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STOCHASTIC HARMONIC MORPHISMS:
FUNCTIONS MAPPING THE PATHS

OF ONE DIFFUSION INTO THE PATHS
OF ANOTHER

by L. CSINK and B. 0KSENDAL

1. Introduction.

Let D be a domain of the complex plane C and let g : D -> C be
(non-constant) analytic. If B^ denotes the Brownian motion in C starting
at x e D, then a famous theorem of P. Levy states that — up to the exit
time of D — g(Bf) is after a change of time scale Brownian motion
starting at g(x). A proof of the Levy theorem based on stochastic
integrals can be found in McKean [14]. Bernard, Campbell and Davie [1]
extended this result to R", giving a characterization of the functions which,
in the sense above, preserve the paths of Brownian motion.

In this article we investigate the following more general situation : Let
(X,W), (Y.AP^ be diffusions on sets ^ c: R^ IT c.W
respectively.

Let U c: V be open and <p : U -> IT continuous, non-constant.
When will (p map the paths of X, into the paths of Y( ? In Section 2 we
give a precise formulation of this problem. Intuitively we consider the
processes <P(X() up to the exit time for X^ from U combined with Y(
from then on, and ask whether this process, after a change of time scale,
can be identified with the Y^-process.

In Section 3 we state and prove the main result of this paper
(Theorem 1). This result gives several characterizations of such functions
q>. One of these characterizations is the following:

(ii) a[f o (p](x) = Hx)d [/]<PW); x e U
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for all smooth functions /, where OC and (X denote the characteristic
operators of X^ and Y(, respectively, and \(x) ^ 0 is continuous,
positive except on a set with empty X-fine interior.

In Section 4 we give some examples and applications of Theorem 1 : a)
First we illustrate how the Levy theorem (and the Bernard, Campbell,
Davie-extension) follows from this result (Corollary 1). b) Second, if we
apply the result to the special case when ^ == ̂  and <p(x) = x, we
obtain that if two diffusions have the same hitting distributions, then one
of them can be obtained from the other by a change of time scale
(Corollary 2). This was proved for more general Markov processes by
Blumenthal, Getoor and McKean [3], [4]. c) Another characterization
obtained in Theorem 1 is that

(iv) d\f\ = 0 in W => a\fo <p] = 0 in (p-^W)

for all open sets W c= ̂  and all smooth functions /. In other words, if
/ is harmonic in W with respect to the process Y( then / o (p should
be harmonic in (p'^W) with respect to X,. In the context of harmonic
spaces such functions are called harmonic morphisms. They have been
studied by Constantinescu and Cornea [5], Fuglede [II], [12], Sibony [17]
and others. So the functions (p above represent stochastic versions of the
harmonic morphisms, and we find it natural to call them stochastic
harmonic morphisms. In Corollary 3 we prove that such functions are
finely continuous and finely open. The last property has been established
by Constantinescu and Cornea [5] in the non-probabilistic setting of
Brelot harmonic spaces, d) Theorem 1 can also be used to answer
converted types of problems, such as : Given a class of functions (p, find
all diffusions X,, Y( (if any) such that the functions (p map the paths of
X^ into the paths of Y( . If such diffusions can be found, they might be
useful in the investigation of the properties of the functions (p. For
example, on the basis of the many interesting applications of Brownian
motion to complex analysis due to the Levy theorem, (see for example
B. Davis [8]) it is natural to ask:

Are there any other diffusions X^, Y( in C than Brownian motion
such that all analytic functions (p map the paths of X, into the paths of
Y, ? We give a negative answer to this question (Corollary 4).

In the case when X^ = Y( this problem was studied (and answered in
the negative) for more general processes (continuous strong Markov
processes) by Oksendal and Stroock [16].
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2. Definitions and precise formulation of the problem.

Let (A^ft^R^) and (B^Q'^S^) be stochastic processes on some
topological space E (the state space).

Let T : 0' -> [0,oo] be a random time. Then we define a stochastic
process C, = C((.): Q' x ft" -> E called the x-welding of A, and B,, as
follows

(21) C^o")-^^9 t < T ( o / )
v / ^^^[B^W; ^T(CO'), ((o'.OeO'xO"

with probability law Q" defined by (with 0 ^ ^ < ^ < • • • < Q

(2.2) Q^eEl, . . . , C ^ e E ^ , 4 ^ T < 4 + J

= f XE.(Q.) ... XE,(C^,^p(T).S^p eE,^, . . . , B eEJdR-,
Jft'

where /K denotes the characteristic function (indicator function) of the set
K and E^ denote Borel sets in E.

For a more general construction of this kind, see Stroock and
Varadhan [18], Theorem 6.1.2.

We will apply this to the following situation :

Let (X^Q.P^) and (Y^A.,^) be diffusions on Borel sets ^ c: R^
and "W c: W, respectively, in the sense of Dynkin [9], [10]. Let U be an
open, connected subset of ^ with closure U c= V and let (p : U -> i^
be a continuous function.

Let T = Tu = inf{r>0;X^U} be the (first) exit time of U for X,.
Let \|/: (p(U) -> U be a right inverse of q>, i.e. a measurable function
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such that (p(vK}0) = Y for all ^6(p(0). Then we define the stochastic
process A((.) : ft -> (p(U) for t ^ T as follows :

A(((O) = (p(X((co)); coeft , 0 ^ t < T

with probability law (for ^e<p(0))

(2.3) P^(=Ei,...,A^EJ
= P^P^ecp-^E,),.. ..X^eq)-^),^],

where 0 ^ t^ < . . . < ? „ and E, are Borel sets.

Now let Z( be the Tu-welding of A( and Y( :

f24^ Z f -^f (P(x<(G ))) ; r<T(co); (T=Tu)
v • / tv 9 / IY,-,(,)(OE)); r ̂  T((O); (CO,G)) e ft x ft

with probability law Py according to (2.2):

(2.5) P^eE,,...,Z^eE,,,^T<^J

= Xv-^Ei)^) • • • Xtp-^E^C^)/^^!)^)
Jo

• P<p(XT)[Y^.-xeE,^,...,Y^eEJdPX.

Intuitively, the process Z^ is obtained by « gluing » together (P(X() up
to the exit time T of U with Y( for t ^ T . We are now ready to state a
precise formulation of our problem:

Characterize the functions (p such that Z^ — possibly after a change of
time scale — coincides with (i.e. has the same finite-dimensional distribution
as) Y,, for any choice of right inverse x|/ of (p.

If q> has this property, we will say that (p maps the paths of X, into
the paths of Y(.

In the following E", E^ and Ey will denote the expectation operator
with respect to the measures Px, F3' and f^, respectively, and Tp, ?o
and TH will be the (first) exit times from the sets F, G and H for the
processes Xy, Z^ and Y,, respectively.

The following connection between E^ and E*^ will be crucial:

LEMMA 1. — Let G c: (p(0) be open, g : G -> R continuous. Then

(2.6) E^(Z^)]=E^o(p(X^)],
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where H = (p'^G) awrf

^) = E^(Y^)]

fsr^ Y,-harmonic extension of g\8G to G (g\9G is the restriction of g
to the boundary 9G of G).

Proof. - Since ?o ^ TH we have

E^(Z^)]= E^(Z^).x^^] + EWZ^).^^]
= £^(Z^).^L(X^)] + E^z^.x^)],

where L = {x e 3H;(p(x) e G} = {x e aHn3U;(p(x) e G}. This gives,
using (2.5) and putting x = ^(y):

^(Z^)]

g^v)).?^ cdv] + f E^^Yni.P^ €di;]
J^H\L " JL G H

g^v)).?^ edv]+ (^(lO.P^ edr]
J^H\L JL "

= [^W^^^dv] = E^((p(X^))],

since g = ^ on 8H\L.

3. The main result.

If (A,,Q',P) is a stochastic process in ^ c R* and E c= ^ is a Borel
set then the hitting distribution of A, on E is the measure
d\s.(y) = P[AT e dy], where T = inf {r>0; A, e E} is the first hitting time
of E. In other words,

f(y) d[i(y) = E[/(AT)]; / bounded, continuous.

A Borel set V c: 'T is called X-finely open if the exit time Ty from V
is positive a.s., for every starting point x e V . A Borel set E c: ̂  is
called polar (for X) if

P^^O^eE] == 0 for all x,
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i.e. X, does not hit E, a.s. The Y-fmely open and Y-polar sets in ^ are
defined similarly.

Let (%, (% and A, A denote the characteristic operators and the
infinitesimal generators of X,, Y,, respectively. We will assume
throughout that X^ and Y( are diffusions in the sense of Dynkin [9], [10],
although some of the implications proved below can be obtained under
weaker hypotheses.

We will need that OC\f o q>] e C(U) (the real continuous functions on
U) for all / e C2(i^) (the twice continuously differentiable functions on
^Q, or at least for all / in a class of functions which is pointwise
boundedly dense in C(i^). This will give that
A[f o (p] = a\f o <p] e C(U) for all / e C2^), by Theorem 5.5, p. 143
in Dynkin [9]. For example, it will suffice to assume that (peC2^).

We will also assume one of the following two conditions: Either:
(A) (p is not X-fmely locally constant, i.e. ^ ~ l ( y ) does not contain

non-empty X-finely open sets, for y e W .

Or
(B) The points in (p(U) are polar for Y.

The assumption (A) or (B) is only needed in the implication
(i)^(ii).

We refer the reader to Blumenthal and Getoor [2] for information
about potential theory associated with Markov processes.

We are now ready to state and prove the main result of this paper:

THEOREM 1. — The following are equivalent:
(i) Z, and Y, have the same hitting distributions, for any choice of right

inverse v|/ of (p.
(ii) For all /eC2^), x e U we have

^[/o(p](x)=^).^[/1((p(x)),

where K(x) ^ 0 is continuous, ^(x) > 0 except possibly on an X-finely
nowhere dense set.

(iii) Z, coincides with Y( after a change of time scale. More precisely,
there exists a continuous function ^(x) ^ 0 on 0 with X(x) > 0 except
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possibly on a set with empty X-fine interior such that if we define (with
T = Tu)

. |\(X,)dM; ( ^ T

a.(co) = Jo

i HX^du + r - T; r > T
Ijo

and to P, be the inverse of CT( , then Zp fs a Markov process equivalent to
Y( (i.e. Zp Aas ̂  saw^ finite-dimensional distributions as Y() .

(iv) For all open sets W c= -yT and / e C^^T) w^ /ia^

6 l [ / ] = 0 m W = > ^ [ / o c p ] = 0 fn (p'^W).

Proo/. — (i) => (ii): Suppose Z, and Y( have the same hitting
distributions. »

First we observe that in this situation assumption (B) actually implies
assumption (A): Choose ^e(p(U). If ^>~l(y) contains an X-finely
open set G then

P^oO^eG] = 1 forall x e G .

Hence P^^C^Z^yl = 1, so {y} is not polar for Y, using (i).

Therefore in the proof of (i) => (ii) it will be enough to assume that (A)
, holds.

Let W be a neighbourhood of ^e(p(U). Let /eC2^). Then
letting D = (p'^W), we get from Lemma 1

E^[/(Y^)] - f(y) E^(Z^)] - f(y)T^y^J J \^ / !</ V——T^y^

E^Tw] E^(Tw]

_E3c[/o(p(X^)]-/((p(x)) E^Tp]
E^To] 'E^wl5

where / denotes the Y-harmonic extension of /|3W to W and
x = ^ f ( y ) .

By our assumption (A) on (p the set F = ^>~l(y) does not contain a
non-empty X-finely open set.

Therefore the point x is a fine boundary point of F.
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Then ' C o l y as W [ y. From Corollary p. 133 in Dynkin I [9] we have

E-[/ o <p(X^)] - / o <p(x) = E-f p0 a\S o (p](X,) At.
LJo J

So, by continuity of ^[/oq>] we obtain

r ^[/o^X^/ocpQc)lim ————————————— = a\f o (p](x).
W l y fc ^Dj

From this we get

E-[/oq>(X^)]--/o(pM
(3.2) hm——————,—————

W [ y c ^DJ

= ̂ [/oq>](x) + lim———— f (/o<p ~ / o q>)(u) d^(M).
wiy ^ Î DJ J^u

where ^ is the hitting distribution of Xf on 8D, using that

u e aD\5U => (p(u) 6 5W => / o (p(u) - / o q>(u) == 0.

8D n BU

Let g be any positive, bounded smooth (i.e. C2) function on i^ such
that g = 0 in a neighbourhood of x . Then, again from Corollary p. 133
in Dynkin [9]:

H^To]-1. f g(u) d^(u) < E^To]-1 .(E^X,)] - ̂ (x))
Jsu

= E^TDI-^E^ P t̂eKX,) ^1 -* a\g\(x) = o
LJo J

asDiF i . e .Wi^ .
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In particular, this holds if g is a positive constant, hence for any constant
and then also for any bounded, smooth function on S\3 . This proves that

(3.3) Hm———, f (/o<P-/o<P)0^00 = 0.
Wiy ^ I^Dj j8U

Combining (3.1)-(3.3) we get that

(3.4) 0[f o (p](x) = ^(x)6t[/]((p(x)),

where K(x) = lim 1^ ;̂ 0 ^ ^(x) < oo .
W l y b I^DJ

(If ^(x) = oo then d[f](^(x)) = 0 for all /, so y = (p(x) is a trap
for Y(, hence for Z^. Then (p^OO contains a non-empty X-fmely open
set. Consequently, assuming (A) we obtain ^(x) < oo).•

We want to prove that ^(x) > 0 except possibly on a set with empty
X-fine interior. Suppose that B c U is X-fmely open such that X,(x) = 0
in B.

Then a[f o <p](x) = 0 in B, for all /.

Therefore fo^(x)= (/o(p)d^, for all /.
JcB

Choose a bounded sequence {/„} of C2 functions such that

/nOO^l (where 3;=(p(x)) and /„-> 0 on (p(3B)\{^.

Then 1 = lim (/n0 (p) dng(F), where F = (p"1^). So (p = y on
n -*• oo i ^naB. J'B

Since the same must hold for any finely open subset of B, we conclude
that (p = y in B. This contradicts our assumption (A) on q>. Thus we
have proved that (i) => (ii).

(ii) => (iii): Assume that (ii) holds.

Define
[ [ ^(X^)du, t ^ T

^(o))=il°
^(X^) du + t - T; t > T
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where T = Tu is the first exit time of U for X^, as before. Note that
t -> Of is strictly increasing for a.a. CD, since X(x) > 0 except possibly on
a set F with empty X-fine interior (X, exits from F immediately, a.s.).
Let P^ be the inverse of CT,. Then if we put

^t = ^P(»

and let 0C denote the characteristic operator of X,, we have
Q^(x) == ^(x) for all x and, if X(x) > 0,

ag(x)=^x).0Cg(xV gG^,

where ̂  and 0)^ denote the domain of definition of Of and ^,
respectively. (See Dynkin I [9], p. 324.)

So from (ii) we obtain that

a[fi(n>(x))=a[fo^](x)
for all x such that ^(x) > 0.

By continuity this identity holds for all x e U. In particular,

(3.5) A[/1((p(x)) == A[f o (p](x), x E U,

where A and A denote the infinitesimal generators of Y( and X^,
respectively.

Let T = Tu be the first exit time of U for X,. Define M, as the T-
welding of (p(X,) and Y( :

M,=
(P(X,), «T

Y<P(XT) t>T

Let ^ denote the probability law of M(, ^y the expectation. Since
T = P'^r) we see that M( = Zp . So we have to prove that M( and Y(
have the same finite-dimensional distributions.

Let g be a smooth function on i^. Then

^[EWY,))] = A[EWY,))] = E^(Y,)]

and

(3.6) H^(Yo)]=^).
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On the other hand, if y = (p(x) then

(3.7) E^(M,)] = E^((p(X,).x,^(T)] + fE^T^Y^)]^,

and therefore

(3.8) ^{E^(M.)]}

= ̂  {E^^X.O.x^tCr)]} + f^ {E<^T)[g(Y,_.r)]} ̂

= ETOotpKX,)./,,^)] + fE^A^Y,^)]^

= E^A^X,)).̂ ,̂ '!')] + fE^MA^Y^)]^

=E^(M,)].

Moreover, E^Mo)] = g(y).
So the two functions V,: C^TT) -> R and W,: C2^) -^ R : t > 0

defined by
V^=Eyk(Y,)] and W^ = E^(M.)]; geCW

both satisfy the equation in M(

^ »,(g) = u,(Afe)), «og = g(y), g 6 C2^).

By uniqueness (see for example Dynkin I [9], p. 28, where the equation

— M, = Au, is considered, the same proof applies to get the above case),at
we must have V, = W,, i.e.

(3.9) E^(Y.)] = E^(M,)]; y e TT,
for all smooth, and hence all bounded measurable g on ' W .

Similarly we get that for ti, t > 0, g^ ,g smooth

(3.10) ^{E^(Y,,).g(Y^,)]}

^(f)^{E"k(Y,)]}^(Y,,6^)

g^ (tOE-'[A^(Y,)]P^(Y,, € dv) = E î (Y,,). A^(Y,, ̂ ,)].
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So the function a,: C2^) -> R defined by

a,fe) = E^i(Y,,MY^,)]; t > 0 , geC2^)

is the unique solution of the equation

^ u,{g) = u,(^(g)), u^g = E^(Y,,)^(Y,,)]; g 6 CW.

But we claim that the same equation is satisfied by

fc<fe)=e^i(M,,)g(M^.)].
To see this, we first consider

(3.11) ^ {£^I(M^(M^,).X(O,,,)(T)]}

= f X[o,,,)(s) • ̂  {^ (l')kl(Y,, _,)?(Y,, ̂ -^DP^XT e dr,T 6 ds)

= fx(o,,,)(s){£9(•')t^l(Y„_,)A^(Y,,„_,)]PX(XT e ̂ ,T 6 ds)

= 6^i(M,,)A^(M,^.)X(,,,>(T)].

Similarly,

(3.12) ^ {^^^(^^..^(M^.).^,.,,^)^)]}

= e^i(M,,)A^(M^.)X(,,.,,^)(T)].

Finally, when y = <p(x) we get using (2.5)

(3.13.) ^ {E)'kl(M,,)^(M^,).X(^^)(T)]}

= ̂  {E î (<p(X,,)) .^((p(X,, ̂ ))X(., +,,,)(T)]}

= E^t((p(X,,)).A[^o (P](X ,̂)X( ,̂,)(T)]
= E î ((p(X,,)). A^((p(X,, ̂ )). /(,, ̂ ,,,(T)].

So combining (3.11), (3.12) and (3.13) we obtain

^b,(g) = ̂  {E^(M,,^(M^.)]} = bM-
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And from (3.9) we have

bo(g) == ^(M^)^)] == ^[^(Y^)^)].

So by uniqueness we must have a^(g) = fc((^),i.e.

E^i(Y,^(Y,^)] = E^i(M^(M^)]; ^eCW.

Using induction on this argument we obtain

(3.14) E^(Y^) . . . g^)] = E^(M^) ... ^(M^)].

So {YJ and {MJ have the same finite-dimensional distributions.

Since {YJ is a Markov process w.r.t. the o-algebras ^\ generated by
{Y,;s<t}, it follows from (3.14) that {MJ is a Markov process w.r.t. the
a-algebras 3F^ generated by {M,;s^}, by the following well-known
argument:

If 0 ^ (i < • • • < tk < t < t + s and g , hj(l < ; ̂  fe) are
bounded Borel measurable functions from IT to R , then, if

h = MM,,) . . . h,(U^)

we have by (3.14) and the Markov property of Yy:

^[h. g(M^)] = E^(Y^) ... VY^(Y^)]

= E^[E(^(Y,) ... A,(Y^(Y^)|^)]
= E^(Y,) ... ^(Y^)EY^(Y,)]] = ^^^^^^(M,)]].

This implies that
^(M^i^^e^M,)],

so M, is a Markov process. This proves (iii).

(iii) ==> (iv): Assume (iii). Then if /eC2^) and W <= i^ is open,
we have

E^[/(Z^)] = ^[f(Y^)].

From Lemma 1 we have, letting V = (p^W),

(3.15) E^o^^E^Z^)],

where / is the Y-harmonic extension of /|5W to W.
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If d[f] = 0 in W, then /= / in W (see Corollary, p. 133 in
Dynkin [9]).

So if y = (p(x) we have

E-t/oq^)] = E-Lfo^X^)] = EWZ^)]
= ^[/(Y^)] = f(y) = /(j0 = / o (p(x).

This implies that <^[/o(p](x) = 0, and (iv) is proved.

(iv) ==> (i): Assume (iv) holds. Then if W is open in 'W and /
denotes the Y-harmonic extension of /13W to W, we have that / o q>
is X-harmonic in V = (p'^W). Therefore

fo^(x)=EX[fo^>(X^].

Using Lemma 1 we obtain, with y = (p(x),

E^[/(Y^)] = / o <p(x) = W[f o (p(X^)] = Ey[/(Z^)],

so Y( and Z, have the same hitting distributions.

This completes the proof of the theorem.

For the statements (ii) and (iv) in Theorem 1 the requirement that (p be
continuously extendable to 8V seems unnatural. And it turns out that if
we only assume (peC^U) then (ii) actually implies some kind of
« stochastic boundary continuity » of (p, in the following sense :

THEOREM 2. - Let V <= i^ be open, (peC^V). Assume that

a[fon>](x)=nx).d[f](n>(x))
for all feC2^) and all x e V , where Ux) > 0 is continuous on V,
^(x) > 0 except possibly on an X-finely nowhere dense set. Then for all
x e V

(3.16) lim(p(X,) exists a.s. P" on {o,<oo},
( T T -rJo

where T = Ty and CT( = ^(XJdu; t ^ T.
Jo

Proof. — Fix x € V. We apply Theorem 1 to an increasing sequence of

open sets U^, U^ c V and Q U, = V.
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Then if, as before, P( = a^1 and M^ = Z^ with probability law
p^ = p^ is the CT^ -welding of (p(Xp) and Y( (with T^ = T^ ) we have
that Mj^ for each n has the same finite-dimensional distributions w.r.t.
?„ as Y, w.r.t. P ='1^, y = (p(x). Choose 8 > 0. We can regard A
as the space of continuous Revalued functions on [0,oo).

If we equip A with the topology of uniform convergence on bounded
intervals, then by Prohorov's theorem (see for example Stroock and
Varadhan [18], Theorem 1.1.3) there exists a compact K c A such that

P(K) ^ 1 -e.

Let 0 < /i, T < oo and put

N,=sup{|Y,(cE))-Y,(&)|; |5-(|^,0^s,«T,G)eK}.

Then by compactness of K,
lim N^ = 0.
h [ 0

Now let

W^ = {((O.&^IM^-M^I ^ N,, for all 0 ^ s, t ^ T,
|5-r| ^ h, h > 0}.

Then
P^(W^) ^ P(K) > 1 - e for all n.

In particular,

1 - e <
P^IM^-M^I ^ N^ for all 0 < s, t ^ T A CT, , |s-(| ^ A , A > 0)

=P'(S^),

where

S^ = {(o;|(p(Xp^)-(p(X^)| ̂  N, for all 0 ^ 5 , t ^ T A c^,
|5-r| ^ /i,A > 0}.

So if
CO

S = Q S^, we have
n=l

P^(S) = lim P^) ^ 1 - e.
n-»oo
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Since e was arbitrary, this implies that

lim<p(Xp) exists a.s. when r f T A a,.

Since T was arbitrary, we conclude that

lim (p(X^) exists a.s. on {<j,< 00},
r t t

as asserted.

We now observe that if (peC^V), T = Ty and

(p(X,) = lim (p(X,) exists a.s. on {a,< 00},
( T T

then we can define the a,-welding of (p(Xn) and Y( in the same way as
before (section 2).

Thus we obtain a more general version of Theorem 1, Theorem 1',
where we drop the assumption that (p can be extended continuously to
8V and replace (i) by

(0 For any open set V c U, V c= U, the a^-welding ZY of (p(X,)
and Y, has the same hitting distributions as Y,, for any choice of right
inverse \|/ of q>.

4. Applications.

In this section we give some examples and applications of Theorem 1.

a) The Levy theorem : Apply Theorem 1 to the case when X,, Y^ are
Brownian motion processes on R^ and R^, respectively, where d,

p > 1. Since the characteristic operator of the Brownian motion is . A,

where A is the Laplacian, condition (ii) of Theorem 1 becomes

(4.1) A[/oq>](x) = 5i(x).ALn((p(x)); x e U

which is equivalent to

' HX) = |V(pf(x)|2; 1 < i < p, where (p = ((pi,.. .,(pp);
x e U

(4.2) • V(p,.V(p, = 0 when i + j\
1 < ^ J ^ P (here. denotes the scalar product)

A(p .̂ = 0 for 1 ^ j ^ p .
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If d = p = 2 then (4.2) is equivalent to say that (p is analytic (or
conjugate analytic), as assumed in the original Levy theorem. For general
d, p condition (4.2) was obtained by Bernard, Campbell and Davie [I],
using stochastic integrals, as necessary and sufficient for a continuous
function q> to be « Brownian path preserving » (BPP).

So in the Brownian motion case the equivalence of (ii) and (iii) in
Theorem 1 can be formulated as follows:

COROLLARY 1 (The Bernard-Campbell-Davie extension of the Levy
theorem). - Let U c: R^ be open and (p: U - ^ R ^ , (peC^U). Let
(B,,n,P^), (B^Q.P^) be Brownian motion process in R^ and W,
respectively,

Then the following are equivalent:

(I) (p = ((pi,.. .,(pp) satisfies (4.2).

(II) If we define

a,=a,(G))= f'lVcp^B,)!2^,
Jo

then a, is strictly increasing, for a.a. CD , and

(p(B,) = lim(p(B() exists a.e. on {(O;CT(O<OO}(P

where T is the exit time of U for B,. And the process M((CO,&); t ^ 0,
(o),®) e 0 x Ct defined by

f(p(B^-i) t < CT(T)
M(((O,O)) == ^ r ^

}(p(B,) + B,_^; t ^ a(T)

wfr/i probability measure P" x P° coincides with Brownian motion in R^.

Proof. - (II) => (I) follows directly from (iii) => (ii) in Theorem I',
since the assumption in (II) that CT, is strictly increasing replaces the
assumption in (iii) that ^(x) > 0 except possibly on an X-fmely nowhere
dense set.

(I) => (II): Note that if (I) holds then the critical points of (p
constitute a set with empty fine interior, in fact a polar set (see Fuglede [11],
p. 116). So (II) follows from Theorem 1'.
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b) Diffusions with the same hitting distributions.

Put -T == iir and define (p(x) = x for x e -T . Then the equivalence
of (i) and (iii) in Theorem 1 gives the following:

COROLLARY 2. - Two diffusions X,, Y, on -T c= R^ /iai^ r/i^ same
/nmn^ distributions if and only if one can be transformed into the other by a
change of time scale, or more precisely : There exists a continuous function
^(x) ^ 0 on Y^, ^(x) > 0 except possibly on a set with empty X-fine
interior, such that if we define

a,= f\(XJ^; t^O
Jo

then X^-i and Y( have the same finite-dimensional distributions.

This is a diffusion version of the more general result (valid for Hunt
processes) due to Blumenthal, Getoor and McKean [3], [4].

c) Harmonic morphisms.
If X( is a diffusion on an open set ^ c= R^ with characteristic

operator OC, then the set of functions
^ = {/eC2^); Of=0 in -T}

constitutes a ^P-harmonic space ([6]). So the functions (p : U -> iir
which map the paths of X, into the paths of a diffusion Y( on i^ <= R^
are by the equivalence of (iii) and (iv) in Theorem 1 exactly the harmonic
morphisms from the harmonic space associated with X to the harmonic
space associated with Y. This notion was introduced by Constantinescu
and Cornea [5] in the general setting of harmonic spaces, and it has also
been studied by Fuglede [II], [12], Ishihara [13] and Sibony [17] (for a
stochastic interpretation of harmonic maps between Riemannian manifolds,
see Darling [7] and Meyer [15]).

In view of the general correspondence between harmonic spaces and
Markov processes (see [6]) it seems natural to conjecture that such a
stochastic interpretation of harmonic morphisms can be extended to more
general Markov processes.

As an application we note the following immediate consequence of
Theorem 1 :

COROLLARY 3. - Let (peC^U) be a stochastic harmonic morphism (i.e.
(p satisfies (iv) of Theorem 1).
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(I) Then (p is X — Y finely continuous.
(II) Assume, in addition, that either

(A) (p is not X-finely locally constant or
(B) the points of (p(U) are polar for Y.

Then (p is X — Y ^n^ op^n.

Remark. — The conclusion in (II), under the assumption (B), was
proved by Constantinescu and Cornea [5] (Theorem 3.5), in the (non-
probabilistic) setting of ^P-harmonic spaces.

Proof of Corollary 3.

(I) Let W c= -W be a Borel set, let x e U n (p'^W) and y = (p(x).
Then if x is not in the X-fine interior of (p'^W), X^ leaves (p'^W)
immediately, a.s.

Therefore (p(X,) leaves W immediately, a.s.
But then the hitting distribution on ^\W for Z, is the unit point

mass at y , 8y. Since (iv) => (i) in Theorem 1 without the assumptions (A)
or (B), the hitting distribution for Y( on ^T\W is 8y as well. So if we
let

T = i n f { r > 0 ; Y ^ W } ,

then T < oo and Y-i = y a.s. P y .

So y is regular for ^\W w.r.t. Y, by Theorem 11.4 in Blumenthal
and Getoor [2], i.e. P^T^^l.

Hence W is not Y-finely open.
(II) Choose V finely open in U. Then for all x e V, X^ stays in V

for a positive period of time a.s. P\ So Z< stays in (p(V) for a positive
period of time a.s. F^, when y = (p(x). By (iii) of Theorem 1 the same
must hold for Y( w.r.t. P3', so (p(V) is Y-finely open.

d) A converse of the Levy theorem.

Finally we give an example to illustrate how Theorem 1 can be used in
the investigation of problems where the function (or class 0 of functions)
(p is given and one asks for all diffusions X^, Y( such that (p maps the
paths of X( into the paths of Y( . We think that this can be a fruitful point
of view in the investigation of properties of this class of functions.
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In our example we choose as our function class <D the family of all
analytic functions (p on a fixed open set U c: C, the complex plane.
From the Levy theorem we know that if X^ = Y( = B,, the Brownian
motion, then every (p e <S> maps the paths of X, into those of Y( . The
next result says that this is essentially the only pair of diffusions X,, Y(
with this property:

COROLLARY 4 (Converse of the Levy theorem). — Let X,, Y, be
diffusion processes on U and C, respectively, where U c: C is open.
Suppose that for all non-constant analytic (p : U -> C the x-welding of
(P(X() and Y( has the same hitting distributions as Y,, where T = Tu is
the first exit time of U for X(. Then X, and Y( is the Brownian motion on
U and C respectively, modulo a change of time scale.

Remark. — In the case when we assume X^ = Y(, this result is a
consequence of a result obtained in [16], valid for all path-continuous
Markov processes X<.

Proof of Corollary 4. — Let

82 92 92 . 8 - 9a^ a^+ ̂ ^-^ ̂ ^+fci^^

and

a = AH a~2 + A^ .~T~ + ^2 TT + B! ~^~ + ®2 T-9x2 9x9y 9y2 9x 9y

be the characteristic operators of X(, Y( respectively. Then if
(f>(x,y) = u(x,y) + iv(x,y): U -^ C is analytic we obtain from equation
(ii) in Theorem 1 and the Cauchy-Riemann equations that

1) a^.u2, + a^u^Uy -h 022'u2 = \(x,y)A^(u,v)

2) - la^.Uy + a^[ul-u2] + la^.u^Uy = \(x,y)A^(u,v)

3) a^.u2 - a^Uy + a^'ul = \{x,y)^{u,v)

4) {a^-a^)u^ 4- a^y -h b^ + b^Uy = \(x,y)B^(u,v)

5) (fl22-^n)^cy -- ^12^ - b^Uy 4- ̂ x = \(x,y)B2(u,v).
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Applying this to u(x,y) == c + x, v(x,y) = d + y , we obtain

iy ^n (^y) = ^c.d(^An(c+x,d+^)
2)' ^12^) == ^(^y)Ai2(^+^+}0

3)' 022 (X,y) = \:.d(x,^)A22(c+X,d+>Q

4)' b, (x,y) == ^,d(^)Bi (c + x,d + }Q

5y b^(x,y) = ^.d(^^)B2(c+x,d+^).

So AnM), A^M), A22M), Bi(c,d) and B^M) are all
proportional. Therefore, by performing a time change on Y(, we may
assume they are constants. Performing a time change on X,, we obtain
that dij, bi are constants also, 1 ^ ;, j ^ 2 . From 1) we obtain that
^c<p = C2^ when C is constant, but if this is applied to 4) and 5) with
C = - 1, we obtain Bi = B2 = 0. So by 4)' and 5)' we also have
b^ = b^ = 0. Therefore 4) and 5) are reduced to

4)" (flu - a^)u^ + a^u^y = 0
5Y (a^-a^)u^ - a^Uyy = 0.

With u(x,y) = xy 4)" gives a^ = 0 and 5)" gives flu = a^. So
A^2 = 0 also and A^ = A^. That completes the proof of Corollary 4.
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