MARIUS VAN DER PUT
Etale coverings of a Mumford curve

Annales de l'institut Fourier, tome 33,1n°1 (1983), p. 29-52
<http://www.numdam.org/item?id=AIF_1983__33_1_29 0>

© Annales de I’institut Fourier, 1983, tous droits réservés.

L’acces aux archives de la revue « Annales de I’institut Fourier »
(http://annalif.ujf-grenoble.fr/) implique ’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

NuMDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=AIF_1983__33_1_29_0
http://annalif.ujf-grenoble.fr/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Ann. Inst. Fourier, Grenoble
33,1 (1983), 29-52

ETALE COVERINGS OF A MUMFORD CURVE

by Marius van der PUT

Introduction.

For a Riemann surface X over C of genus = 2 the finite
unramified coverings Y —> X are easily obtained from the unifor-
mization of X . Indeed, from the universal covering

Je={z€C|Im(z) > 0} — X

with group I' = 7, (X) one obtains all possibilities for Y by
taking /N where N is a subgroup of I' of finite index.

For an algebraic curve X defined over a complete non-archi-
medean valued field K the situation is more complicated. In order
to obtain “enough” unramified coverings Y —> X one has to
suppose that X is a Mumford curve. On further distinguishes between
merely unramified (or €tale) coverings and analytic coverings. This
is done in section 1. In the next section the abelian étale coverings
of a Mumford curve over an algebraically closed field are constructed.
In section 3 the base field is a local field and the abelian unramified
extensions of the function field of the curve X are calculated. The
result of this section is due to G. Frey. We have presented here a
rigid-analytic proof of this theorem. For general background concern-
ing analytic spaces over K we referto [1] and [3].

1. Analytic coverings and étale coverings.

The field K is supposed to be algebraically closed and to be
complete with respect to a non-archimedean valuation. A morphism
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f: Y —> X of analytic spaces over K is an étale covering if f is
surjective and if f for every point x € X there exists an affinoid
subspace K of X containing x such that f~'(U) is a disjoint
union of affinoid subspaces V,(i € I) and such thateach f: V, — U
is a isomorphism.

Suppose that f: Y — X is a finite morphism. This means
that X has an admissible affinoid covering (X;),c; such that each
f7}(X;) is a non-empty affinoid subset of Y and such that each
O0x(X;) — Oy (f~1(X;)) is a finite injective map of affinoid algebra’s.
In case that f is finite on has: f is an etale covering if and only
if for each y € Y the map f %, @Y y (9x Ay) 1s an isomorphism.

Indeed, f S isomorphism implies that also f,": Oy , —> Ox ((,,
is an 1somorp}usm and that there are affinoid sets V,U containing
y and f(») such that f: V—> U is an isomorphism. Take x € X
and put f~'(x)={y,,...,»,}. Choose affinoid neighbourhoods
V; of y;- and U of x such that every V;,— U is an ismorphism.
After shrinking U we may suppose that the V, are disjoint and
that every point ¢t € U has n predimages in Y. Then clearly
fU)y=VvV,U...UV,, the V, are disjoint and each V,— U
is an isomorphism.

The morphism f is called an analytic covering if there exists
an admissible affinoid covering (X;);e; of X, an admissible cover-
ing (Y,),-eJ of Y by affinoid subsets and a surjective map 7:J — [
such that for all i:

() f7'(X;) is the disjoint union of the Y, with n(j) =i
(i) f: Yj —> X, is an isomorphism for each j with w(j) =i.

An analytic covering is certainly an étale covering. The map
f:K* — K* given by z+> z" (n>1 and n prime to char
K) provides an example of an étale covering which is not an analytic
covering, This is rather in contrast with the complex-analytic case
where the corresponding notions coincide. In the sequel we will
restrict ourselves to one-dimensional regular analytic spaces and
especially to complete non-singular curves over K. It is clear however
that many results will be correct for higher dimensional spaces.

LemMa 1.1. — Let f: Y — X be an étale (resp. analytic)
covering of non-singular complete irreducible algebraic curves. Then
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the minimal Galois extension g:Z —> X is also an etale (resp.
analytic) covering.

Proof — For the function fields of X,Y and Z we have the
inclusions F(X)CF(Y)CF(Z) and F(Z) is the minimal Galois-
extension of F(X) containing F(Y). Let Y,— X (i=1,...,5)
denote the morphisms corresponding to the subfields of F(Z) which
are conjugated with F(Y). Since each Y, —> X is an étale (resp.
analytic) covering the same holds for Y, xx ... xx Y, — X. In
particular Y, xx ... xxY, is non-=singular and complete and every
connected component is again an étale (resp. analytic) covering of
X. The canonical map Z—> Y, xx ... xx Y, induces an iso-
morphism of Z with a connected component.

This proves the lemma.

LemMA 1.2, — Let f: Y —> X be a non-constant morphism
between (non-singular, irreducible, complete) curves. The exists a
unique maximal decomposition YL x=Y LN Y, LN X
where Y, is a curve and f, is an étale covering. There exists a unique
maximal decomposition YL x=y "% Y, — X with Y,
a curve and f, an analytic covering. Moreover Y, —fl—> X factors
as Y, — Y, -2 X. If Y— X is Galois thenalso Y,— X

and Y, —> X are Galois.

Proof — One has to consider subextensions of F(X)C F(Y).
For subextensions F(Z,) and F(Z,) let F(Z;) denote the least
subfield containing F(X,) and F(X,). Then Z; —> X is an étale
(resp. analytic) covering if and only if Z, — X and Z,— X
are étale (resp. analytic) coverings.

1.3 Let now X denote the Mumford curve /I'; ' a Schottky
group with £ as set of ordinary points in P!. It is known that
€ —> X is the universal analytic covering of X. In particular
every finite analytic covering Y — X . has uniquely the form
QTy—> X where 'y is a subgroup of I' of finite index. The
étale coverings of X are hidden in £2. We introduce the follow-
ing notion: c¢: Q4 —> Q is a I'-equivariant covering if:

() c: Q4 —>  is a finite, connected, Galois, étale cover-
ing with group H.
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(ii) Every automorphism v €T’ of  lifts to an automorphism
6 of Q4. (i.e. €6 = vc).

Let G denote the group of analytic automorphisms & of 24
such that ¢6 = yc holds forsome yETI .

From the definitions one obtains a canonical exact sequence
of groups 1 — H—"> G—> I' —> 1. Let N denote a normal
subgroup of G of finite index such that NN H = {1}. With the
notations we can formulate the following results.

THEOREM 1.4. —

1) Q4/N is a non-singular, irreducible, complete curve over K.
The map /N —> QT = X is a Galois, étale-covering with Galois
group G/N. This map decomposes uniquely into

Qy/N— Q/a(N)—> X where §/n(N)—/> X
is the maximal analytic subcovering.

2) Let Y be an irreducible non-singular complete curve and let
f: Y—> X be a Galois, étale-covering. There exists a pair (§2x , N)
(unique up to isomorphism) and an isomorphism g: Y—> S24/N
such that the diagram Y —> X is commutative.

Q4/N

Proof. —

1) The construction of £24/N as a 1-dimensional regular analytic
space over K is very similar to the construction in [3] p. 105. One
can make this construction explicit by a choice of a fundamental
domain. Let FES be a good fundamental domain for the group
w(N) ([3] p. 28). Then F has the form P! —B, U...UB,, where
a(N) = (y,,...,7,) and B,,..., B,, are open discs such that the
corresponding discs B; are still disjoint and such that v, is an iso-
morphisms of B; — B; with B, —B,,, (i=1,...,a).

Let ﬁ', D B denote open discs such that the closed discs ﬁ;’ are
still disjoint. Put G = P! —B, U... UB,,. Then /m(N) can be
constructed by glueing the affinoid pieces G, B; — B, ,...,B;, — B,,
according to

(i) B — B, isglued to G over the subset B, — B;.
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Gi) for 1<i<a, T — B, is glued to Bj,, — B,;,, by using
the isomorphism 7;: B. B,— B,,,a — Biyg -

To obtam Q,/N we replace in the construction above the affi-

noid sets G, B — B,, Bf — B, by the subsets ¢~1(G), ¢~'(Bf — B)),
"(B — B,) of SZ* and v; by the unique element ¥; €N with

7’(7,') =7-

The only thing that one has to verify is that ¢~ !(G) etc are
affinoid subsets. Indeed, one can easily verify the more general state-
ment: “Let U—— V be a finite morphism of analytic spaces over
K. If V is affinoid then U is also affinoid.”

Using this construction of §£,/N and the given affinoid covering
of £,/N one can calculate that dimyg H'(Q,/N, ©®) <o and
finally prove that £,/N is actually a complete, irreducible, non-
singular algebraic curve over K. (See [3] p. 106-107). The only state-
ment that we still have to verify is the maximality of the analytic
subextension /m(N)—> X. The normal subextensions correspond
to normal subgroups M of G containing N. We have to show that
Q,/M—> QJI' is an analytic covering if and only if M2 H.

Put MO H = H, . We replace

Q,—> Q by Q) = Q,/H, = Q
and H by H = H/H,; G by G'=G/H; and M by M'= M/H,.
Again we have an exact sequence 1 — H'— G'— I'— |
and now M' N H'= {1}. We have to show Q, = Q if Q /M — Q/I
is an analytic covering. The hypothesis implies easily that Qj — Q
is a connected analytic covering. According to [3] p. 151, (3.4), one
has Q,— Q.

2) We consider the commutative diagram
Y —Yx, 2 =Q

The fibre product ' is as a set of points equal to
{(y, w)EYXQIf(y) = m(w)}.
One can easily give §' the structure of an analytic space over K since
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m is an analytic covering. We denote by G, the Galois group of
Y |X. The group Gy XxTI' acts as group of analytic automorphisms
on ' in the following way: (o, %) (¥, w) = (6(»), v(w)). Easy
arguments will prove the followfng statements:

a) f' is an étale covering with group G, ; possibly not connected.

b) #' is an analytic covering with group I'; possibly not
connected.

c) /=Y and Q'/G, = Q.

d) for every connected affinoid UCQ, the set (f')~1(U)
is affinoid. G, acts transitively on the connected components and
each of them is mapped surjectively to U.

e) After applying d) to a sequence U, CU,CU;C... of
connected affinoid subsets of €2 which defines the holomorphic
structure on $£2, one finds that ' has finitely many components
Q},..., ;. Each component is mapped surjectively to £ and
G, acts transitively on the components.

f) From Q'/T' =Y if follows that I' acts transitively on the
components and that /N =Y where

N ={,7EG,xT[y(Q)) = Q;}.
Put Q,=Q) and let c:Q,—> Q denote the restriction of
f' to Q, . We make the following definitions:
G={(0,MEGxT (g, 7) Qs = Sy}
H={(0,1)EG xI"|(0, 1) 2y = Q4}
N = {(1 aY)EGOX Fl(l”Y)Q* = Q*}-
From c) Q'/G, = Q it follows that Q,/H=Q and that ¢: Q,—> Q
is a Galois €tale covering, connected, and with group H.

The sequence 1 — H — G —> I’ —> 1 is exact since for
every v €I there exists a 0 € G, such that o(82,) = v(Q4). So
(6!, ¥) €EG and this element maps to y. The group N is clearly
a normal subgroup of finite index in G and NN H = {1}. Finally,
according to f) we have Q,/N=Y.

Similar methods will easily give the uniqueness (up to isomor-
phism) of the pair (£2,,N).
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PROPOSITION 1.5. — Let Y be a complete, non-singular, irre-
ducible curve over K or a I-dimensional, regular, connected affinoid
space. Then Y has a universal analytic covering. The Galois group
of this universal analytic covering is a finitely generated free (non-
commutative) group.

Proof of 1.5. — The analytic space Y has areduction r: Y — Z
which is pre-stable and such that every component of Z is non-
singular. (This is proved in [4].) The graph G of Z, i.e. the vertices
of G are the components of Z and the edges of G are the double
points of Z, is in general no a tree. Let T —> G be the universal
covering of the graph. Then T is a tree and on it operates a group
I' = 7,(G) which is a finitely generated free group such that T/T" = G.
As in [3] p. 149 (3.2), one can lift the construction of T and I’
to obtain an analytic space §2 and an analytic covering u: & — Y
with group I', such that §2 has a reduction © and an induced
map u: Q — Z which is for the Zariski-topology the universal
covering and such that the graph associated with Q is T and
u:T—> G is the universal covering of the graph mentioned
above. The proposition will follow now if we can show that £2
admits only trivial analytic coverings. It suffices to show that an
affinoid space U such that its canonical reduction U consists of
non-singular affine curves intersecting normally has only trivial
analytic coverings. Indeed §2 is build up out of such affinoid spaces
U in an acyclic way.

Let now ¢: V—> U be an analytic covering. According to
the definition U= U, U...U U, where the U; are affinoid sub-
spaces of U and such that ¢~!(U,) is the disjoint union of affinoid
subsets of V, each of them mapped isomorphically to U;. After
refining the covering {U,,...,U,} of U we may suppose that
it is a pure covering such that the corresponding reduction U of
U is prestable and has non-singular components (see [4]). The reduc-
tion V of V with respect to {p71(Uy),..., 97U} is also
prestable and the induced map 5_/_—* U is a covering for the
Zariski-topology. One knows that U is obtained from U by a finite
number of steps. In each step a point is replaced by a projective
line over K. This shows that U has only trivial coverings for the
Zariski-topology. If we assume that V is connected then also \'
is connected. Hence V=TU and so V=U. This shows finally
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the existence of the universal analytic covering w: 2 — Y. We
want to show that 2 has the usual property:

“Given a morphism f: S — Y, where S is a connected
analytic space which has only trivial analytic coverings, and given
points SES and wWEN with u(w) = f(s), then there exists a
unique lift f': S—> Q with uf' = fand f'(5) = w.”

We consider the fibre-product Q'= Qxy S — S. This is an ana-
lytic covering S. By assumption, every component of ' maps
isomorphically to S. Taking the component of £’ which contains
the point (w,s) one finds f' and one shows that f' is unique.

COROLLARY 1.6. — Let Y ,N,Q, be as in (1.4) and let (Y)
denote the universal analytic covering of Y which has group I'(Y).
There exists a normal subgroup T'y of I'(Y) such that 2, = Q(Y)/T,
and T(Y)/T'y = N.

Proof. — Easy consequence of (1.4) and (1.5).

Remark. — In general, 2, is not the universal analytic covering
of Y. In section 2 we will discuss examples. The reason is that
a connected, Galois, étale covering e: 2, —> £, admits itself in
general non-trivial analytic coverings.

Example 1.7, — Take
Q=P —{0,m,1,} where 0< [m|<1.

And let Q,={(x,y)EQxK[y? =x(x —m) (x — 1)}. Assum-
ing that the characteristic of K 1is unequal to two, one finds that
c: Q,— Q is a connected étale covering with Galois group Z/2.
The elliptic curve, corresponding to the equation y? =x(x — ) (x — 1)
is the Tate curve K*/(gq) for a suitable ¢, 0 < |qg| < 1. Further
Q, = K*/(q)—{£1,+q"?}. The Tate curve has the universal
analytic covering K* —> K*/(q). This easily implies that the uni-
versal analytic covering of £, must be U=K* — {tq"?|n€Z}.
The resulting connected étale covering U — 2 is in this case Galois.
Its group is generated by two elements vy, §, defined as automor-
phisms of U by v(z) =qz and 8(z) =z~!. The only relations
are 82 =1 and &y =y7'5.
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More examples 1.8. — Let I' denote a finitely generated dis-
continuous subgroup of P GR(2,K). Suppose that I'/[[',I'] is a
finite group. Let £ denote the set of ordinary points for I'. It
is known that Q/I’ = P! (see [3] Ch. VIII, (4.3)). There exists a
normal subgroup I'yCTI' of finite index, which is a Schottky
group. That implies that c¢: Q —> Q/I' = P! is only ramified
above a finite subset S of P!'. Then £ — ¢ !(S)— P! —S is
a Galois €tale map with group I'. Special cases of such groups I'
are provided by Whittaker groups or by cyclic extensions of P!
(see [3, 6]).

Remark 1.9. — Let the Schottky group I' and its space of
ordinary points £ CP! be given. It is rather difficult to construct
equivariant étale coverings 24, — S2. In the next section we will
restrict our attention to abelian extensions Q, —> Q.

2. Construction of the abelian étale coverings.

We assume in this section that X is a Mumford curve over K
of genus g and we fix a presentation X = Q/I' with I' a Schottky
group on g generators and in which £ CP! is the subspace of
ordinary points of I'. According to (1.4) we have to construct the
abelian ['-equivariant €tale morphisms c¢: Q4. —> § such that in
the notation of (1.3), one has [G,G]N H = {1}. Indeed, there must
exists a normal subgroup N, of finite index, in G with abelian
factor group and NN H = {1}. We call an abelian I'-equivariant
étale map c: Q, —> Q strongly abelian if [G,G]NH = {1}. This
condition is clearly equivalent to “G is the direct product of H
and I'’. Let © denote the group of invertible holomorphic functions
f on & satisfying f(yw)/f(w) is a constant for every y€E€T.
According to [3] Ch. II, the group ®/K* is isomorphic to Z#. Ele-
ments 6,,..., Bg in © are called a basis if their images in Z%¥ form
a Z-basis. The main result of this section states that every I'-equiva-
riant strongly abelian covering of §2 has the form

Dy = {(@, Ay, ) EQ XK N = 0(w) for i=1,...,¢)

where we have chosen a basis 6,,...,0, of ® and where n,,...,n,
are positive integers, not divisible by char K. We start the proof by
giving 2, the structure of an analytic space over K. Let {£,}

4
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denote a sequence of connected affinoid subsets of £ such that (i)
Q,CQ,CQ;C... and (ii) every affinoid subset of £ is contained
in some §2,. For each n we consider the affinoid space 4n corres-
ponding to the affinoid algebra

O, [X,,..., X (X[t = 0,,..., X5 ~6,).
As a point set £, is equal to {(w,A;,..., ) EQ4| WEQ,}.

The analytic space §2, is obtained by glueing together the affi-
noid spaces §2,, according to the natural inclusions §2,, — £,
(for n <m). The map c: Q,—> § is etale and finite of degree

ny ... n,. The automorphisms of ,—— Q are of the form

(w,A\,...,\,) — (w, ;‘:‘7\,,..., f:‘)\g) where ¢, denote a
primitive n,-th root of unity and 0 <o; <n;. So Q,—> Q is
Galois with group H=2Z/n & ...® Z/n,. The function theory
on 2, isnot much more complicated than that of 2. Indeed O(2,)
equals (lim 0(2,,) and turns out to be

O [Xy, .., X X = 0,50, XE—0,).

As usual we write N for the sheaf of meromorphic functions.
For any affinoid U one has T (U) = the total ring of fractions of
o).

Again M(S2,) = lim M(Ly,,) coincides with

M) [X,,..., X YK —0,,..., X5 —6,).

The space §2, is connected if and only if NUK,) is a field. Let m
denote the smallest common multiple of n,,...,n,. If suffices
to verify that O(Q)[Y,,...,Y /(Y] —6;;i=1,...,8) is
a field. By Kummer-theory this is translated into: the images of
0,,...,0, in M()*/M(Q)*™ are independent over Z/m .

Suppose now that 0:“... 0:‘ , with 0 <o; <m, equals f™
for some f € M(2). Then clearly f€ O(2)*. Since (f(yw)/f(w))™
is constant for every vy € I' and since §2 is connected, one finds that
f€0©. The independance of 6,,...,0, yields oy =...=a, = 0.
This finally shows that £, is connected. Let further a; denote
the homomorphism of I' in K* satisfying 6,(yw) = a;(y) 0;(w).
Let b, € Hom(I', K*) be chosen such that b;" = g;. Then we can
define a I'actionon 2, by

Y@, Ay A) = (1 (@), A B (7)), Mg bp(7)) .
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This action commutes with the H-action on £2,. Hence Q,— Q
is a strongly abelian I-equivariant étale morphism with group H.
Next we want to find a presentation of 2, which does not depend
on the choice of 6,,...,0,,n,,...,n,. This is done as follows.
Let G be the group of automorphisms of $2,, as defined in (1.3).
The group acts on JMT(2,), O(82,) etc. We consider its action on
O(Q,)*/K*. Let x,,...,x, € 0(R,)* be given by
X Ao ) = N

A straightforward calculation shows that H°(G, 0(£2,)*/K*) is the
free Z-module generated by the images of x,..., Xg - And this
group is a finite extension of HO(I', ©(2)*K*) =©/K*. We obtain
in this way a Z-lattice T in ®/K* ® Q containing &/K*. The
lattice T is uniquely determined by 2, and determines £2,. We
will write 2, = Q(T) in the sequel. The group of automorphisms
of Q(T)—> £ is equal to the Pontryagin dual of the cokernel
of B/K*— T. We can now formulate the main result of this’
section, using again the notation of (1.3). We consider only lattices
T such that char(K) does not divide the order of H.

THEOREM 2.1. — For every strongly abelian I'-equivariant map
Q,.—> S there exists a unique Z-lattice and an isomorphism
Q,— QT).

COROLLARY 2.2. — Every finite abelian étale-covering of X = QI
has uniquely the form SUT)/N, where T is a Z-lattice and where
N is a subgroup of G with NNH = {1} and 7N is a normal sub-
group of T' of finite index and with an abelian factor group.

Proof of 2.2. — The corollary follows from (1.4), (2.1) and the
fact that G is the direct product of H and I'. A further conse-
quence is:

COROLLARY 2.3. — The Galois group A of the maximal unramifi-
ed abelian extension of M(X), the function field of X = QT", is
isomorphic to: _

a) 2% if charK = 0

b) 2xx2§p 28 if charK=p #0.

There is further a canonical surjective homomorphism of A

onto 2% = the Galois group of the maximal abelian analytic cover-
ingof X.
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Proof of (2.1). — It suffices to show the following two statements:

a) if char K = p # 0 then there does not exist an equivariant
Q, — Q withgroup Z/p.

b) if Q,—> Q is a cyclic equivariant étale covering with
group H = 2Z/n such that char(K)/n and HN[G,G] = {1}, then
there is a suitable § €0 with Q, ~ {(w,\) EQ2x K*|\* = §(w)}.

Proofofa).

The map c: Q,— Q induces a field extension NU) CM(N2,)
which is supposed to be cyclic of degree p. By Schreier theory,
M (K2,) is obtained from NYSY) by adjoining a root of X? — X — f.
One can change the f in this equation by adding a meromorphic
function of the form g? — g with g€ NL(R). After a suitable change
of this type we may suppose that every pole (if any) of f has order
<p. In a pole w,€Q of f of order <p the map Q,—
is ramified. So we have shown that f can be supposed to belong
to 0(f2).

Consider the exact sequence

0— F, — 0(Q) — &Q)—— M—> 0
where 7 is given by 7(k) = h? — h. The extension T (82,) | M(K2)
determines uniquely the subgroup of M generated by 7(f). The
action of I' of () extends to IM(2,). This implies that
o(fov)=c(¥)o(f) for a certain homomorphism c¢: I —> F:.
After replacing I' by a subgroup of finite index, we may suppose that
o(f) is invariant under I". We recall that HY(I", ©(2)) = HY(Q/T, Oy)
and HY(T, 0(2)) = HY(Q/T', 0x) with X = Q/I". For the constant
sheaf Ky on X with stalk K one also has H(I',K) = H%(X, Ky)
and H(I', K) = H (X, Kx). Further the canonical maps
H/(X,Ky) — H'(X,04) (i=0,1)
are bijective. Using the exact sequence of I'-modules
0— F,— O0(Q)— 0Q)/F,— 0

one finds
HYT, 0(Q)/F,) = K/F, and H'(T, 0()/F,) = Hom(', K/F,).
The exact sequence of I'-modules
00— G(ﬂ)/FP—’* o) —™ M— 0
induces the long exact sequence
0 — K/F,—— K—> H%I',M)—> Hom(T',K/F,)
—— Hom(,K)—/ ..
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This implies that H(I', M) = 0. Hence 7(f) = 0. This contradicts
the assumption that the equation X? — X — f is irreducible.

Proofof b).

The map c: Q,—  induces a field extension NU(N) C NYUN,)
with cyclic group Z/n and irreducible equation X" — f, for some
FEM(K). Since 2,—> 2 is étale one may suppose that f€ O(R2)*
We consider the exact sequence

1 — 0Q)*K*—— 0 Q)*/K*——> M — 0
where 7 is defined by 7(g) = ¢".

The subgroup of M generated by g = 7 (f mod K*) has Z/n
elements and is uniquely determined by the extension 91T (2) C M2 ,)
The action of T' on JIL(2) extends to NMU(2,). This implies that
v(8) = g where a: ' —> (Z/n)* is some group homomorphism.
This means that f(yw) = f(w)*™ b, (w)" holds for some b, € O(Q)*.
Let x denote an element of AMT(S2,) with x" = f. The action
of v on JN(2,) must have the form y(x) = x*™ b, . This action
must commute with the automorphism & of NT(,) |M(2) given
by &8(x) = ¢{x where ¢ is a primitive n-th root of unity. Since
by(x) = §*Mx*0p, and y8(x) = {x*™ b, one finds that
a(v) =1 for all y€I'. The map v+ b, 1is a l-cocycle with

valuesin ©(2)* and its n-th power is the trivial cocycle y\—> f°—7

In [5] one has derived an exact sequence
.... Hom(',K*)— H(T', 0(Q2)*)— Z — 0.

This implies that the image of the l-cocycle {y+— b,} in Z is
zero. Hence b, has the form d(v). co v/c for some homomorphism
d: T — K* and some functions c€ O(Q)*. Hence 0 =c"f
satisfies 6(yw) = d(¥)" 6(w) and so 0 belongsto ®. The extension
M() € MUSKY,) is then also described by the equation X" —6. It
follows easily that £, is isomorphic to {(w,\) € 2 x K*|\" = 6(w)}.
This finishes the proof of (2.1).

Example 2.4. — The special case of (2.1) and (2.2) where the
genus of X is 1 is particularly simple. The statement reads:

Every finite abelian etale extension of X = K*/(q) (where
0<|ql<1) is of the form K*/(q')—L K*/(q) where the map
¢ is induced by z'+— z" from K* — K* with n not divisible
by char K and where q' satisfies (¢")"E(q) = q%.
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PROPOSITION 2.5. — Let ¢: Y —> X be a finite abelian étale
of the Mumford curve X = QT'. We suppose that the order of the
group H (see (2.2)) is not divisible by charK. Let U be a pure
affinoid covering of X such that the reduction (X,U) satisfies:

(i) every component of (X, U) is non-singular.
(ii) every singular point of (X, ) is an ordinary double point.

Then ¢~ '(W) is a pure affinoid covering of Y and the reduction
Y, 9o ') of Y with respect to ¢~ (W) also satisfies (i) and
(ii). The canonical map of (Y, ¢ '(UW)) to (X,W) is unramified

outside the double points of (Y, ¢~ I(W)).

Proof. — Any small enough U € U is isomorphic to an affinoid
subset of P!. The proof of (2.5) follows from the next lemma.

LEMMA 2.6. — Let U be an affinoid subset of P! given by
the inequalities: |m|<|z|<1; |z—a/l=21,...,|z—a,2=21;
lz—-bl=2Iml,..., Iz = b, 2 |mw| inwhich 0 <|mw|<1; |g]=1;
la; —a,-l =1 for i#j; |b)| = |m| and |b; —b;l = |w| for i #j.
Let u,,...,u, € O(U)* and let n,,...,n, denote positive integers
not divisible by char (K). Let V denote the affinoid space be given
by its affinoid algebra

OV) = O(U) (X, ., X/XP —uy,..., X

[

e _ u,).

Then the canonical reduction V of V has non-singular components.
The only singularities of V are ordinary double points. The map
V —> U is unramified outside the double points of V .

Proof — We may suppose that O(V) is an integral domain.
Let M denote the subgroup of O(U)* consisting of the elements
m of the form

m =z -al)k‘.... (z — a,)" (g— - -;I—)Ql.... (;ﬂ — blr-yt.
1 t

The kg, k,, etc. are integers and we write k, = ky(m). Then M
is a free abelian group of rank s + ¢ + 1. Every element of ©(U)*
can uniquely be decomposed as u. m with m €M and u =X+ #h,
AEK* and # € OU) such that ||&]| < |A]|. Let d = [6(V): 6(U)]
and let N denote the group of elements of ©(V)* having their d-th
power in M. Then N = N, ® N, where N, is the group of the
d-th roots of unity and where N, is a free abelian group satisfying
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[No:M] =d. Take a basis u,,...,us,+,; of M such that N, is
1

the free group generated by o Upyeroy =™ Ugypq,; (in additive

. . . ) 1 Mstr+1
notation). With this choice one can write

OV) = O(U) [X,, ..., Xpupu VX — w5 i=1,...,s + £ +1).

It is possible to choose the u,,...,ug,,,; such that kg (u,) =1
and ky(u) =0 for i=2,...,t+s+1.

Consider the surjective map of O(U)(X,,Y,,X,,X5,..., Xs4p41?
to O(V) given by X, X; and Y, p Xl'l with pEK*
such that p'll = . This map induces a norm on O(V) and the
reduction R of O(V) with respect to this norm is

O [X,,Y,,X,, X5, Xgireq]

divided by the ideal generated by the elements X'l'1 —-u,, Y:" - ul )
—_ 1
X,Y,, X" —u; for i>2. Further O(U) is the localization of

K[T, S]/TS at the element _ _
— — ™ m
T-a)...(T-3) (S E:)‘“ (s ;;).

A straightforward calculation shows that R has no nilpotents. Hence
R is the reduction of O(V) with respect to the spectral norm. The
only singular maximal ideals of R are

Xy, Y1, Xy —€a5enes Xovprr — Coupr)

in which c,eﬁ satisfies ¢! = m with |7|<|7]<1. The
completion of the local ring of R at such a maximal ideal is
= K[X,,Y,]/(X,Y,). Further ©(U) —> R is unramified outside
the ideal (S, T) of (_9TU—) This proves the lemma.

An example 2.7. — Let X be a Mumford curve of genus 2 with
reduction X
Ll

(Two rational curves L,,L, inter-
p, P, s L secting in 3 points p,, p,, p;.)
2
We write 7: X—> X for the reduction map. Let § €O be a theta
function for the curve X. On the affinoid part r~'(L, — {p,, p,, P3})
the function 6 can be represented by a holomorphic invertible func-
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tion u which is normalized by |u|l = 1. The reduction u is a
rational function on L, which is invertible and regular outside
{p,» P, p3}. Let ord(8) denote the triple (a,,a,,a;) EZ> given
by a, = ordpi(ﬂ). This induces a group homomorphism
ord :0/K*— {(a,,a,,a3)€2Z%|a; +a, +a; = 0}.

Using [5] one easily shows that it is an isomorphism. Let 6,,0, €0
be a basis for the theta functions. Put ord(6,) = (a,, a,, a;) and
ord 0, = (b,,b,,b;). Asin (2.2) thecurve Y isgiven by Y = Q4/N
in which

Ry = {(0, A, ) EQx (K*)? N} = 0,(w) and N}? = 0,(w)}
and where N maps bijectively to I'. We assume further that char K
does not divide _nyn,. The reduction of Y obtained in (2.5)
1n denoted by Y. The étale map ¢: Y— X induces some
R Y — X. We will use (2.5) and the proof of (2.6) in order to
calculate the reduction Y .

Let ¢ be a parameteron L, =P! suchthat ¢t = 0,1, o corres-
ponds to p,,p,,p; on L,. Then ¢ YL, — {p,,p,,p3}) isthe
affine variety over K with coordinate ring

K],y (X0, X/ X — £3(e — D2, X52 — (¢ — DY),

It is connected and nonwsingular. Its closure in Y is a curve M, .
The curve M, is an abelian ramified covering of L, = P!. The
genus g of M, isgiven by the Riemann-Hurwitz formula

26 —2=2n,n, + (e1—1)+ e’(e—l)

1 2

n,n
+ L2 (e — 1).
€3
In this formula e; denotes the ramification index of a point of M,
1 b
above p; in L. One easily verifies that —Z = Lz

ex nl
for i=1,2,3. One finds in the same manner that M, = @ 1(L )
is a non—smgular curve of the same genus. The two curves M; and

n.n n.n nn ~

M, meet in ; 2 4+ ; 2 + L2 points (namely the @-pre-images
1 2 3 —

of p,,p,,p;). Hence the arithmetic genus of Y is equal to

1 1 1
2g-—1+n1n2 'e—l‘+';:+—e:
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M, One easily computes
>OOO<>OQO< that this number is
equal to the genus of

— M,Y (as it should be).
(Picture of Y)

The universal analytic covering of Y (as constructed in (1.5)) has an

automorphism group I'(Y) which is free on n, n, L + L + 1
3 € €, €3
generators. This number is equal to Y, g.cd. (nya;,n,b;) and

e

so = 3. i=1

This shows that 2, cannot be the universal analytic covering of Y.

2.8 The other examples of a Mumford curve of genus 2 P q
a) X is a Mumford curve with stable reduction X:

The reduction is P! parametrized by ¢ where the two
pairs of points t =0, t=o and t=1, t=d are

identified. Again one has an isomorphism @/Kk—m“‘—d-» Z? given as
follows: 6 € © lift to a function u on r (X — {p, q}) with cons-
tant absolute value 1. The reduction u is a rational function on the
normalization P! of X and we put ord(9) = (ordgu, ord,u). Let
6,,0, be a basis of the theta functions and put ord(6,) = (a,, a,)
and ord(6,) = (b,,b,). Let Y be the curve obtained from X
by (2.2) with ©, = {(w, X, A)IA]} = 0,(w), \;? = 0,(w)} and N
which maps bijectively to I'. The reduction of Y is made by
using (2.5). The canonical map ¢: Y —> X inducesa ¢: Y — X.
The pre-image IZ“(S(_ —{p, q}) isaffine with coordinate ring

Klt],(,_l,(,_d) [X’Y]/(an B tal(; : ;)"2, Y2 — (-;_:%)%) '

The_corresponding non-singular projective curve (i.e. the normalization
of Y) has genus g given by the Riemann-Hurwitz formula

2g—2=—2nm, +2 2272 (¢, — 1 +222 (¢, — 1) and
€; . €

14,0, 4 1,_%6,, b

e, n, n, €, ny n,

= n.n nn =
The number of double points of Y is ——2 +-12%2.S Y isan

irreducible curve with double points. €1 €
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n
The group TI'(Y) (see (1.5)) is free on ——2 e TR U
generates. €1

b) X is Mumford curve with stable reduction X:

Q L

Let L, be described by a parameter ¢, where ¢, = 1,—1 corres-
ponds to p and ¢, = 0 correspondsto r. A parameter ¢, describes
L, in a similar way. A theta function 6 for X is lifted to a function
u on r (L, — {p,r}). One can normalize u such that [[ul =1.
Put a, = ord,u. In a similar way a, is defined. One obtains again
an isomorphism ord: @/K*—> Z? with ord(8) = (a,, a;) as
given above.

Let 6,,0, be a basis of the theta functions and let Y 4 X

be defined by “ /6, ,76,”. We study now the reduction Y and
the map @: Y—— X The pre-image @~ !(L,) is given by the equa-

t, —1\°
tions X' _(t | Ly — 7‘1+—1-) ' Here we have written
ord(0,) = (a,, az) and ord(8,) = (b,,b,). Let e, =1 be defined
by -LZ =4z 1 big Then ¢~'(L,) turns out to be the
€ n, n,

1Ny nyn,

disjoint union of & curves M;(1),..., M,

). Each M, (i)

is a rational curve with one double point. The M, (i) are isomorphic
to each other. The map M,(i) —> L, has degree e; and is only
ramified in the unique double point of M,;(i). On each M,(i) lie
e, pre-images of the point r. There is a similar description for
ML) = M,(DU...UM, ";2"’) with ?lz-z -z zz
Every M, (i) meets e, of the curves M,(j) and every M, (j) meets
e, of the curves M,(i). The reduction Y is totally split and stable.
The curve Y is a Mumford curve. We have made a picture of Y for
the values a4, =1, a,=0, b,=0, b,=1, n;,=¢;, =2 and
n,=e,=3.
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Q
Q

3. Mumford curves over a local field.

In this section k denotes a local field and K will be the
completion of the algebraic closure of k. Let I' CP GR(2, k) denote
a Schottky group on g generators. Then £ is a subset of P(k).
Let 2 denote the analytic space over k, given by £ = P,t —£2.
The action of I' on £ is k-rational and one can form the quotient
X =Q/". For every (finite) extension 2 of k the set of &-
rational points of Xx, % is equal to P!(2) —£/I'. In particular
the set of k-rational points of X is equal to P!(k) — £/'. For
our purposes we need that X has k-rational points. So we have to
assume that £ is a proper subset of P!(k). The theta functions,
corresponding to [I', are elements of ©(f2) since they can be
written in the form

6, = z — v(a)

= ——— ", where a€PY(k)—£ and §ET.
v€r z — v8(a)

For every 86€TI' the homomorphism ¢z: ' —> K*, given by
05 (yw) = c5(7) 05(w), has also values in k*. As in § 2 we
want to calculate the abelian unramified field-extensions of
MmX) = Ho(", m(2)). The field M (X) is a function field of
genus g with precise field of constants k.

A contribution to those extensions are the abelian extensions
of the field of constants k. Restrictions with respect to the exten-
sionsin § 2 are:

() k contains only finitely many roots of unity; let » denote
their number.
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(ii) For a theta function 0 with 6(yw) = a(y) 6(w), there
exists in general no homomorphism b: I — k* with

"=gq.

For any lattice T (again T is a lattice in O/k* x ®,Q contain-
ing ©/k*) there is an analytic space (T) over k defined by the
more or less symbolic formula

QUT) = {(W, Ay, A EQX(K¥)E N = 0,(w), i=1,...,¢8}.

The function field J(2(T)) of (T) is equal to NL()[x,,..., x,]
where x:."' =0;. Let us write g, € Hom(I', k*) for the homo-
morphism vy > 0,(yw) 0;(w)~!. Let b, € Hom(I',K*) denote
a homomorphism satisfying b:'i =ga;. Let £ be a finite Galois exten-
sion of k containing all the values b,(v). The analytic space (over k)
Q(T) x, £ hasa group of automorphism G given by: an automorphism
5 belongs to G if & extends some automorphism yE€I of .

From our choice of the field £ it follows that we have an exact
sequence:
1— H— G—T — | with H= Aut(Q(T)x, 2 — ).

Let M denote the subgroup Aut(S2(T)x, 8 —> Qx,.8) of H and
let N denote the subgroup Aut(§2(T) x, 2 — Q(T)) = Gal(2]| k)
of H. Then M is a normal subgroup and we have an exact sequence
l1— M — H— Gal(%|k) — 1 and H is the semi-direct
product of M and N.

According to § 2 every finite abelian unramified covering of
X has the form Q(T) x 2/N for suitable, T, 2 and N and in which
N is a normal subgroup of G and G/N is a finite abelian group.

One clearly has [G,G'] N H is contained in N. In particular
[H,H] is contained in N. We will need the following lemma.

LEMMA 3.1, — Let H denote the automorphism group of
Q(T)x, 1 and let [H,H] denote the commutator subgroup
of H. Then (T) x, ¢/[H, H] = Q(T') x, &' where

(i) ®' is the maximal abelian subextension of 2.
(i) T' is a sublattice of T, and T' satisfies nT' C O/k*.

Proof. — We choose a basis 0,,...,0, of © such that T is

the Z-module generated by -nl— 6, mod k*),..., nL (6, mod k*).
1 g
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As before the function field of £(T) x, 2 has the form
M(Q) ® L[x,,..., x,] with 8, = X]*.

The commutator subgroup [H, H] is generated by the elements
{0,0,0;'0;'10,,0,EN} and {oho-'h '|0EN and h EM}.
Let h; denote the element of M given by the action A;(X;) =

if 1#1 and h,(X)) = §;X; where §; is a primitive n,-th-root of
unity. An easy calculation shows that oh; o-1h;! = h“'(") where
a;(0) is an integer depending on i and o. Let e; = gcd (n;,
all a;(0)). One easily shows that [H,H] is equal to the semi-

direct product (h’l s hef‘). [N, N]. Let T' denote the sublattice
of T generated by el(o mod k*),. ——(0 mod k*) and let

2’ denote the max1mal abelian extension of k contamed in 2.
The function field of Q(T')x &' is ML) ®, 2 [Xl ,...,xg‘*'] with
d,e; = n;. The automorphism group of £(T)x 2 over QTHx
turns out to bed[H, H]. Hence (T)x &/[H,H] = Q(T')x £'. Let
us write y; = xi". The automorphism group of QUT)x | is
commutative, In particular, any

o€ Gal(®' | k) = Aut(Q(T')x 2'| T"))
must commute with any 4 € Aut(Q(T') x ' | 2 x"). Take & given
by the formula A(Y;) = 7;Y; (i=1,...,g) where 7; is a primitive
e;-th root of unity. Then oA (Y;) = o(7)Y; and ho(Y;) =7,Y
So 7,€k and each e; divides n = the number of roots of unity
of k. This finally showsthat n T' C ©/k*.

LEMMA 3.2. — Let H denote the automorphism group of
Q(T)x, Q. Let H, be a subgroup of H, containing [H,H]
and such that the image of H, in Gal(R|k) is contained in
[Gal(®] k), Gal(| k)]. Then QU(T)x &/H, = Q(T")x 2" with

a) R' is the maximal abelian extension of k, contained in %.

b) T" isa sublattice of T such that nT" COJk*.

Proof — One divides first by [H,H]. The result £(T')x 2’
is further divided by the group H,/[H, H] which lies by assumption

in Aut(Q(T)x2'12xR"). The result is Q(T")xQ where T"
is a sublattice of T'.
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(3.3) We apply (3.2) to the group H, = [G,G]NH. Let p: T — G
be a left-inverse of the canonical surjection G —> I'. One can
define the -action of ¢(y) on the function field of Q(T)x 2 by:
o(¥) (f) =foy for any FEM(N); ¢(¥Y) A=\ for any AEQ
and py(MX; =b,(v)X;.

Then H, = HN[G, G] is generated by [H, H] and the commu-
tators o(Y)h ¢(y)"'h~! with yET and A E€H. This expression
is 1 for any h€EM. For h = 0 € Gal(2|k) = Aut(Q2(T) x 2|2(T))
one easily sees that the commutator lies in M. This means that H,
satisfies the condition of (3.2). Let (T")x 2' denote the quotient
of Q(T)x® by H,. This quotient is invariant under any (7).
In other words, the action of I' on § can be extended to action
of I on Q(T")x%'.

Let us describe the function field of (T")x 2" by
F=m@)®, [Y,,...,Y,] with Y;"=0,.
Then each n; divides n.

The automorphism % on F which lifts the automorphism
v on JU(2) must satisfy 37(Y,.) =b(y)Y; for certain elements
b,(y) €ER'. Moreover 7 must commute with the action of Gal('|k)
on F. This implies that b,(y) € k. We draw the conclusion that

T" is a sublattice of % (®©/k*) such that the canonical homo-
morphism ¢ : ©/k* —> Hom(I", k*) which is given by
c(6 mod k*) (y) = 0(yw) 6(w)~*,

extends to a grouphomomorphism T —> Hom(T', k*). This
proves the main result.

THEOREM 3.3. — Every finite abelian, unramified extension
of X has uniquely the form Q(T)x /N where

(i) R is a finite abelian extension of k

() T is a sublattice of ;ll- (©/k*) such that the canonical
homomorphism c¢: ©/k* — Hom(T", k*) extends to T.

(iii)) N is a normal subgroup of G with NNH = {1}. The
image wN of N in I' is a normal subgroup with abelian
factor group.
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COROLLARY 3.4. (G. Frey). — The profinite Galois group D of
the maximal abelian uramified extension of the function field NCL(X)
of X is isomorphic to the direct product

Gal(k®/k) ©ZF @ Z/n, & ... DZ/n, .

The numbers Myseoes Mg satisfy n, Inyl ... Ingln where n = the
number of roots of unity in k and they are determined by the
curve X.

Proof of (3.4). — One easily sees that there exists a largest lattice
T, with @/k*CTC % ©/k* such that the map
c: O/k* — Hom(, k*)

extends to T. The finite group in (3.4) is the cokernel of the injec-
tion ©/k*CT.

Remark 3.5. — The corollary (3.4) has been proved by G. Frey
[2]. His proof is quite different from the one presented here. It is
based upon a detailed study of the action of the Galois group
Gal(k°® |k) on the points of finite order (or the Tate-modules) of
the Jacobian variety (or a generalized Jacobian variety) of the
Mumford curve X = Q/I".
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