram :

$$\begin{array}{c} H^{p}(\mathfrak{U},\mathfrak{F}) \xrightarrow{\mathfrak{Su}} H^{p}(X,\mathfrak{F}) \\ \downarrow \\ H^{p}(\mathfrak{U},\mathfrak{F}) \xrightarrow{\mathfrak{Su}} H^{p}(X',\mathfrak{F}) \end{array}$$

Suppose now X is a complex manifold and E is a holomorphic vector bundle over X. Put $\mathscr{F} = \mathscr{O}(E)$ which is a locally free sheaf on X. Let $\mathscr{E}^{p,q}(E)$ be the sheaf of germs of C^{∞} E-valued forms of type (p,q). Consider the Dolbeault resolution

$$0 \longrightarrow \mathcal{O}(E) \longrightarrow \mathscr{E}^{0,0}(E) \xrightarrow{\overline{\partial}} \mathscr{E}^{0,1}(E) \xrightarrow{\overline{\partial}} \ldots$$

Put:

$$Z^{p}(X, E) = \ker \{ \Gamma(X, \mathscr{E}^{0, p}(E)) \xrightarrow{\tilde{\partial}} \Gamma(X, \mathscr{E}^{0, p+1}(E)) \}$$

with its natural topology of Fréchet space

$$B^{p}(X, E) = \operatorname{Im} \{ \Gamma(X, \mathscr{E}^{0, p-1}(E)) \xrightarrow{\partial} \Gamma(X, \mathscr{E}^{0, p}(E)) \}$$

$$H_{\delta}^{p}(X, E) = Z^{p}(X, E)/B^{p}(X, E).$$

Let $\psi = (\psi_i)_{i \in \mathbb{N}}$ be a partition of unity with respect to $\mathfrak{U} = (U_i)_{i \in \mathbb{N}}$. Define $T_{\mathfrak{U}, \psi} : \mathbb{Z}^p(\mathfrak{U}, \mathfrak{O}(\mathbb{E})) \longrightarrow \mathbb{Z}^p(\mathbb{X}, \mathbb{E})$ by

$$\mathbf{T}_{\mathfrak{u},\psi}(\xi) = \sum_{i_0\cdots i_p} \xi_{i_0\cdots i_p} \psi_{i_0} \,\overline{\vartheta} \psi_{i_1} \wedge \cdots \wedge \overline{\vartheta} \psi_{i_p}$$

11

 T_{μ} is a continuous linear operator. The operator

 $T_{\mathfrak{u}}: H^{p}(\mathfrak{U}, \mathfrak{O}(E)) \longrightarrow H^{p}_{\overline{\mathfrak{d}}}(X, E),$

induced by $T_{u,\psi}$, does not depend on ψ . Furthermore if $\mathfrak{U} = (U_i)_{i \in \mathbb{N}}$ is a Stein covering then T_u is an algebraic and topological isomorphism (cf. [3, pp. 225-227]).

Let now $X' \subset X$ be an open subset and $\mathfrak{U}' = (U'_i)_{i \in \mathbb{N}}$ the covering defined by $U'_i = U_i \cap X'$. Since $T_{\mathfrak{U}}$ does not depend on ψ we get the following commutative diagram :

$$\begin{array}{c} H^{p}(\mathfrak{U}, \mathfrak{O}(E)) \xrightarrow{T_{\mathfrak{U}}} H^{p}_{\vartheta}(X, E) \\ \downarrow \\ H^{p}(\mathfrak{U}', \mathfrak{O}(E)) \xrightarrow{T_{\mathfrak{U}'}} H^{p}_{\vartheta}(X', E) \end{array}$$

If $\mathfrak{U} = (U_i)_{i \in \mathbb{N}}$ is a Stein covering of X we may define the isomorphism $H^p_{\overline{\partial}}(X, E) \longrightarrow H^p(X, \mathfrak{O}(E))$ as the composed map $H^p_{\overline{\partial}}(X, E) \xrightarrow{T_{\overline{\mathfrak{U}}}^1} H^p(\mathfrak{U}, \mathfrak{O}(E)) \xrightarrow{\mathfrak{S}_{\mathfrak{U}}} H^p(X, \mathfrak{O}(E))$. One verifies immediately that the above isomorphism does not depend on \mathfrak{U} and denote this isomorphism by L_X . For any open subset $X' \subset X$ we have a commutative diagram :

$$\begin{array}{c} H^{p}_{\delta}(X, E) \xrightarrow{L_{X}} H^{p}(X, \mathcal{O}(E)) \\ \downarrow \qquad \qquad \downarrow \\ H^{p}_{\delta}(X', E) \xrightarrow{L_{X'}} H^{p}(X', \mathcal{O}(E)) \end{array}$$

 δ) Proof of Theorem 2

We shall suppose q > 0 since the case q = 0 is well known. Let $\mathfrak{U} = (U_i)_{i \in \mathbb{N}}$ be a locally finite Stein covering of Y and $D \subset X$ having properties a), b), c) from Corollary 2. Put $D' = D \cap Y$, $U'_i = U_i \cap D$, $\mathfrak{U}' = (U'_i)_{i \in \mathbb{N}} = a$ locally finite open covering of D'. Let $\psi = (\psi_i)_{i \in \mathbb{N}}$ be a partition of unity with respect to \mathfrak{U}' and let E be a holomorphic vector bundle over D such that $\mathfrak{F}|_{D} \xrightarrow{\sigma} \mathfrak{O}(E)$.

Consider the linear continuous map

$$R: Z^{q}(\mathfrak{U}, \mathfrak{F}) \longrightarrow Z^{q}(D', E)$$

obtained by composition of the maps

$$Z^{q}(\mathfrak{U},\mathfrak{F}) \longrightarrow Z^{q}(\mathfrak{U}',\mathfrak{F}) \xrightarrow{\mathfrak{G}} Z^{q}(\mathfrak{U}',\mathfrak{O}(\mathrm{E})) \xrightarrow{\mathsf{T}_{\mathfrak{U}}, \psi} Z^{q}(\mathrm{D}',\mathrm{E}).$$

150

Let V be an open neighbourhood of ∂Y and let $\varphi \in C^{\infty}(V, \mathbf{R})$ be a strongly *q*-pseudoconvex function such that

$$\mathbf{V} \cap \mathbf{Y} = \{ x \in \mathbf{V} | \varphi(x) < 0 \} .$$

Let $(p_j)_{j \in \mathbb{N}} \subset \partial Y \cap D$ be a dense subset of points of $\partial Y \cap D$, $p_i \neq p_j$ for $i \neq j$.

For each $j \in \mathbb{N}$ we may find a neighbourhood $V_j \subset \subset V \cap D$ of p_i and we may find in V_j :

-q-discs $D_{\nu,j}(r)$ $0 < r \leq r_j$ $\nu \in \mathbb{N}^*$ having the properties from the proof of [4, Théorème 3]

 $-L_j \subset V_j$ closed submanifolds such that $L_j \cap \overline{Y} = \{p_j\}$ (here L_j corresponds to the set A in the proof of [4, Proposition 6])

- differential forms $t_{\alpha}^{j} \in \mathbb{Z}^{q}(V_{j} \setminus L_{j}, E) \ (\alpha \in \mathbb{N}^{q+1})$ such that the following holds :

for any element of the form $t_j = \sum_{\alpha} c_{\alpha} t_{\alpha+1}^j \quad c_{\alpha} \in \mathbf{C}$ (the sum being finite and not all of the c_{α} 's being zero) there exists an E*-valued (q, 0) holomorphic form γ_j on V_j (E* is the dual of E) such that $\lim_{p \to \infty} |\int_{\mathbf{D}_{p_j}(r_j)} \gamma_j \wedge t_j| = \infty$.

Let $\rho_j \in C_0^{\infty}(V, \mathbb{R}), \rho_j \ge 0, \rho_j | L_j = 0, \rho_j > 0$ on $\partial Y \setminus \{p_j\}$ and choose $\epsilon_j > 0$ such that $\varphi - \epsilon_j \rho_j$ is strongly *q*-pseudoconvex on V. Putting $Y_j = Y \cup \{x \in V | \varphi(x) - \epsilon_j \rho_j(x) < 0\}$ we get $\overline{Y} \setminus \{p_j\} \subset Y_j, p_j \in \partial Y \cap \partial Y_j$ and $Y_j \cap L_j = \varphi$.

Take now $h_i \in C_0^{\infty}(V_j, \mathbf{R})$, $h_j \ge 0$, $h_j(p_j) > 0$ and $\epsilon'_j > 0$ such that $\varphi - \epsilon_j \rho_j - \epsilon'_j h_j$ is strongly *q*-pseudoconvex on V and put $V'_j = \{x \in V_j | \varphi(x) - \epsilon_j \rho_j(x) - \epsilon'_j h_j(x) < 0\}$ and $Y'_j = Y_j \cup V'_j$. Then V'_j is an open neighbourhood of p_j , $Y_j \cap V'_j = Y_j \cap V_j$ and Y'_j is strongly *q*-pseudoconvex, hence dim_c H^{q+1}(Y'_j, $\mathfrak{F}) < \infty$.

Let $S_j \subset Z^q(Y_j \cap V_j, E)$ be the linear span of the elements of the form $t_{\alpha+1}^j$ ($\alpha \in \mathbb{N}^{q+1}$) and let $K_j \subset H^q(Y_j \cap V_j, \mathcal{F})$ be the image of S_j by the map

$$\delta_j: \mathbb{Z}^q(\mathbb{Y}_j \cap \mathbb{V}_j, \mathbb{E}) \longrightarrow \mathbb{H}^q(\mathbb{Y}_j \cap \mathbb{V}_j, \mathcal{F})$$

obtained by composing the maps

$$Z^{q}(Y_{j} \cap V_{j}, E) \longrightarrow H^{q}_{\delta}(Y_{j} \cap V_{j}, E)$$

$$\xrightarrow{L_{Y_{j}} \cap V_{j}} H^{q}(Y_{j} \cap V_{j}, \mathcal{O}(E)) \xrightarrow{g} H^{q}(Y_{j} \cap V_{j}, \mathcal{F}).$$

By [4, Proposition 6] we have $\dim_{\mathbf{C}} K_j = \infty$. By Mayer-Vietoris exact sequence

 $\begin{array}{l} \operatorname{H}^{q}(\operatorname{Y}_{j}, \mathfrak{F}) \oplus \operatorname{H}^{q}(\operatorname{V}_{j}', \mathfrak{F}) \xrightarrow{\alpha_{j}} \operatorname{H}^{q}(\operatorname{Y}_{j} \cap \operatorname{V}_{j}, \mathfrak{F}) \xrightarrow{\beta_{j}} \operatorname{H}^{q+1}(\operatorname{Y}_{j}', \mathfrak{F}) \\ \text{and by the conditions } \dim_{\mathbf{C}} \operatorname{K}_{j} = \infty, \dim_{\mathbf{C}} \operatorname{H}^{q+1}(\operatorname{Y}_{j}', \mathfrak{F}) < \infty \text{ there} \\ \text{exists } d_{j} \in \operatorname{K}_{j} \setminus \{0\} \text{ such that } \beta_{j}(d_{j}) = 0. \text{ Let } t_{j} \in \operatorname{S}_{j} \text{ such that} \\ \delta_{j}(t_{j}) = d_{j} \text{ and let } \xi_{j} \in \operatorname{H}^{q}(\operatorname{Y}_{j}, \mathfrak{F}), v_{j} \in \operatorname{H}^{q}(\operatorname{V}_{j}', \mathfrak{F}) \text{ such that} \\ \xi_{j}|_{\operatorname{Y}_{j} \cap \operatorname{V}_{j}} - v_{j}|_{\operatorname{Y}_{j} \cap \operatorname{V}_{j}} = d_{j}. \end{array}$

If $V'_{j} \subset V'_{j}$ is a Stein neighbourhood of p_{j} we have $\xi_{j} | Y_{j} \cap V'_{j} = d_{j}$. Put $\xi'_{j} = \xi_{j} |_{Y}$ and let $\tau_{j} \in \mathbb{Z}^{q}(\mathfrak{U}, \mathfrak{F})$ be such that ξ'_{i} is the image of τ_{i} by the map

$$Z^{q}(\mathfrak{U},\mathfrak{F}) \longrightarrow \mathrm{H}^{q}(\mathfrak{U},\mathfrak{F}) \xrightarrow{\mathfrak{S}_{\mathfrak{U}}} \mathrm{H}^{q}(\mathrm{Y},\mathfrak{F}) \, .$$

Let η_i be the restriction of τ_i on D', i.e. $\eta_i = R(\tau_i)$.

We claim that for any point p_s and for any $j \in \mathbb{N}$ there exist a Stein neighbourhood U_s^j of p_s , $U_s^j \subset D$, and an E-valued C^{∞} form λ_s^j of type (0, q - 1) on $V_s^j = Y \cap U_s^j$ such that

a) $\eta_j|_{\mathbf{V}_s^j} = \bar{\partial}\lambda_s^j$ for $j \neq s$ b) $\eta_j|_{\mathbf{V}_s^j} = t_j + \bar{\partial}\lambda_j^j$ for j = s.

The claim can be proved like this : for any $s \neq j$ take U_s^j a Stein neighbourhood of p_s contained in $Y_j \cap D$ and for s = j take $U_i^j = V_i''$.

Let \mathfrak{N}_s^i be the Stein covering of V_s^i given by $\{U_i \cap V_s^i | i \in \mathbb{N}\}$. We have a commutative diagram

which gives us a). Property b) can be deduced from the following diagram

$$\begin{array}{c} \mathrm{H}^{q}(\mathfrak{U},\mathfrak{F}) \longrightarrow \mathrm{H}^{q}(\mathfrak{N}_{j}^{j},\mathfrak{F}) \xrightarrow{\sigma} \mathrm{H}^{q}(\mathfrak{N}_{j}^{j},\mathfrak{O}(\mathrm{E})) \xrightarrow{\mathrm{T}_{\mathfrak{N}_{j}^{j}}} \mathrm{H}^{q}_{\mathfrak{S}}(\mathrm{V}_{j}^{j},\mathrm{E}) \longrightarrow \mathrm{H}^{q}_{\mathfrak{S}}(\mathrm{Y}_{j}^{j} \cap \mathrm{V}_{j},\mathrm{E}) \\ \stackrel{i}{\rightarrow} \mathbb{I}^{\mathfrak{S}_{\mathfrak{U}}} \xrightarrow{i} \mathbb{I}^{\mathfrak{S}_{\mathfrak{V}_{j}^{j}}} \xrightarrow{i} \mathbb{I}^{\mathfrak{S}_{\mathfrak{S}_{j}^{j}}} \xrightarrow{i} \mathbb{I}^{\mathfrak{S}_{j}^{j}} \xrightarrow{i} \mathbb{I}^{\mathfrak{S}_{j}^{j}}} \xrightarrow{i} \mathbb{I}^{\mathfrak{S}_{j}^{j}} \xrightarrow{i} \mathbb{I}^{\mathfrak{S}_{j}^{j}} \xrightarrow{i} \mathbb{I}^{\mathfrak{S}_{j}^{j}} \xrightarrow{i} \mathbb{I}^{\mathfrak{S}_{j}^{j}}} \xrightarrow{i} \mathbb{I}^{\mathfrak{S}_{j}^{j}} \xrightarrow{i} \mathbb{I}^{$$

Let now γ_j be an E*-valued holomorphic (q, 0) form on V_j such that

1) $\lim_{\nu \to \infty} \left| \int_{\mathcal{D}_{\nu,j}(r_j)} \gamma_j \wedge t_j \right| = \infty.$

Using 1), relations a), b), Stokes' theorem and the fact that for any $0 < r \le r_j$ we have $\bigcup_{\nu=1}^{\omega} [D_{\nu,j}(r_j) \setminus D_{\nu,j}(r)] \subset D'$ it follows that

2) $\lim_{\nu \to \infty} |\int_{D_{\nu,j}(r_j)} \gamma_j \wedge \eta_j| = \infty$

and

3)
$$|\int_{\mathcal{D}_{\nu,j}(r_j)} \gamma_j \wedge \eta_s| \leq p_s^j \text{ if } j \neq s$$

where $0 < p_s^j < \infty$.

Let $k_j > 0$ be sufficiently small real numbers such that for $|c_j| < k_j, c_j \in \mathbf{C}$, the series $\sum_j c_j \tau_j$ converges in $\mathbb{Z}^q(\mathfrak{U}, \mathfrak{F})$ and put $\eta = \mathbb{R}\left(\sum_j c_j \tau_j\right) \in \mathbb{Z}^q(\mathbf{D}', \mathbf{E})$. If $c_j \neq 0$ are chosen sufficiently small then we get by 2) and 3) that

4)
$$\lim_{\nu \to \infty} |\int_{D_{\nu,j}(r_j)} \gamma_j \wedge \eta| = \infty.$$

Since $\bigcup_{\nu=1}^{\omega} [D_{\nu,j}(r_j) \setminus D_{\nu,j}(r)] \subset D'$ we get that 4) holds for any $0 < r \leq r_j$ from which we immediately deduce, via Stokes' theorem, that $\sum_j c_j \tau_j$ defines an element in $H^q(Y, \mathcal{F})$ not extendable in any point of ∂Y . Theorem 2 is completely proved.

M. COLTOIU

BIBLIOGRAPHY

- A. ANDREOTTI, Théorèmes de dépendance algébrique sur les espaces complexes pseudo-concaves, Bull. Soc. Math. France, 91 (1963), 1-38.
- [2] A. ANDREOTTI, H. GRAUERT, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France, 90 (1962), 193-259.
- [3] A. ANDREOTTI, A. KAS, Duality on complex spaces, Ann. Scuola Norm. Sup. Pisa, sér. III, vol. XXVII, Fasc. II (1973), 187-263.
- [4] A. ANDREOTTI, F. NORGUET, Problème de Levi et convexité holomorphe pour les classes de cohomologie, Ann. Scuola Norm. Sup. Pisa, sér. III, vol. XX, Fasc. II (1966), 197-241.
- [5] C. BANICA, O. STANASILA, Méthodes algébriques dans la théorie des espaces complexes, Gauthier-Villars, (1977).
- [6] R. GODEMENT, Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1958.
- [7] R. NARASIMHAN, The Levi problem for complex spaces I, Math. Ann., 142 (1961), 355-365.
- [8] R. NARASIMHAN, Introduction to the Theory of Analytic Spaces, Lecture Notes in Mathematics, vol. 25, Springer-Verlag New York, Inc., New York, 1966.
- [9] H.-J. REIFFEN, Riemannsche Hebbarkeitssätze für Cohomologieklassen und ihre algebraische Träger, *Math. Ann.*, 164 (1966), 272-279.
- [10] Y.-T. SIU, Analytic sheaf cohomology groups of dimension n of n-dimensional complex spaces, Trans. Amer. Math. Soc., 143 (1969), 77-94.

Manuscrit reçu le 27 juillet 1982 révisé le 5 avril 1983.

Mihnea COLTOIU, National Institute for Scientific and Technical Creation Bd. Pacii 220 77538 Bucharest (Romania).