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VECTOR BUNDLES
ON MANIFOLDS WITHOUT DIVISORS
AND A THEOREM ON DEFORMATIONS

by G. ELENCWAJG and O. FORSTER

Herrn K. Stein zum 70. Geburtstag gewidmet.

Introduction.

The motivation for this paper was to gather some information on
holomorphic vector bundles on some non-algebraic compact complex
manifolds, especially manifolds without divisors. As a first step, we treat
the case of 2-bundles. Examples of such 2-bundles are given by extensions

0O >5L->E-MQ® S -0 (%)

where L and M are line bundles and .#, is the ideal sheaf of a 2-
codimensional locally complete intersection. On a projective algebraic
manifold every 2-bundle is of this form, however L, M and Z are not
uniquely determined by E. In sharp contrast to this, on a manifold
without divisors, the « devissage » (%) is uniquely determined for an
indecomposable bundle E (cf. Theorem 2.2). On the other hand, on such
highly non-algebraic manifolds there might exist 2-bundles without any
such devissage; we call them non-filtrable. More precisely, E admits a
devissage if and only if there exists a line bundle L such that E ® L* has
non-trivial sections.

In order to prove the existence of non-filtrable bundles on 2-tori with
Picard number zero, we prove (in § 3) some general theorems on the
deformation of vector bundles and projective bundles which might be of
independant interest. Roughly speaking, any deformation of a vector
bundle on a compact complex space is composed of a deformation of
det (E) and a deformation of the associated projective bundle P(E); for a
precise formulation see Theorem 3.4. As a corollary we get: If
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dim H2(X, End E) = dim H2(X,0x), then the basis of the versal
deformation of E is smooth. We use this last fact to deform a certain
filtrable bundle on a 2-torus into a non-filtrable one (Proposition 4.9).

In an Appendix we gather some facts on algebraic dimension and
Picard number of 2-tori.

Notations. — By a vector bundle on a complex space X we always mean
a holomorphic vector bundle which we consider as a locally free Ox-module
of constant (finite) rank. The dimensions of cohomology groups are
denoted by AW(X,¥): = dim H{(X,%).

1. Filtration of bundles.

In this section we collect some more or less well known facts about
vector bundles which are extensions of the form

0o L->E-M®JsS -0,
where L and M are line bundles and Z is a 2-codimensional locally

complete intersection.

1.1. If E is a vector bundle of rank r on a smooth curve, then there
exists a (not uniquely determined) filtration

0=EOCE1C...CE'.=E,

where E, is a subbundle of rank k (cf. Atiyah[l]). On a complex
manifold of dimension > 1 this is no longer true. Instead of subbundles
one has to consider coherent subsheaves % < E. Such subsheaves are
always torsion-free. The following facts are well known :

a) Let & be a coherent sheaf on a complex manifold X. Then the set
Sing (#) = {xeX: #, is not a free O ,-module}

is analytic of codimension > 1.

If & istorsion-free, Sing (¥)isof codim > 2. If & is reflexive, i.c.
F = F**, then codim Sing (#) > 3. If # is reflexive and has rank
1, it is locally free, i.e. a line bundle.



VECTOR BUNDLES ON MANIFOLDS 27

b) Let E be a vector bundle on a complex manifold X and & c E a
coherent subsheaf. Then the set Sing (E/#) is equal to the set

S = {xeX:#,is not a direct summand of E_}

and £ |X\S is a subbundle of E|X\S.

¢) For every # c E we denote by & the following coherent
subsheaf of E: Letp: E — E/# be the canonical projection and
Tors (E/%) the torsion submodule of E/% . Define

% : = p~ ! (Tors (E/%)).

Then # ¢ % c E and # coincides with & outside an analytic set of
codimension > 1. The quotient E/# is torsion-free, hence % is a
subbundle of E outside an analytic set of codimension > 2.

1.2. DEFINITION. — A vector bundle E of rank r on a complex manifold
X is called filtrable if there exists a filtration

0=%ycF,c...c %, =E
where %, is a coherent subsheaf of rank k.

Of course every vector bundle on a compact algebraic manifold is
filtrable, but we will prove the existence of bundles on certain non-algebraic
manifolds which are not filtrable.

Remark. — According to 1.1.c) we may assume all quotients E/#, to
be torsion-free. In that case the #,/%,_, are torsion-free of rank 1 and
L,: = (F/F_)** are line bundles. Moreover,

detESL,®...QL,.

This last formula comes from the factthat 0 c ¥, «c ... «¢ ¥, =E isa
filtration of. subbundles outside a set of codimension > 2.

1.3. LeMMA. — Let & < E be a coherent subsheaf of rank 1 of a
vector bundle on a complex manifold. If E|/% is torsion-free, then F is
locally free.

Proof. — It suffices to show that & is reflexive. Let #** — E denote
the bidual of the inclusion morphism # — E and consider the sheaf
F:=Im(F* > E). Then #/F c E/F is a torsion sheaf, hence

F|F =0. Since F** - E isamonomorphism, #F** = ¥ = # q.ed.



28 G. ELENCWAJG AND O. FORSTER

1.4. CoroLLARY. — A vector bundle of rank 2 on a connected complex
manifold X is filtrable if and only if there exists a line bundle L on X such
that T(X,L*® E) #0.

1.5. CoRrROLLARY. — On a complex manifold X let E be a vector bundle,
L a line bundle and o: L — E a sheaf monomorphism. Then

Supp (Tors (E/Im (L > E)))

is (empty or) of pure codimension 1.

Proof. — Set # : = Im (L — E) and define # c E asin 1.1.c). & is
isomorphic to L and % is locally free by Lemma 1.3. The inclusion
map# <> % may be considered as a section of the line bundle
F*® %, hence Supp (#/#) has pure codimension 1. But

Tors (E/Im (L —» E)) = &/% .

1.6. PROPOSITION. — For every filtrable 2-bundle E on a complex
manifold X there exist line bundles L,M on X and a 2-codimensional
(possibly empty) analytic subspace Z < X such that E fits into an exact
sequence

0>LSESM® 2, > 0.

Proof. — Let 0 «c & < E be a filtration such that E/% is torsion
free. By Lemma 1.3 the sheaf L: = & is locally free of rank 1. Let
a: L — E be the inclusion map. Set M : = (E/#)**. The image of the
natural inclusion map

E/#F - (E/F)* =M

is of the form M ® .#,, where .4, is the ideal sheaf of a subspace Z = X
of codimension > 2. But Z may also be defined by the vanishing of
ae '(X,L*® E), hence is a locally complete intersection of codimension
=2 (or empty). The morphism B is the quotient map E —» E/&
composed with the isomorphism E/& = M ® ;.

1.7. Notation. — We call an exact sequence
(%) 0 L->E-M®SFF >0

as in Proposition 1.6 a devissage of E. We have

det(E) S L @M,
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in particular ¢,(E) = ¢(L) + ¢;(M). The bundle L* ® E has a section
vanishing on the subspace Z. Hence

¢,(L* ® E) = dual class of [Z].

Since E* = E ® det E*, we can tensor (%) by L* ® M* to get the
dual devissage

0 > M* > E* > L*® 4, - 0.

1.8. Recall that a vector bundle E on a compact complex connected
manifold is simple if End (E) = C. This is equivalent to the fact that every
non-zero endomorphism is invertible. If rank E = 2 and E is not simple,
then E is filtrable. In fact, if o: E — E is a non-zero, non-invertible
endomorphism, then Ker o — E is a subsheaf of rank 1.

1.9. LemMA. — Let E be an indecomposable 2-bundle on a compact
connected complex manifold X and oe€eEndE a non-invertible
endomorphism. Then c* = 0.

Proof. — Consider the eigenvalues A;, A, of o. (Since X is compact
connected, the eigenvalues of o in all fibres of E are the same.)
Necessarily A, = A,, otherwise the -eigenspaces would define a
decomposition of E. Since det(c) = 0, we have A, = A, = 0, which
implies 62 = 0.

1.10. In general, the devissage of a 2-bundle is not uniquely determined.
However we shall discuss conditions which guarantee uniqueness.

Let X be a compact connected complex manifold and L,L’ line
bundles on X. Following Atiyah [1] we shall write L’ < L if there exists
a non-zero morphism L' — L.

We call a devissage L > E -+ M ® #, of a 2-bundle E maximal, if
for every other devissage L'’>>E » M' ® #,, we have L' < L.

1.11. ProrosiTiON. — Let E be a non-simple, indecomposable 2-bundle
on a compact connected complex manifold X. Then E admits a uniquely
determined maximal devissage

0->L->-E-M®sFf - 0.

This maximal devissage is characterized by the fact that M < L.
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Proof. — Let o: E - E be a non-zero, non-invertible
endomorphism. Let L: = Ker 6. Since E/Ker o = Im ¢ is torsion-free,
L is a line bundle by Lemma 1.3. We may write Imc = M ® .#,, where
M is a line bundle and Z < X a subspace of codimension 2. By
Lemma 1.9 we have Im o = Ker 6, hence there exists a monomorphism
M ® .4, — L, which extends to a monomorphism M — L. So we get
a devissage

0>L3EAM®s -0

with M < L.
We will now show that a devissage with M < L is the uniquely
determined maximal devissage.

i) Maximality. Let f: L — E be any non-zero morphism. If
Bof: L' > M® £, is non-zero, then L <M < L. If however

Bof=0, wehave L' =ImfcIma =1L, ie L <L inevery case.

ii) Uniqueness. Let
0L LE-M®s, -0
be a second maximal devissage. Then L' < L < L', hence L'=L. If
Bof: L' > M ® 4, is non-zero, the composite map

L2 M5, Mo L

is non-zero, hence an isomorphism. This implies in particular Z = & and
Bof: L — M is an isomorphism. But then E = L @ L', which was
excluded. So necessarily pof =0 and we get a factorization

0 — L — E

\\
PN T/

\Ll

Since L' = L, g is an isomorphism. This implies that the two devissages
are isomorphic, q.e.d.
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2. Vector bundles of rank 2
on manifolds without divisors.

21. Let L and L' be two line bundles on a complex connected
manifold and f: L' - L a non-zero morphism. Let D be the zero
divisor of f. Then L = L' ® [D], where [D] denotes the line bundle
associated to D. Therefore, if X is a complex connected manifold
without divisors, the relation L' < L implies L' = L.

Recall that a compact connected complex manifold without divisors has
algebraic dimension zero, i.e. the only meromorphic functions are constant.
The converse is not true (think of blow-ups!), however a torus has
algebraic dimension zero if and only if it admits no divisors.

We will now give a rough classification of 2-bundles on manifolds

without divisors.

2.2, THEOREM. — Let X be a compact connected complex manifold

without divisors. Then we have the following classification of vector bundles of
rank 2 on X:

1. Filtrable bundles.
1) Indecomposable bundles.

A filtrable 2-bundle is indecomposable if and only if its devissage is
uniquely determined.

i) Simple bundles. They have a devissage

0 L->E-M®SFs -0

with L ¥ M and endomorphism ring EndE = C.
ii) Non-simple bundles. Their devissage is
0-oL-E-L®JS, -0

and EndE = Cle], €2 = 0, is the ring of dual numbers.
2) Decomposable bundles

(R

i) Bundles of the foom E=ZL@®M with L Z M.
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In this case End E = C® C with componentwise multiplication.

ii) Bundles of the foom E=L® L.

In this case End E = M, (C) is the full matrix ring.
II. Non-filtrable bundles.

These bundles are all simple, i.e. EndE = C.

Proof. — a) Let E be an indecomposable 2-bundle on X with a
devissage

0>L3ESM@s, »0.
We will show that the devissage is uniquely determined and that the
assertions in 1i), ii) hold.

i) Suppose M ¥ L. Let f: L’ - E be any monomorphism of a line
bundle L' in E. We claim that

Bof:L - M® 4,

is zero. Otherwise Z would be empty (since X has no divisors) and

Bof: L' - M an isomorphism. But this would imply E=S L@ M,
contradicting the indecomposability of E. Therefore f factorizes as
follows

L — E

S
~ L’

and g is necessarily an isomorphism. This implies the uniqueness of the
devissage.

Tensoring the dual devissage M* > E* —» L* ® 4, by E, we get
an exact sequence

0 - M*®E - E*®E - L*Q®E® ¥, - 0,
which implies

dim End E < dim'X,M*®E) + dm'X,L*@E® .5;).
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The uniqueness of the devissage of E implies

IFXM*®E) =0 and I'X,L*®E®.f;) <« I'X,L*®E) = C,
hence dim End E =1, ie. E is simple.

ii) If M =L, denote by & the composed morphism

E->M®Sf<>M S5 L - E.

Obviously € # 0 and &2 = 0. In particular E is non-simple and the
uniqueness of the devissage follows from Proposition 1.10. Since
Cle] = End E, it remains to be shown that dim End E < 2. To see this,
we use the same inequality as above

dim End E < dim I'X,M*®E) + dim I'(X,L*@E®.#,).

Since M =L, the uniqueness of the devissage implies
dmI'X,M*®E) =1 and dimIX,L*®E®.f;) <1, hence dim

End E < 2. Therefore End E = Cl[g].

b) It is clear that the devissage of a decomposable bundle E= L & M
is not uniquely determined. Furthermore

End (E) = End (L) ® End (M) ® Hom (L,M) ® Hom (M,L),

which gives the endomorphism rings as asserted in 2i), ii).

¢) That non-filtrable 2-bundles are simple follows from 1.7. This
completes the proof of Theorem 2.2. We now look at a relative situation.

2.3. THEOREM. — Let X be a compact complex manifold without
divisors, S a Stein manifold with H2(S,Z) = 0 and E a vector bundle of
rank 2 on X x S. For seS denote by i, the inclusion map

i X 5 Xx{sf>XxS$S

and E,: = i¥E. Suppose that E  is filtrable and indecomposable for all
S€S (i.e. belongs to class 1.1 in the classification of Theorem 2.2). Then
there exist line bundles L - X xS, M - X xS and a subspace
Z = X x S of codimension 2 which is flat over S, such that E fits into
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an exact sequence
0o LoE-M®JsS5 -0

whose restriction to every fibre X x {s} is the uniquely determined devissage
of E,.

Proof. — Let L —» X x Pic(X) be the universal line bundle. Consider
the bundle

L*R E - X x (Pic(X) x S).

Let p: X x (Pic(X) x S) = Pic(X) x S be the projection. By the semi-
continuity theorem the set

S = {(5,5) e Pic(X) xS : HO(p~(&,5), LI®E,) #0}

is analytic. Since the devissage of every bundle E; is uniquely determined,
the projection ¢: S’ — S is bijective, hence biholomorphic if we provide
S’ with the structure of a reduced subspace of Pic(X) x S.
Letgo: S - § < Pic(X) x S be the inverse map of ¢ and define the
line bundle L - X x S by

L: = (idx x )*L.

For every s€ S, the vector space Hom (L,E,) is one-dimensional, hence
the direct image sheaf

n, Hom (L,E),

where ©:X x S — S is the projection, is locally free of rank 1 on S.
The hypothesis H?*(S,Z) = 0 implies =, Hom (L,E) = O0s. Let
a: L - E be the morphism corresponding to a global non-vanishing
section of m, Hom (L,E). The restriction a,: L, — E; of a to any fibre
n~1(s) is up to a constant factor the unique monomorphism of a line
bundle into E;. The image a(L) is a direct summand of E outside a set
of codimension 2. Corollary 1.5 implies that E/a(L) is torsion free.
Define the line bundle M - X x S by

M: = (E/a(L))**.

Then E/a(L) M ® #, for a certain 2-codimensional subspace
Z =« X x S. Since Z islocally a complete intersection whose intersection
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with every fibre n~!(s) is 2-codimensional, Z is flat over S. The
morphism o: L - E  together with the quotient map
E - E/a(L) =M ® £, gives the desired exact sequence

0O -oL->E-M®Js - 0.

2.4. Theorem 2.3 implies the following: Let E — X x S be a vector
bundle as in Theorem 2.3 and

0-L, -E ->M®s -0
the unique devissage of E;. Then
s— [L] and s +— [M]

define holomorphic maps S — Pic(X). Moreover there is a holomorphic
map

S - DX), s+~ Z,

where D(X) denotes the Douady space of all compact analytic subspaces
of X, cf.[4].

3. Deformations of vector bundles
and projective bundles.

3.1. Holomorphic fibre bundles with fibre P,_; and structure group
PGL(r,C) on a complex space X (we will call them briefly projective
(r — 1)-bundles or P,_,-bundles) are classified by H(X,PGL(r,0)).
Every vector bundle E of rank r on X gives rise to a projective (r — 1)-
bundle P(E). The relevant exact sequence is

0 - 0* - GL(,0) - PGL(r,0) - 0,
to which is associated the exact cohomology sequence
H!'(X,GL(r,0)) - H'(X,PGL(r,0)) - H*(X,0%).

Thus if H?*(X,0*) = 0 (in particular if X is a curve or P,) every
projective bundle is of the form P(E) where E is a vector bundle (cf.
Atiyah [1]).
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For general X this is no longer true. However we will show that if P,
is a projective bundle associated to a vector bundle, then any small
deformation of P, also comes from a vector bundle.

3.2. TuEoREM. — Let E, be a vector bundle of rank r on a compact
complex space X. Let P - X x S be a deformation of P(E,) over the
germ (S,0). Then there exists a deformation E — X x S of the vector
bundle E, such that P = P(E). Moreover one can choose E such that
det E is a trivial deformation of det E,. With this supplementary condition
E is uniquely determined.

Proof. — The deformation P is given by a cocycle
¢ e H' (X x S,PGL(r,0))
which can be represented by a cochain
(g:) € C' (% x S,GL(r,0)),

where % = (U)),., is a suitable open covering of X. We may assume all
intersections U; n U; to be simply connected. We may further assume
that

(8:;(0)) € C' (%,GL(r,0))

is a cocycle defining the vector bundle E,. Therefore there exists a cochain

(ciji) € CH(U % S,0*)
with

cii(0) =1
and
gign = Cipg&x on  (UinU;nUy) x S.

Since the U; n U; are simply connected, there exist functions

Y;j € O%(U;nU)) xS)
with
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We define

~ ¥;(0)

8ij - = &ij

e GL(r,0((U;AU)) xS)).

ij
We have then
£5(0) = g;(0)
and
detg;(s) = y;(0y for all seS.
We will show that @ij) is a cocycle, i.e.
(%) 28k = L
Indeed, we have §,-j§jk = C;p&x With a cochain
Cijx € CH x S,0%), cu0) = 1.
Then taking determinants we get
YO 0) = (€)Y O) -
On the other hand v;{(0)y;(0) = y4(0)", hence
(cyu) = 1.

Since ¢;5(0) = 1, this implies ¢ =1 as an element of
0*(U;nU;nU,) xS). Thus we have proved the cocycle relation ().
The cocycle

(&) € Z' (¥ xS,GL(1,0))

defines the desired deformation E of E, for which P(E) = P and detE
is the trivial deformation of detE,.

Uniqueness. Let E' - X x S be another deformation of E, with
P(E)=P. Then EE ZE® L, where L - X x S is a deformation of
the trivial line bundle. If both det E and det E' = (det E) ® L" are trivial
deformations of det E,, it follows that L’ is trivial. Since L, is trivial, L
must be trivial itself.
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3.3. Given a vector bundle E of rank r on a complex space X, we
have a canonical injection

Ox - End E, f+— f.idg.

This injections splits by the map

Q- %trace (o)

and we get a direct sum decomposition
EndE = Ox ® Endy E,

where End, E is the sheaf of endomorphisms of trace zero. In particular,
we have for any geN

HY(X, End E) & HYX,0x) ® HYX, End, E).

Consider the projective bundle P(E) associated to E. If X is compact,
the versal deformation of P(E) exists and the tangent space of the basis of
the versal deformation is H!(X, End, E).

3.4. THEOREM. — Let E, be a vector bundle on the compact complex
space X. Let E — X x X be a deformation of E, such that
P(E) — X x X s the versal deformation of P(E;). Let L - X x II
be the versal deformation of the trivial line bundle on X . Then the exterior
tensor product

LRE - X x (ITxX)

is the versal deformation of E,.

Remarks. — a) The deformation E' — X x X exists by Theorem 3.2.

b) The versal deformation L — X x IT of the trivial line bundle can
be obtained as follows: Choose cocycles (W) eZ'(#,0x), p=1,...,m
whose cohomology classes form a basis of H!(X,0x). Then IT = (C™0)
and

gij: = exp(Z t,,h;‘,-),

p=1

where ¢, ...,t, are the coordinates in C™, is the cocycle defining L.
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Proof of Theorem 3.4. — Let
E - XxS

be the versal deformation of E,. Then P(E) —» X x S is a deformation
of P(E,), hence there exists a map a: S — X such that

P(E) = o*P(E) = P(«*E)).

Then there exists a deformation M — X x S of the trivial line bundle
such that

E=M® o*E'".

By the versal property of L — X x II, there existsamap B: S — IT
such that M = B*L. Thus, letting

fi=0Bx:S > HOxZ,
we have
E = f*(L®E).

On the other hand, by the versal property of E — X x S, there exists a
map g:II x £ - S such that

L XE = g*E.
Therefore E = (gof)*E, which implies
(dg)o 0 (df)o = d(g0f)o = idys.
Consider the diagram

(@o (dg)o

T,S

T0,0(ITxZ)

TOS .

Since Tl = H'(X,0x), TeX = H'(X, Endy, E) and
TS = H!(X, End E), we have

dim T,S = dim T,)(IT X Z),

hence (df), and (dg), are isomorphisms. This implies that
f:S > II x X is an isomorphism of germs and
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LXE - X x (IxX) isomorphic to the versal deformation
E - X xS, qed.

3.5. CoroLLARY. — Let E be a vector bundle on a compact complex
space X such that

dim H2(X, End E) = dim H3(X,0y).
Then the basis S of the versal deformation of E is smooth.

Proof. — The hypothesis implies H2(X, Endy E) = 0. Therefore the
basis X of the versal deformation of P(E) is smooth,so S =11 x X is
also smooth.

3.6. CorOLLARY. — Let X be a smooth compact complex surface with
trivial canonical bundle (for example a torus or a K3-surface) and E be a
simple vector bundle on X. Then the basis of the versal deformation of E is
smooth.

Proof. — By Serre duality
H2(X, End E) = H°(X, End E)* = C
and
H?(X,0x) =H°(X,05)* = C.

Therefore we can apply Corollary 3.5.

4. Vector bundles on tori with trivial
Néron-Severi group.

4.1. Recall the theorem of Riemann-Roch for a (smooth, compact
complex) surface X. If E is a vector bundle of rank r on X, we have

AXE) = r(X,00) + %(cl(x)cl(E)+cl(E)2)"'c2(E):

1
X (X,0x) = D) (€1(X)? + ;X))
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In particular we can apply Riemann-Roch to the endomorphism bundle
End E. Since

¢, (End E) = 0,
¢, (End E) = r?c,(E) — (r—1)c,(E)?,

we get

X, End E) = r’x(X,0x) + (r—1)c,(E)* — r’c,(E).

4.2. The Néron-Severi group of a surface X is defined by
NS(X) : = Im (H!(X,0%) —— H2(X,Z)).

In the following we shall deal with surfaces X (especially tori) having
NS(X) = 0. If in addition X is Kihler, then X has no divisors, in
particular its algebraic dimension is zero. (Hopf surfaces always have
NS(X) = 0, whereas their algebraic dimension may be zero or one.)

4.3. ProrosITION. — Let X be a Kdihler surface with NS(X) = 0.
Then for any vector bundle E of rank 2 on X we have c,(E) = 0.

Proof. — Since NS(X) =0, we have ¢,;(X) =c¢,(E) =0, hence
1
Y(XE) = gcz(x) — c,(E),
1
1(X,0x) = ﬁcz(x).

Since for a surface with algebraic dimension zero we have x(X,0x) = 0
(cf. [3], part 6, Prop. 1.5), it follows ¢,(X) > 0. We consider first the case
that E is not filtrable. Then

H°(X,E) = 0 and H2*(X,E)* = H°(X,E*®Ky) = 0,
hence
1
0 < W'(X,E) = — x(X,E) = ¢,(E) — 5 ©2(X) < 2 (B).
If E is filtrable we have a devissage

0 oL->E-M®®s - 0.
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Since ¢,;(L) = ¢;(M) =0, c,(E) is the dual class of Z, hence non-
negative.

4.4. We consider now bundles on a two-dimensional torus X. Since
the tangent bundle of X is trivial, we have
x(X,0x) = 0.
Serre duality gives
h*(X,E) = h°(X,E*)

for every vector bundle E on X.

4.5. ProprosiTION. — Let E be a simple vector bundle of rank r on a
two-dimensional torus X with

¢1(E) = ¢,(E) = 0.
Then E is homogeneous, i.e. invariant under translations.

Proof. — Since h°(X,End E) = h2(X,End E) = 1, we have by
Riemann-Roch A'(X, End E) = 2, hence

h'(X, End, E) = A'(X, End E) — h1(X,0x) = 0.
By Theorem 3.4 the versal deformation of E is given by
EXL - X xII,

where L - X x IT is the versal deformation of the trivial line bundle.

We now construct a family F - X x X in the following way : Let
a: XxX ->X
be the addition map a(x,y): = x + y and define
F: = a*E.
By versality, we get a map

e: (X,0) » I
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of space germs such that
FIX x (X,0) = ¢*(EXL).

Let 1,: X - X be the translation y — x + y. Then for x in a
sufficiently small neighborhood of 0e€X we have

TTESE® Lyy.
Taking determinants, we get

t* (det E) & (det ) ® L2

P(x) *

Since det E is a topologically trivial line bundle, it is homogeneous, which
shows that L2, is the trivial line bundle. Since L, is trivial, Ly, itself
is trivial. Hence t*E = E for all sufficiently small x. Since every
neighborhood of zero generates X, the bundle E is homogeneous.

4.6. COROLLARY — Every 2-bundle E on a 2-dimensional torus with
¢,(E) = ¢,(E) = 0 is filtrable.

Proof. — By (1.8) we may assume that E is simple. Then E is
homogeneous by Proposition 4.5. By a theorem of Matsushima ([5],
Prop. 3.2) E is filtrable.

4.7. ProrosiTioN. — Let X be a two-dimensional torus with
NS(X) =0. A two-bundle E on X is induced by a representation

o: n,(X) - GL(2,0)
if and only if ¢,(E) =0.

Remark. — If one drops the hypothesis NS(X) = 0, the result does
not necessarily hold. Oda [7] has constructed a 2-bundle E on an algebraic
2-dimensional torus with ¢,(E) = ¢,(E) = 0 which does not admit a
connection, hence is not induced by a representation.

Proof of Proposition 4.7. — A bundle induced by a representation of
7, (X) possesses an integrable connection, hence all its Chern classes are
zero (cf. Atiyah [2]).

Conversely suppose ¢,(E) = 0. Then by Corollary 4.6, E is filtrable
(since automatically c,(E)=0). We now distinguish two cases.
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i) If E is decomposable, it is a sum of two topologically trivial line
bundles, hence induced by a representation (Appell-Humbert).

ii) If E is indecomposable, we have a devissage
0 >oL->E-M®SF, -0

with L, M € Picy(X). Since c,(E) = 0, Z must be empty. We have (by
Riemann-Roch)
2 if L=M,

; 1 * -
dim H' (X,M ®L)—{O LM,

Since E is indecomposable, the second possibility is excluded and we have
an exact sequence

0O-L->E->L->O0.
The extensions of L by L are classified by
H!(X, Hom (L,L)) = H!(X,0).

Now the translations operate trivially on H'(X,0), which shows that E
is homogeneous, hence induced by a representation [5].

4.8. Example of a non-filtrable bundle. — Let X be a two dimensional
torus with NS(X) =0. Let L, M ePicy(X) = Pic(X) be two line
bundles on X with L ¥ M and Z < X a subspace consisting of two
simple points. Consider a 2-bundle E, on X which is an extension

0-L->E ->M®s5;, -0.

We will show that in the versal deformation of E, there occur non-
filtrable bundles.

Let us first convince ourselves that there is such a bundle E,. The
extensions of M ® £, by L are classified by the group Ext!(M®.#.L).
There is an exact sequence

0 - H!(X, Hom M®,L)) — Ext! M®S,L) -
- I'(X, Ext! M®S4,L)) » H3(X, Hom (M®F,,L)).

Since Z has codimension 2, we have

Hom M®J5,L) = M*®L.
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By Serre duality H?*(X,M*Q®L) = H°(X,M®L*)* = 0, hence by
Riemann-Roch H!(X,M*®L) = 0. On the other hand, since Z is a
locally complete intersection consisting of discrete points.

Ext! M®.,L) = 05,

which proves
Ext'! M®s,L) =TX,0,) =C®C.

By Serre [8], the sheaf corresponding to an extension & e Ext! M®.#,,L)
is locally free if and only if its image in C @ C under the above
isomorphism has both coordinates different from zero. Extensions &, , &,
which differ only by a constant factor A e C* give rise to isomorphic
sheaves.

4.9. ProOPOSITION. — On a two-torus X with NS(X) = 0 there exist
non-filtrable vector bundles E of rank 2 with c,(E) = 2.

Proof. — Let E, be a 2-bundle with devissage
0>L->E, - M®S -0

as in 4.8. By Theorem 2.2 this bundle is simple, hence the basis (V,0) of its
versal deformation E — X x V is smooth (Corollary 3.6). The
dimension of V equals A'(X, End E,) and can be calculated by Riemann-
Roch: We have %(X,0x) =0 and c,(E,) = 0, hence

B (X, End Eg) = h°(X, End Eg) + h*(X, End E,)
+ 4c,(E) = 2 + 8 = 10.

Since small deformations of simple bundles are simple and have the same
Chern classes, this dimension is invariant under small deformations. This
implies that the versal deformation of E, is also versal in neighboring
points.

Suppose now that all bundles E,, s € V, are filtrable. Then they belong
all (for s sufficiently close to 0) to class I.1.i) of the classification of
Theorem 2.2. By Theorem 2.3 there exist deformations ¥ — X x V and
M - X xV of L resp. M and a two-codimensional subspace
<X xV, flat over V, such that E fits into an exact sequence

0% >E->M®SF,—0.
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Since Z = &, consists of two simple points, also &, consists of two
simple points for s sufficiently near 0. We can define a holomorphic map

¢: V > Picy(X) x Picy(X) x $2X

by
s (LM Z).

Since dim (Picy(X) x Picy(X) x $2X) = 8,
S: =9 Y(LM,Z)
is a subgerm of V of dimension > 2 and we get a family
0> 4¢g*L > EIXXxS » ¢*M® SF,,5 — 0,

where ¢: X x S — X is the projection. This family of extensions defines
a holomorphic map

V: S - Ext! M®JS,L) = C?.
Since 0¢ y(S), we have an associated map
Vy:S - PExt' M®F,LL) =P,.

If y(s) = P(s), then E, = E,. Since dimS > 2, the fibres of { have
dimension > 1. Thus there exists a 1-dimensional subgerm C < S, such
that E|X x C is a trivial deformation of E,. But this is a contradiction
to the versality of the deformation E — X x V. Hence there must exist
non-filtrable bundles E; in this deformation, g.e.d.

Appendix
Picard number and algebraic dimension of tori.

1. Generalities. Let X be a compact complex connected manifold
of dimension n. Its algebraic dimension a(X) is defined as the
transcendence degree of its field of meromorphic functions. As is well
known, a(X) < n. We denote by Pic(X) = H'(X,0*) the group of
isomorphism classes of holomorphic line bundles on X, and by

Pico(X) = Ker (H'(X,0*) —— H%*(X,Z))
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the subgroup of line bundles with vanishing first Chern class. The Néron-
Severi group NS(X) is defined by the exact sequence

0 — Picy(X) — Pic(X) - NS(X) - 0.
Hence we can write
NS(X) = Im (H'(X,0*) —— H%*(X,Z)).
The rank of NS(X) is called the Picard number of X and is denoted by
p(X):
p(X) = rank, NS(X).

Assume now that X is a Kdihler manifold and consider the Hodge
decomposition

H?(X,C) = H*°(X,C) ® H!!(X,C) ® H*?(X,0).

Denote by j: H2(X,Z) - H?(X,C) the map induced by the inclusion
Z = C. Then the famous Lefschetz Theorem on (1,1)-classes reads

NS(X) = 7' (H''(X,0)).
So, denoting as usual dimcH!!(X,C) by A''(X), we have
(i) p(X) < h''(X).
Equality does not necessarily hold, however we have

() p(X) = A11(X) = X projective algebraic
(i) p(X) =0 = a(X) = 0.

2. The case of tori. Suppose now X is a torus,
X = V|,

where V is a vector space of dimension n over C and I' = V a lattice of
rank 2n. One has a natural isomorphism

H2(X,Z) > Al3(T,Z)
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of H?(X,Z) with the space of alternating integer-valued 2-forms on I'.
Let

H(V,I') = {H: H hermitian form on V with InH('xIN)<Z}.

Since the imaginary part Im H of a hermitian form H is an alternating 2-
form which determines completely H, we may consider H(V,I') as a
subgroup of Alt2(I',Z) =~ H?(X,Z). With this identification one has by
the theorem of Appell-Humbert (cf. Mumford [6])

NS(X) = H(V,I).

Following Weil [9], let us call Riemann form of X any hermitian form
H e H(V,I') which is positive semi-definite. Then the algebraic dimension
of X is given by

a(X) = max {rank H: H Riemann form of X}.

In order to be able to make explicit calculations, we introduce coordinates.
Let V=C" and let T" be the lattice generated by the vectors
Y1» - - -» Y2, € C", which we consider as column vectors. Define the n x 2n
period matrix

Im: = (71""’72;1)‘

Then H(V,I) is identified with the space of all hermitian n x n matrices
A for which

(%) Im ('TIAIT) € 222",

3. Examples. In this section we consider two-dimensional tori. We want
to give examples for all possible pairs (a(X),p(X)). For these examples we
consider tori determined by period matrices of the form

n=(, | ? N -am; p=(? "ere.
0 1 ig is q s

An hermitian 2 x 2 matrix can be written as

X u+iv
A=< . ), x,y,u,veR.
u—iv y
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The condition (%) above becomes
(i) veZ, (ps — qr)ve L.
(ii)) px + queZ, pu + qyeZ,
rx + sueZ, ru+ syel.

Obviously the conditions (i) are independent of (ii) and yield a
contribution of 1 or 0 to the Picard number of X, according as ps — gr
is rational or not. Since ps — gr # 0, the system

(i) px + qu =n;, pu+ gy =n;,
rx + su=n,, ru-+ sy =n,,

has at most one solution for fixed (n,,n,,n3,n,) € Z*. Hence the group of
triples (x,y,u) satisfying (ii) is isomorphic to the group of those
(ny,n,n3,n,) € Z* for which (iii) has a solution. But this system has a
solution if and only if the value of u deduced from the first pair of
equations is the same as that deduced from the second pair, that is if and
only if

(iv) ngr —nyp + n3s —nyg =0.
The subgroup of Z* defined by this equation has rank equal to
4 — ranky(p,gq,1,5).

Summing up, we have proved

PROPOSITION. — Let T be the lattice in C? spanned by the columns of
the matrix

1 0 ip ir
0 1 ig is

>, P, g r,seR.

Then the Picard number of the torus X = C?/T is given by the formula

1 if ps—qreQ,
0 if ps—qr¢Q.

Since for a two-torus X we have A!''(X) = 4, from (App. 1), (i) - (iii)
follow the following restrictions for the Picard number :

p(X) = 4 — ranky(p,q,r,s) + {

0<pX)<3, if aX)=0,
1<pX) <3, if aX)=1,
1<pX) <4, if aX)=2.
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Besides these there are no other restrictions as is shown by the following
examples. In the table we give the matrix P determining the period matrix
IT = (I,iP) of the required torus.

a=0 a=1 a=2
1 2
p=0 ( \/3 \/;> impossible impossible

p=2 (3\1/5 i 31ﬁ> <3\0/§ X 2) <‘l’ \;5>
. (1 —ﬁ) (é ‘/f) (302 302)
p=4 impossible impossible <1 0)

N
01

The values of p(X) follow from the proposition. We leave it as an
exercise to the reader to verify the values of a(X) by determining the
maximal rank of a Riemann form.
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