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THE LEVI PROBLEM
FOR COHOMOLOGY CLASSES

by Mihnea COLTOIU

Introduction.

The aim of this paper is to extend some of the results of
Andreotti and Norguet from [4] to complex spaces.

The paper is divided into two paragraphs :
1) The local problem
2) The global problem
In the first paragraph we prove the following

THEOREM 1. — Let X be a perfect complex space, Y C X an
open subset, XQ G 8 Y and Sf a sheaf which is locally free in a
neighbourhood of XQ. Suppose Y is strongly pseudoconcave in
XQ and let HQ = dim ©x,^o > °- Then Iro ~ 1 (Y ̂ o ̂
contains an infinitely dimensional vector subspace all of whose
non-zero elements are not extendable in XQ .

When X is a complex manifold this result was proved in
[4] using a generalization of an integral formula of E. Martinelli.
In the proof of Theorem 1 we use elementary results of local cohomo-
logy (one needs only supports consisting of a point) and the local
structure theorems of a strongly pseudoconcave domain from [2].

The second paragraph is devoted to the generalization of
Theorem 3 from [4]. More precisely we prove

THEOREM 2. - Let X be a complex space and Y C C X an
open subset which is strongly q-pseudoconvex. Suppose Y is
strictly q-pseudoconvex in every point of 3Y n Reg(X) and let
^^Coh(X) such that 3YCsupp(^). Then there exists an
element in HP(Y,§0 which is not extendable in any point of 8Y.
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We thank C. Banica for suggesting these problems and for
helpful conversations.

1. The local problem.

Let us briefly recall some definitions from [4] which will be
used throughout this paper.

Let Si be a sheaf of vector spaces on a topological space
X , Y C X an open subset and XQ a point in 3Y . Put :

H ' (Y ,Xo^ )= Urn H ^ Y H U , ^ )
^^o

H;(YU{;Co },§;)= lia H^YUU,^)
^^oH roco,§o= ura iroj,^)^xo

where Vjc == ^he set of all open neighbourhoods U of XQ in X.
We have H°0co ,§0 =^o and iTOco ,^) = {0} for r > l

(cf. [6, pp. 192-193]). Consider the natural restriction maps :
r, :ir0co^) —^ H^Y^o.^)
^ : H^(Y U {^0} , g?) —^ H^Y , g?).

An element in H^Y^o,^) (inH^Y,^)) will be called
extendable in XQ G 3Y if it belongs to the image of the map A^
(r^ respectively).

Suppose now that X is a complex space. We say that Y is
strongly pseudoconcave in XQ if there exist an open neighbourhood
U of XQ in X and ^ G C°° (U , R) a strongly plurisubharmonic
function such that U 0 Y = {x G U|<^(x) > ^Oc^)} .

If XQ e Reg(X) we say that Y is strictly ^-pseudoconvex
in XQ if there exist an open neighbourhood U of XQ and
^eC°° (U,R) such that:

i) W^ ^ 0
ii) U n Y = {x e U|^) < ^Oco)}
iii) the restriction of the Levi form K (<^) to the analytic tangent

hyperplane to 3Y at XQ is nondegenerate and admits precisely q
strictly negative eigenvalues.
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Let us also recall that a complex space X is called perfect if
©x^ is Cohen-Macauley for any j c G X . We denote by H^ (X, -)
the cohomology groups with support in {Xo} . In order to prove
Theorem 1 we shall need the following statement

PROPOSITION 1. - Let X be a perfect complex space (not
necessarily reduced), XQ G X and HQ = dim ®x x > ° ' P^
^o = uî  Hn^w9 ®x) . Then dimcl̂  =00.XQ

The above proposition is an immediate consequence of [5, pp. 86,
Corollaire 4.5.].

Remark 1. - If U G V^ we have the exact sequence
H^aj, ©x)—^ H^ajvjcoLex)

—^ H ^ ( U , © x ) — ^ H " o ( U , ® x ) .
Taking inductive limit we get

L^ -H^CXV^},^,®^) f o r ^ > 2 .

THEOREM 1. — JL^r X be a perfect complex space, Y C X an
open subset, XQ e 3Y awe? g? a sheaf which is locally free in a neigh-
bourhood of XQ . Suppose Y is strongly pseudoconcave in XQ and
let no = dim Q^ > 0. Then H"°-1 (Y , XQ , g?) contains an
infinitely dimensional vector subspace all of whose non-zero elements
are not extendable in XQ .

Proof. — Obviously, we may suppose ^ = ®x . Since the
problem is local we also may suppose that X is a closed analytic
subset of some open set G C CN and that

Y = {xex\^(x)>^p(xQ)},
where ^ € C°° (G , R) is a strongly plurisubharmonic function.

Writing the Taylor expansion of ^ at XQ we get:
^>(x) ==<^(Xo) + 2Ref(;c) +/?(^)0c) + 0(||;c-j^ll3)

where / is a polynomial of degree two in x and J?(<p) is
the Levi form. Let g = / |x and ZQ = {x € X| g(x) = 0} .

Replacing G by a smaller subset we may suppose that
^V^o^^ Moreover, using the perturbation argument in
[7, pp. 357-358], we may suppose that the image of g in ®x x is
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not a zero-divisor for any x G X . Consider the space (ZQ , ©z )
where ®z = Q-^/g ©x • Since X is a perfect space and the
image of g in ©x x ls not a zero-divisor for any x G X it follows
that (ZQ , ©^ ^ ls a^0 P61*^01-

Put HQ = dim ©x,;»o 5 hence ^o — 1 = dim ®zo,^o 5 anc*
let L^= ^ H^O;',®^) where V - the set of

u ^ V X Q

all open neighbourhoods U' of XQ in Z^ .
Consider the exact sequence of sheaves on Y

O-^x -^^x——®zo^0- (1)
If U C X is an open neighbourhood of XQ , then (1) together

with the long exact sequence of cohomology provide the exact
sequence

H^Y 0 U , ©x)——> H^lAM , ©zo)——' Hq+1^ n u ̂ x)
(2)

where U' = U 0 ZQ (recall that by choice of ZQ we have
YHU^lA^o}).

Consider first the case HQ > 3. Making q = n^ — 2 in (2)
and taking inductive limit we get the exact sequence

H^o-^Y ,;CQ , ©x) ——' H^-^ZoV^o} ^o - ®zo)
-^ H^-^Y,^.^)- (3)

By [2,Theoreme 9] we get H n o ~ 2 (Y,Xo , ©x) = °- since

H n o~ 2(Zo\{Xo} ,^o » ©zo ) s ̂ o ' Proposition 1 implies that
dime H^'^Y ,XQ , ©x) == °° hence the theorem is proved for
n^>3.

For HQ = 1 the theorem is obvious, hence to conclude the
proof we only have to deal with the case HQ = 2. If U C X is an
open neighbourhood of XQ , then by (1) and the long exact sequence
of cohomology we get the exact sequence

H ° ( Y n U , © x ) -^ H°(U'\{Xo},©zo)-^ H ^ Y H U ^ x )
where U' = U 0 ZQ . (4)

By [2, Theoreme 10] there exists a fundamental system of Stein
neighbourhoods U of XQ in X such that the restriction map
H°(U , ©x) —^ H°(Y 0 U , ©x) is bijective. The commutative
diagram
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H°(U, ©x)—^ H ° ( Y n U , ®x)
i ^

HW,®^)—^ H°(U'\{^},®zo)
and the surjectivity of the map H°(U,©x)— > H°(U\ ©^)
imply that
Im(H°(Y 0 U , ©x) -^ H°(U'\{xo} , ©zo))

= Im(H°(ir, ©z,)—— H°(U'\{xo}, ©zo)),
hence there is a natural injection H^ (U', ©z ) —^ H1 (Y 0 U , ©x).
Taking inductive limit it follows that the map L^—> H^Y^o ,®^)
is injective, hence by Proposition 1 we get dime H^Y ,XQ , ®x) = °°?
and we are done.

COROLLARY 1 [4, Proposition 6]. — Let Y 6e an open subset
of a complex manifold X, XQ G 3Y a^d suppose Y ^ strictly
q-pseudoconvex in XQ . Let Sf be a sheaf which is locally free in
a neighbourhood of XQ. Then H^Y,^,^') contains an infini-
tely dimensional vector subspace all of whose non-zero elements
are not extendable in XQ .

Proof. — We may suppose ^ = ©x and q > 0 (the case
q = 0 is obvious).

By definition of strictly ^-pseudoconvexity it immediately
follows that :

i) Y is strongly ^-pseudoconvex in a neighbourhood of XQ .
ii) In some neighbourhood of XQ there exists an analytic

submanifold B containing XQ such that dim B = q 4- 1 and
B O Y is strongly pseudoconcave in XQ . By [2, Thtoreme 5] we
deduce that the map

H^Y,^ , ©x) -^ H^B H Y,XQ , ©B)
is suijective and using Theorem 1 we get dim^ H^Y,;^ , ®x) = °°.

Remark 2. — Let ^ be a strongly plurisubharmonic function
in some neighbourhood U of the origin in C" (n > 2), (d^p)o ̂  0
and put Y = {z GU|<p(z) >^(0)} . In suitable coordinates the
Taylor expansion of ^ at 0 has the form

<p(z) = ^(0) + 2ReZi + ^ -^—— W2/^ +0(l|z|13).
K/.fc<n ^z7^zfc
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Put exactly as in [4]

^-( S ^/)"" S (~iy-1^/ A rf(z^).
^Kf<n ' Ki<n i<k<n

k^f

By [4, Proposition 5] it follows that the images of the
differential forms V/^ (a GIST) in IT-1 ( Y O U , ® ) are linearly
independent. Let M be the linear span of the above images.

We shall now investigate the relation between M and the
vector space considered in the proof of Theorem 1 (which we
denote now by L ^ ) . Recall that L^ is the kernel of the
mapc^ = multiplication by z^ ,

^ - . H ^ - ^ Y H U , ® ) —> H"-1 ( Y O U , ® ) .
In the same way we define o^ = multiplication by z\,

a^ :H"-1 ( Y O U , ® ) —> H"-1 ( Y O U , ® )
and put L. = ker a., , L = 0 L. . We claim that M C L. To" '• k=i
prove this inclusion we use the relation z^1 V/^ = ^a where

^ = — — ( 1 : z^/)l-"^ S (-i^^da^).
n i Kf<n 2<f<n

This equality shows that the image of ^+1 in H ^ ' ^ Y H U , ®)
is contained in L^ +1 , hence M C L.

2. The global problem.

a) Let U be an open subset of C" and ^ € C°° (U, R) .
Recall that <^ is called strongly <7-pseudoconvex ( 0 < ^ < n — 1)
if the Levi form /?(<^) has at least (n — q) strictly positive
eigenvalues at any point in U. Using local embeddings in the Zarisky
tangent space one easily extends the notion of strongly
qr-pseudoconvex function in the case of complex spaces (for details
see [1, pp. 12-13]).

Remark 3. — Let X be a complex space and <p: X —^ R
a strongly qr-pseudoconvex function. For any x €X put
^(x) = min dim X^ where X1^ are the irreducible components
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of X^(X^ denotes the germ of X in x ) . From the above defini-
tions it immediately follows that q < min ^(x).

xex
To state our theorem recall the following definition : an open

subset Y CC X is called strongly ^-pseudoconvex if there exist
an open neighbourhood V of 3Y and ( p E C ^ C V , R) a strongly
<7-pseudoconvex function such that V H Y = {x G V\^(x) < 0} .

If §;GCoh(X) and Y CC X is strongly ^-pseudoconvex we
have [2, Theoreme 11] dime H''(Y , g?) < oo if r > q -h 1 .

As we already annouced in the introduction the aim of this
paragraph is to prove the following

THEOREM 2. - Let X be a complex space and Y CC X an
open subset which is strongly q-pseudoconvex. Suppose Y is strictly
q-pseudoconvex in every point of 3Y H Reg(X) and let ^ GCoh(X)
such that 3YCsupp(§0. Then there exists an element in
H9 (Y , 5i) which is not extendable in any point of 3Y .

;3) LEMMA 1. - Let Y CC X be an open subset such that Y
is strongly q-pseudoconvex and let A C X be an analytic closed
subset such that dim^ A < dim^ X for any x € A. Then 3Y\A is
dense in 3Y.

Proof. — Let V be an open neighbourhood of 3Y and
<^ € C°° (V, R) a strongly ^-pseudoconvex function such that
V H Y = {x € V | (p0c) < 0} . Let's make a couple of remarks :

1) For any point x € A with X^ irreducible there exists a
fundamental system of open neighbourhoods (U,),^ of x such that
U,.\A is connected.

2) For any point x E 3Y there exists a germ of analytic set
Q^ passing through x , dim^ Q^ > 1 and <^|Q^ is strongly plurisub-
harmonic.

Assertion 1) is well known and 2) may be deduced from
[8, pp. 46, Corollary 4] using the condition q < min dim ©y „

JCG3Y •

(which is a consequence of Remark 3). Let's show now that 3Y\A
is dense in 3Y.

a) Take first XQ € 3Y 0 A such that X^ is irreducible and
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let (U^^N be a fundamental system of open neighbourhoods of XQ
such that U,\A is connected and U, C V. We must prove that for
any / 3Y H U .̂ <? A H U,. If there existed an io such that
8Y 0 U, C A H U, we would get

Ufo^ = [(u^ n YAA] u l^o n c YAA]
and since U, \A is connected we would get (U, 0 C Y)\A = 0,
hence U, C Y. In particular we would have (p < 0 on U- .

Since ^p(Xo) = 0 and (^IQ is strongly plurisubharmonic the
maximum principle yields a contradiction and we are done.

b) Take now XQ e 3Y H A and suppose that X is not
^o

irreducible. Let X-, = U X.. be the decomposition of X_
XQ ^ ^ XQ r XQ

into irreducible components. One may easily deduce that there
exist IQ € { 1 , . . ., k^} and an open neighbourhood U = UO-o)
of XQ such that X10 is induced in U by an irreducible subspace
Z = Z(jCo) with XQ E 3(Y 0 Z). On the other hand by Remark 3
we get that q < dim Z . If we put A' = A H Z and </?' = <^lz it
follows that dim A' < dim Z and ^ is strongly <7-pseudoconvex.
Hence there exists a germ of analytic set Q' passing through XQ
with dim,,. Q',. > 1 , Q',. C Z and ^\o' is strongly plurisub-

" 0 0 "0 ~ ^ 0

harmonic. Since Z is irreducible the same reasoning as in a)
shows that we may find a sequence (.^^eN ^n —^ xo anc^
x^ € 3(Y H Z)\A'. Lemma 1 is completely proved.

COROLLARY 2. — Let Y CC X be an open subset such that Y
is strongly q-pseudoconvex and let ^ € Coh(X) such that
3YCsupp(g?). Then there exists an open subset D C X such
that :

a) D C Reg(X)
b)g?l i5 is locally free of rank > 1 (the rank not being

necessarily constant)
c) 3Y n D is dense in 3Y.

Proof. — P u t A^ = { j c ^ X j g ^ is not a free ®x ^-module} .
It is well known that A^ is an analytic closed subset of X and
dim^ AI < dim^ X for any x E A^ . Put D^ = X\(Ai U Sing(X))
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and D = D^ n supp(g0. By Lemma 1 we immediately deduce that
D satisfies conditions a), b), c) and we are done.

7) Let X be a complex space, ^?E Coh(X) ̂  = (H.)/^
a locally finite open covering of X . Put :

Z?^,^) = the group of p-cocycles with values in Sf , with
its natural topology of Fr6chet space

H?^,^) = the p-th group of £ech cohomology of @< with
respect to ^

HP(X,§0= the p-th cohomology group of 3» computed
using the canonical resolution of Godement

0<u rH^ZL,^) —^ H^X,®?) the natural maps between the
above groups.

If U, is Stein for any i then 0<n are isomorphisms. Let now
X' C X be an open subset and ^U/ == (U^),^ the covering defined
by V[ = U, H X'. We have a commutative diagram :

H^Zl,^) -e^ H^CX,^)

1 ^ IHP(CU /^)—^ HP(X\^)

Suppose now X is a complex manifold and E is a holomorphic
vector bundle over X . Put S1 = ®(E) which is a locally free sheaf
on X. Let S>pfq(E) be the sheaf of germs of C°° E-valued forms of
type (p,q). Consider the Dolbeault resolution

0—^ ®(E)—> ^^(E)-^ g0.^)-^ . . .
Put:

ZFCX^) = ker{^(X,80*p(E))—^ r(X, ^^""^E))}
with its natural topology of Fr^chet space

BP(X,E) = Im{^(X,SO*p- l(E))-^ ^(X,SO•P(E))}

H ^ ( X , E ) = Z P ( X , E ) / B P ( X , E ) .
Let V/ = (^,),eN ^e a partition of unity with respect to

^ = (U,),eN • ^fine T^^ : ZFC^, 0(E)) -^ ZF(X, E) by

^^(S)- S: ^...,^,,^,,A...Aa^
' o - - •'p
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T^ ^ is a continuous linear operator. The operator
^^(^©(E))—^ H§(X,E),

induced by T^ ^ , does not depend on \p. Furthermore if
•U = (U,),eN ls a Stein covering then T«n is an algebraic and
topological isomorphism (cf. [3, pp. 225-227]).

Let now X' C X be an open subset and ^U/ = (U,'),eN ^e
covering defined by U,' = U, H X'. Since T<^ does not depend
on V/ we get the following commutative diagram :

Em^CE))^ H^(X,E)
^ T - I

HW^CE))-"-^ Hf(X\E)
If ^ = (U^/eN ls a Stein covering of X we may define the
isomorphism H^(X,E)—^H^X^CE)) as the composed map

H|(X,E) -r^ H^C^U, ©(E))-^ H^X, ©(E)). One verifies imme-
diately that the above isomorphism does not depend on ^U and denote
this isomorphism by Lx . For any open subset X' C X we have a
commutative diagram :

Hf(X,E)-12^ H^X, (£)(E))
\ Lx' , i

H§ (X', E) —> H^ (X', © (E))

6) Proof of Theorem 2

We shall suppose q > 0 since the case q = 0 is well known.
Let ^ = (U^.)^N be a locally finite Stein covering of Y and
D C X having properties a), b), c) from Corollary 2. Put D' = D n Y,
U,' = U, H D ̂  = (UJ)^N = a locally finite open covering of
D'. Let V/ = (V^),eN ^e a partition of unity with respect to

c\Jit and let E be a holomorphic vector bundle over D such that

^ID-^ ®(E).
Consider the linear continuous map

R:ZQW,^) —> ZW,E)
obtained by composition of the maps

Z^,^)—> ZW,^)-^ ZW, ®(E))-^ ZW,E).
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Let V be an open neighbourhood of 3Y and let ^ E C ° ° ( V , R )
be a strongly ^-pseudoconvex function such that

V O Y = { jceV|^(x)< 0}.

Let (p,),eN c 9Y n D be a dense subset of points of 8Y n D , p^ p .
for i ^ j .

For each 7 G N we may find a neighbourhood V. CC V Fi D
of pj and we may find in Vy:

- ^-discs D^/r) 0<r<r^ v G N * having the properties
from the proof of [4, Theor6me 3]

- L y C V ^ closed submanifolds such that L . H Y = {p.} (here
Ly corresponds to the set A in the proof of [4, Proposition 6])

- differential forms ^ G Z" (V, \ L,, E) (a G N9 + 1) such
that the following holds :

for any element of the form tj = ^ c^ r ^+ i c^GC (the sum being
a

finite and not all of the c^ 's being zero) there exists an E*-valued
(q , 0) holomorphic form 7^ on V .̂ (E* is the dual of E) such

that lim | F 7. A t , \ = oo.
v^ °° J ^v j ( r j )

Let P , e C o ° ( V , R ) , p ^ > 0 , p , | L , = 0 ,^ .>0 on 8Y\{p,} and
choose ê . > 0 such that ^ — ê . p^ is strongly ^-pseudoconvex
on V. Putting Y .̂ = Y U {x C V |<^(x) - e^.Oc) < 0} we get
Y\{p,} C Y, ,p,G3Y n 3Y, and Y, H L .̂ = 0.
Take now A, G C^ (V^., R), hj > 0, hj (p,) > 0 and ej > 0
such that ^? — €j py — e^ h^ is strongly <7-pseudoconvex on V and
put V; = {x C V, | ^p(x) - e, p,(^) - e;. A,(;c) < 0} and Y; = Y^ U V;..
Then V^ is an open neighbourhood of p^ , Y .̂ n Vj = Y. n V. and
Yj is strongly ^-pseudoconvex, hence dim^ H9 + 1 (Yj , ̂ ) < oo.

Let S^.CZ f f(Y,nV^E) be the linear span of the elements
of the form r^i (aCN^1) and let K, C H^Y^.H V^., g?) be
the image of S. by the map

6^.: Z^(Y, n V,, E) -^ H^(Y, n V, ,§?)
obtained by composing the maps
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z .̂ n v^., E) —^ HJ(Y^ n v^., E)
LY;^ H^Y, n V,, ©(E)) -^ H^Y, n V,, ̂ ).

By [4, Proposition 6] we have dim^K^00. By Mayer-Vietoris
exact sequence

H^Yp^OH^V;,^)-^ H^nV^S?)^ H^^Y;,^)
and by the conditions dime K, =0°, dime H^1 (Yj, g?) < oo there
exists d y G K y \ { 0 } such that j3,(dy) = 0. Let r, e Sy such that
6^( ̂ .) == d, and let S, e H^ (Y, ,^), v^ G H9 (Vj, ̂ ) such that
S/ IY, n v, "' ^/l Y, n Vy == ^/ •

If V.' C Vy is a Stein neighbourhood of py we have
^ . |Y^nV; '=^ . Put £ / = S / I Y and let r, E Z4 CU, §;) be such
that {• is the image of Ty by the map

©<n
Z^^L,^)—^ H^ZL,^) —^ H^Y,^) .

Let ^ be the restriction of ry on D\ i.e. 7?y = R(rp.
We claim that for any point py and for any 7 € N there

exist a Stein neighbourhood U7, of p,, U7, C D, and an E-valued
C00 form \[ of type (0, q - 1) on V7, = Y 0 \j{ such that

a) ^/Iv7 = 8X^ for / ^•?

b)7?,|^: = t j ^ ̂  for 7 = s.

The claim can be proved like this : for any s i= j take U^ a
Stein neighbourhood of p y contained in Yy H D and for 5 = 7
take V\ === V;'.
Let 91/, be the Stein covering of V7, given by {U, H V ^ f G N} .
We have a commutative diagram

w

im, §<) —^ H^Ol7,, §?)-^ H^ , ®(E)) —^ Hf(V^ , E). y ^ € f ' } a ^ . " S 9 ^Y^^ ^^a ^ T 5 9

<K/, 4®^ ^^
» a T. id •

;)^ ^r^ ^"^ (pv/^
H^Y, §') ——- H^V^ ,§>) -1- H*'̂  ,©(£)) -^ H^V7, , ©(E))

which gives us a). Property b) can be deduced from the following
diagram
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a T9l/;
H^,^)——> H^,g;)—^ H^, ©(E))——^ Hj(V;:,E)——> H?(Y,HV,,E)

^<u :̂ ^ :̂ ^ ^ ^Y/nv,
H^Y,^)——^ H^V;:,^^^ H^V;:, ©(E))-^- H^V^GCE)) ^——H^Y, n V,, © (E))

-H^Y/OV, ,^)

Let now 7y be an E*-valued holomorphic (q, 0) form on V
such that

1) lim i f 7, A r . | = oo.
v ^ 00 ^D., .(r.) / /^^ 00 ^D^,(r,) / /

Using 1), relations a), b). Stokes' theorem and the fact that for

any 0<r<r^ we have U [Dy^r^\Dy^r)]CCD1 it follows
that

2) Urn if . 7; AT?. | = oo
v ^ °° ^j(r,) ; 7

and
3) 1 ^ ^ T/A^Kpi if 7 ^ 5^DI/ j ( r j ) i

where 0 < p^ < °°.

Let k. > 0 be sufficiently small real numbers such that for

| C.I < f c . , c . € C , the series V CyTy converges in Z9^,^) and
/ \ ^put 17 = R (^^T^EZ^D^E). If c^ 0 are chosen sufficiently
^ /

small then we get by 2) and 3) that

4) lim i f 7, AT? | = oo.
^°° ^,(r,) 7

Since U [D^/rp\D^/r)]CC D' we get that 4) holds for any
0 < r < r. from which we immediately deduce, via Stokes' theorem,

that V c,r. defines an element in H^Y,^) not extendable in
T

any point of 8Y. Theorem 2 is completely proved.
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