ALEXANDRU BUIUM

Degree of the fibres of an elliptic fibration

<http://www.numdam.org/item?id=AIF_1983__33_1_269_0>
DEGREE OF THE FIBRES OF AN ELLIPTIC FIBRATION

by Alexandru BUIUM

1. Statement of the results.

Let \(f : X \rightarrow B \) be an elliptic fibration over the complex field i.e. a morphism from a smooth complex projective surface \(X \) to a smooth curve \(B \) such that the general fibre \(F \) of \(f \) is a smooth elliptic curve and no fibre contains exceptional curves of the first kind. Consider the following subsets of \(\text{Pic}(X) \):

\[
\begin{align*}
N_e &= \{ \mathcal{L} \in \text{Pic}(X), \mathcal{L} = \mathcal{O}_X(D) \text{ for some effective } D \} \\
N_s &= \{ \mathcal{L} \in \text{Pic}(X), \mathcal{L} \text{ is spanned by global sections} \} \\
N_a &= \{ \mathcal{L} \in \text{Pic}(X), \mathcal{L} \text{ is ample} \} \\
N_v &= \{ \mathcal{L} \in \text{Pic}(X), \mathcal{L} \text{ is very ample} \}
\end{align*}
\]

and let \(n_e, n_s, n_a, n_v \) be the minima of the non-zero intersection numbers \((\mathcal{L}, F) \) when \(\mathcal{L} \) runs through \(N_e, N_s, N_a \) and \(N_v \) respectively. In [3] p. 259, Enriques investigates the possibility of finding a birational model of \(X \) in the projective space \(\mathbb{P}^3 \) such that the fibres of \(f \) have degree \(n_e \). His analysis suggests the following problem: find the minimum possible degree of the fibres of \(f \) in an embedding of \(X \) in a projective space. In other words: find \(n_v \).

There obviously exist inequalities: \(n_e \leq n_s \leq n_v \) and \(n_a \leq n_v \).

Let \(m \) denote the maximum of the multiplicities of the fibres of \(f \). The aim of this paper is to prove the following propositions:

PROPOSITION 1. — Equality \(n_e = n_s \) holds if and only if \(n_e \geq 2m \).
Proposition 2. — Equality $n_a = n_v$ holds if and only if $n_a \geqslant 3m$.

The statements above are consequences of the following more precise results:

Theorem 1. — There exists a constant C_1 depending only of the fibration such that for any effective divisor D on X which does not contain in its support any component of any reducible fibre and such that D is either reduced dominating B, or ample, the following conditions are equivalent:

1) $(D.F) \geqslant 2m$.

2) $\mathcal{O}_X(D) \otimes f^*L$ is spanned by global sections for any $L \in \text{Pic}(B)$ with $\deg(L) \geqslant C_1$.

3) $\mathcal{O}_X(D) \otimes f^*L$ is spanned by global sections for some $L \in \text{Pic}(B)$.

Theorem 2. — There exists a constant C_2 depending only on the fibration such that for any ample sheaf $\mathcal{E} \in \text{Pic}(X)$ the following conditions are equivalent:

1) $(\mathcal{E}.F) \geqslant 3m$.

2) $\mathcal{E} \otimes f^*L$ is very ample for any $L \in \text{Pic}(B)$ with $\deg(L) \geqslant C_2$.

3) $\mathcal{E} \otimes f^*L$ is very ample for some $L \in \text{Pic}(B)$.

Our proofs are based on Bombieri's technique from [2]. Therefore the main point will be to prove that certain divisors on X are numerically connected.

2. Two lemmas.

Lemma 1. — Let D be an effective divisor on X which does not contain in its support any component of any reducible fibre. Suppose D is either reduced or ample and put $T = D + a_1 F_1 + \ldots + a_p F_p$ where F_i are distinct fibres and $a_i \in \mathbb{Q}$, $a_i > 0$ for $1 \leqslant i \leqslant p$. Suppose furthermore that $a_1 + \ldots + a_p \geqslant 2$. Then we have:

1) If $(D.F) \geqslant 2m$ then T is 2-connected.

2) If $(D.F) \geqslant 3m$ and D is integral and ample then T is 3-connected.
Proof. Suppose $T = T_1 + T_2$ where $T_k > 0$ and

$$T_k = D_k + A_k$$

$$D_1 + D_2 = D$$

$$A_1 + A_2 = A = a_1 F_1 + \ldots + a_p F_p .$$

We get

$$(T_1, T_2) = (D_1, D_2) + (D_1, A_2) + (D_2, A_1) + (A_1, A_2).$$

If in addition D is integral we may suppose $D_2 = 0$. Since by [6] ample divisors are 1-connected it follows that in any case $(D_1, D_2) \geq 0$. On the other hand we have $(D_1, A_2) \geq 0$ and $(D_2, A_1) \geq 0$ because any common component of D and A must be a rational multiple of a fibre. We may write $A_2 = Z_1 + \ldots + Z_p$ where $Z_i \leq a_i F_i$ for $1 \leq i \leq p$. We get

$$(A_1, A_2) = (A - A_2, A_2) = -(A_2^2) = -(Z_1^2) - \ldots - (Z_p^2).$$

By [1] p. 123 we have $(Z_i^2) \leq 0$ for any i. Suppose first that there exists an index i such that $(Z_i^2) < 0$. By [5], $(Z_i^2) = -2$, consequently $(T_1, T_2) \geq 2$. If an addition D is integral and ample then $A_2 \neq 0$ (because otherwise $T_2 = 0$) hence $(D_1, A_2) \geq 1$ and we get $(T_1, T_2) \geq 3$.

Now suppose $(Z_i^2) = 0$ for any i. Then by [1] p. 123, we must have $Z_i = c_i F_i$ where $c_i \in \mathbb{Q}$, $0 \leq c_{i2} \leq a_i$, hence

$$A_1 = c_{i1} F_1 + \ldots + c_{p1} F_p$$

where $c_{i1} + c_{i2} = a_i$. If both D_1 and D_2 dominate B we get $(D_k, F) \geq 1$ for $k = 1, 2$ hence

$$(T_1, T_2) \geq (D_1, A_2) + (D_2, A_1) \geq c_{i2} + \ldots + c_{p2} + c_{i1} + \ldots + c_{p1}$$

$$= a_1 + \ldots + a_p \geq 2$$

and we are done. If $D_k = 0$ for $k = 1$ or $k = 2$ then $A_k \neq 0$ hence there exists an index i_0 such that $c_{i_0 k} > 0$. Now if m_0 denotes the multiplicity of F_{i_0} we have $c_{i_0 k} \geq 1/m_0 \geq 1/m$. Consequently we get $(T_1, T_2) = (A_k, D) \geq c_{i_0 k} (D, F) \geq (D, F)/m$ and we are done again. Finally if $D_k \neq 0$ and D_k does not dominate B we get $(T_1, T_2) \geq (D_1, D_2) = (D, D_k) \geq (D, F)/m$ and the lemma is proved.

Lemma 2. Let m_1, \ldots, m_p denote the multiplicities of the multiple fibres of f. Then for any reduced effective divisor D not
containing in its support any component of any reducible fibre we have \((D^2) \geq - (D \cdot F) (\chi(\Theta_X) + \sum_{j=1}^{r} (m_j - 1)/m_j)\).

Proof. — We may suppose \(D = D_1 + \ldots + D_t \) where \(D_i \) are integral, distinct, dominating \(B \). For any \(i = 1, \ldots, t \) let \(E_i \) be the normalization of \(D_i \). By adjunction formula and by Hurwitz formula we get:

\[
(D_i^2) + (D_i \cdot K) = 2p_a(D_i) - 2 \geq 2p_a(E_i) - 2 \geq [E_i: B] (2p_a(B) - 2).
\]

Consequently:

\[
(D^2) \geq \sum_{i=1}^{t} (D_i^2) \geq \left(\sum_{i=1}^{t} [E_i: B] \right) (2p_a(B) - 2) - (D \cdot K)
= (D \cdot F) (2p_a(B) - 2) - (D \cdot F) (2p_a(B) - 2 + \chi(\Theta_X))
+ \sum_{j=1}^{r} (m_j - 1)/m_j
\]

because of the formula for the canonical divisor \(K \) (see [4] p. 572) and we are done.

3. Proofs of Theorems 1 and 2.

Suppose \(m_1 Y_1, \ldots, m_r Y_r \) are all the multiple fibres of \(f \) each having multiplicity \(m_j \), \(1 \leq j \leq r \) and take \(b_j \in B \) such that \(m_j Y_j = f^*(b_j) \). By the formula for the canonical divisor \(K \) we may write

\[
\Theta_X(K) = f^* M \otimes \Theta_X \left(\sum_{j=1}^{r} (m_j - 1) Y_j \right)
\]

where \(M \in \text{Pic}(B) \), \(\deg(M) = 2p_a(B) - 2 + \chi(\Theta_X) \).

Furthermore for any points \(x, x_1, x_2 \) on \(X \) denote by \(p: \widetilde{X} \longrightarrow X \) and \(q: \widetilde{X} \longrightarrow X \) the blowing ups of \(X \) at \(x \) and \(\{x_1, x_2\} \) respectively and let \(W, W_1, W_2 \) be the corresponding exceptional curves. Put \(y = f(x), y_1 = f(x_1), y_2 = f(x_2) \).

Proof of Theorem 1. — To prove 1) \(\Longrightarrow \) 2) it is sufficient by [2] to prove that \(H^1(\widetilde{X}, p^* \Theta_X(D) \otimes p^* f^* L \otimes \Theta_{\widetilde{X}}(- W)) = 0 \) for any \(x \in X \) hence by Bombieri-Ramanujam vanishing theorem [2] to prove that the linear system
contains an 1-connected divisor with self-intersection > 0. Now by Lemma 2 the self-intersection of Λ is

$$(D^2) - 2(D.K) + 2(D.F) \deg(L) - 4 > 0$$

provided $\deg(L) \geq \alpha_1$ where α_1 is a constant depending only on the fibration. Now by Riemann-Roch on B we get that

$$|L \otimes M^{-1} \otimes \Theta_B(-b_1 - \ldots - b_r - 2y)| \neq \emptyset$$

provided $\deg(L) - \deg(M) - r - 2 \geq p_a(B)$. Hence there exists a constant α_2 depending only on f such that for $\deg(L) \geq \alpha_2$ we may find a divisor $b \in |L \otimes M^{-1}|$ with $b_1 + \ldots + b_r + 2y \leq b$. It follows that

$$G = p^*(D + f^*b - \sum_{j=1}^r (m_j - 1)Y_j) - 2W \in \Lambda.$$

Now for $\deg(L) - \deg(M) - \sum_{j=1}^r (m_j - 1)/m_j \geq 2$ the divisor $D + f^*b - \sum_{j=1}^r (m_j - 1)/m_j Y_j$ must be 2-connected by Lemma 1. It follows by a standard computation that in this case G is 1-connected. Hence we may choose $C_1 = \max \{\alpha_1, \alpha_2, \alpha_3\}$ where $\alpha_3 = \deg(M) + \sum_{j=1}^r (m_j - 1)/m_j + 2$ and we are done.

2) \implies 3) is obvious.

To prove 3) \implies 1) we may suppose that L is trivial and that D has no common components with Y, where mY is some fibre of multiplicity m. We only have to prove that $(D.Y) \geq 2$. Suppose $(D.Y) = 1$. By Riemann-Roch on the (possibly singular) curve Y we get

$$h^0(\Theta_Y(D)) = h^0(\omega_Y(-D)) + \deg(\Theta_Y(D)) + \chi(\Theta_Y) = h^0(\Theta_Y(-D)) + 1$$

because the dualizing sheaf ω_Y is trivial. Now since $\Theta_Y(-D) \subset \Theta_Y$ we get $H^0(\Theta_Y(-D)) \subset H^0(\Theta_Y)$. Since by [5], $H^0(\Theta_Y)$ consists only of constants and since $\Theta_Y(-D)$ is not trivial we get $h^0(\Theta_Y(-D)) = 0$ hence $h^0(\Theta_Y(D)) = 1$. Since $\Theta_Y(D)$ is not trivial, it follows that $\Theta_Y(D)$ cannot be spanned by global sections, contradiction.
Proof of Theorem 2. — Note that 2) \(\implies \) 3) is obvious and that 3) \(\implies \) 1) follows easily considering as above a multiple fibre of the form \(mY \) and noting that \(Y \) must have degree at least 3 with respect to any very ample divisor because \(p_a(Y) = 1 \).

Let us prove 1) \(\implies \) 2). Start with an ample \(\mathcal{E} \in \text{Pic}(X) \) with \((\mathcal{E}, F) \geq 3m \), put \(\mathcal{N} = \mathcal{E} \otimes f^*L \) for \(L \in \text{Pic}(B) \) and let us prove first that \(|\mathcal{N}| \) has no fixed components among the components of the reducible fibres of \(f \) provided \(\deg(L) \geq \beta_1 \) for some constant \(\beta_1 \). Let \(Z_1 \) be a component of a reducible fibre \(F \) and look for a divisor in \(|\mathcal{N}| \) not containing \(Z_1 \) in its support. Note that by [5], \(Z_1 \) is smooth rational with selfintersection \((Z_1^2) = -2 \). According to [5] there are two cases which may occur: either \((Z_1, Z_2) \leq 1 \) for any other component \(Z_2 \) of \(F \), or \(F = b(Z_1 + Z_2) \) for some natural \(b \) where \(Z_2 \) is smooth rational with \((Z_2^2) = -2 \) and \((Z_1, Z_2) = 2 \). In the first case put \(Z = Z_1 \) and choose a point \(p \in Z \). In the second case, since \(b(\mathcal{E}, Z_1) + b(\mathcal{E}, Z_2) = (\mathcal{E}, F) \geq 3m \geq 3b \) we must have \((\mathcal{E}, Z_k) \geq 2 \) for \(k = 0 \) or \(k = 1 \). Put in this case \(Z = Z_1 + Z_2 - Z_k \) and take \(p \in Z_1 \cap Z_2 \). It will be sufficient to find a divisor in \(|\mathcal{N}| \) not passing through \(p \). We have the following exact sequence:

\[
0 \rightarrow H^0(\mathcal{N}(-Z)) \rightarrow H^0(\mathcal{O}_X) \rightarrow H^0(\mathcal{O}_{p_1}(c)) \rightarrow H^1(\mathcal{N}(-Z))
\]

where \(c = (\mathcal{E}, Z) \geq 1 \). It is sufficient to prove that \(H^1(\mathcal{N}(-Z)) = 0 \).

We use Ramanujam's vanishing theorem [6]. By Serre duality it is sufficient to prove that

\[
(\mathcal{N}(-Z - K)^2) > 0 \quad \text{and} \quad (\mathcal{N}(-Z - K).R) \geq 0
\]

for any integral curve \(R \). Now

\[
(\mathcal{N}(-Z - K)^2) = (\mathcal{E}^2) + 2(\mathcal{E}, F) \deg(L) - 2 - 2(\mathcal{E}, Z) - 2(\mathcal{E}, K) \>
2(\mathcal{E}, F) (\deg(L) - 1 - d) - 2
\]

where \(d \in \mathbb{Q}, K \equiv dF \). Consequently the selfintersection is \(> 0 \) for \(\deg(L) \geq d + 2 \).

To check the second inequality suppose first that \(R \) is contained in a fibre \(F \). We get \((\mathcal{N}(-Z - K).R) = (\mathcal{E}, R) - (Z, R) \geq 0 \) because the only case when \((Z, R) = 2 \) is \(F = b(Z_1 + Z_2) \) and \(R = Z_k \). Now if \(R \) dominates \(B \) we get

\[
(\mathcal{N}(-Z - K).R) = (\mathcal{E}, R) + (F, R) \deg(L) - (Z, R) - (K, R)
\>
(F, R) \deg(L) - (F, R) - (F, R) \geq 0
\]
for $\deg(L) \geq d + 1$, and we are done. Now if β_1 is chosen also such that $\beta_1 \geq 2p_d(B)$ it follows that \mathcal{M} is still ample hence by Theorem 1 the linear system $|\mathcal{E} \otimes f^*L|$ is ample and base point free provided $\deg(L) \geq \beta_2 = \beta_1 + C_1$. By Bertini's theorem the above system contains an integral member D. To prove 1) \implies 2) it is sufficient by [2] to prove that

$$H^1(\tilde{X}, p^*\mathcal{O}_X(D) \otimes p^*f^*L \otimes \mathcal{O}_X(-2W)) = 0$$
$$H^1(\tilde{X}, q^*\mathcal{O}_X(D) \otimes q^*f^*L \otimes \mathcal{O}_X(-W_1 - W_2)) = 0$$

for any $x, x_1, x_2 \in X$, provided $\deg(L) \geq \beta_3$ for some constant β_3; in this case the constant $C_2 = \beta_2 + \beta_3$ will be convenient for our purpose.

Now exactly as in the proof of the Theorem 1 we may find a constant β_3 such that for $\deg(L) \geq \beta_3$ the linear systems

$$|p^*\mathcal{O}_X(D - K) \otimes p^*f^*L \otimes \mathcal{O}_X(-3W)|$$
$$|q^*\mathcal{O}_X(D - K) \otimes q^*f^*L \otimes \mathcal{O}_X(-2W_1 - 2W_2)|$$

have strictly positive selfintersections and contain divisors of the form

$$G_1 = p^*\left(D + \sum a_iF_i\right) - 3W$$
$$G_2 = q^*\left(D + \sum b_iF_i\right) - 2W_1 - 2W_2$$

with $a_i, b_i \in \mathbb{Q}, a_i \geq 0, b_i \geq 0, \sum a_i \geq 2, \sum b_i \geq 2$ and where F_i are fibres. Then by Lemma 1 the divisors $D + \sum a_iF_i$ and $D + \sum b_iF_i$ are 3-connected hence by a standard computation, G_1 and G_2 are 1-connected and the Theorem is proved.

BIBLIOGRAPHY

Manuscrit reçu le 20 avril 1982.

Alexandru Buium,
Department of Mathematics
National Institute for Scientific
and Technical Creation
Bd. Pacii 220
79622 Bucarest (Romania).