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Introduction.

This is the second in a series of three articles examining solutions
to degenerate elliptic equations in divergence form

Lu =-a,(fl, ,(x)8,^(^))=0(**).

(*) All the authors were supported in part by the N.S.F. The second is an
N.S.F. postdoctoral fellow.

(**) Here and elsewhere 3y denotes 3/3^y, 7 = 1,. . . , n and repeated
indices are summed.
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In the first article, two of the present authors and R. Serapioni esta-
blished a Harnack inequality, Holder continuity of solutions and
certain other basic estimates that we will use here. Our main purpose
in this article is to prove a Wiener test for regular points in the
Dirichlet problem for L. We will suppose that the coefficients
a^Ax) are real-valued, measurable, symmetric, and satisfy

c-1 l^ l2 wQc) <^.0c) ̂  ̂  < C |$|2 w(x)

for all x and ^ in R" and some constant c > 1 . The weight
w(x) will be a non-negative, measurable function satisfying either
Muckenhoupt's condition (A^) or the condition (QC). These
conditions are defined as follows:

(A2) T (fit ^wwdx) (|i| ^w(xrlcix) ̂  c

where the supremum is taken over all Euclidean balls B and
|B| = f d x .
(QC) B w(;c)= l/^)!1-27",
where / is a global quasiconformal mapping /: R"——> R" and
\f\x)\ denotes the absolute value of the Jacobian determinant of /.
For example, all functions w(x) of the form \x f , a > — n satisfy
either (A^) or (QC). For more details on the nature of these condi-
tions see [2, 5], and [6].

Denote w(E) = f vv(jc) dx and BQc, r) = {y G R" : \x - y \ < r}.
^E

Fix a large ball S of radius R . The first main result is an approximate
formula for the Green function in 2,

/•R s21 ds 1
cr(x y ) ̂  / —————— — » for x , y £ — 2 .e v s y ) J^.y, w(B(x,5)) s " 4

(For a precise statement, see Theorem 3.3.) This formula shows that
locally the Green function for L exhibits essentially the same simple
radial behavior as the classical Green function. (The third article is
devoted in part to estimates of the Green function near the boundary.)

The formula reveals an amusing difference from classical Green
functions. The limit on y——^ x of g(x , y) need not be infinite.
The following properties are equivalent:

(i) lim sup g(x , y ) < °°. (We will see that the limit exists.)
y->x
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(ii) the punctured ball 2\{x} is regular for the Dirichlet pro-
blem.

(in) The capacity (1.19) of {x} is positive.
-R s2 ds

(iv) f < 00.
^oo w(B(x ,5) ) s

At first glance property (ii) seems to contradict the maximum prin-
ciple, since we can assign boundary values 1 at x and 0 on 3Z .
However, as property (hi) indicates, the set [x] is not removable
in any appropriate sense, so the maximum principle remains intact.
The extra phenomenon of (i)-(iv) is reflected in the Wiener test
(Theorem 5.1(a)). A corollary of the Wiener test is that regular points
depend only on w(x) and not on the particular operator L. Another
by-product of the argument is that the capacity we are considering
has the usual equivalent descriptions (Theorem 4.7, 4.10). These
descriptions coupled with the formula for the Green function above
give a convenient way to calculate capacities and hence the Wiener
criterion 5.1 (b).

If w(x) satisfies (QC), then a change of variable by the quasi-
conformal map / transforms the problem into one for w = 1 , that
is a uniformly elliptic equation with bounded, measurable coefficients
such as was treated by Littman, Stampacchia, and Weinberger [8].
In that case our results follow from theirs. The point is to prove the
results directly so that they apply to weights that satisfy conditions
(like A^) that are more easily verified. In fact, our proof will apply
to a wider class of weights satisfying six properties listed in [5]. The
single most important of these is

(*) J^ |^(x)|2 ^ ( x ) d x ^ C JjW?Oc)|2 w ( x ) d x , all ^GC^(n) ,

where C depends only on w and S2.
We will follow the outline of the paper of Littman et al. [8].

The main differences are in Section 3.

1. Preliminaries.

Recall that w(x) is a non-negative function satisfying either
(A^) or (QC). Two well-known facts are
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(1.1) w(x)dx and dx are mutually absolutely continuous
(1.2) w(B(x , 2r)) < Cw(BQc, r)). (Doubling condition.)
ft will always denote a bounded, open connected subset of R" .

Function Spaces. Denote by L^ft,^) the Lebesgue class with
norm 11/11^= f \ f ( x ) \ p ^ ( x ) d x . Lip(ft) is the restriction__ p J^
to ft of functions ^ on R" satisfying the Lipschitz condition
l^(x) - ̂ (y)\ < M \x - y\ for some M. Lipo(ft) denotes
the class of functions of Lip (ft) with compact support in ft.
(All functions are real valued.) Consider the inclusion

Lip(ft)—> [L^ft.^)]"^

given by </?—^ (<^, V</?) = (< /? ,3 i^ , . . . , 3^). H^^ft) denotes
the closure of the image of Lip(ft) in [I.An,^]^1 . Similarly,
H^'^^) denotes the closure of the image of LipQ(^2) in
[I/^.w)]^1. When p > 2 , an (n + l)-tuple ^ = (^,^,...,^)
in H^^tft) is uniquely determined by its first component UQ (see
[5] 2.1). If w^GL1^) and ^GH1 '2^), then ^ is a distri-
bution and ( u ^ , . . . ,«„) = Vi<o in the sense of distributions, but
this is not true in general. But since (^, . . . ,u^) are determined
by UQ , we can use the symbol ^UQ for ( u ^ , . . . , u ^ ) . We will
also shift notation and refer to UQ as an element of H112^). The
Dirichlet form D : H^2^) x H ^ 2 ^ ) — — > R is defined by
D(u,v)= j a ^ ( x ) u ^ ( x ) v ^ x ) d x , where (i^, . . . , u^) = VM
and (i^, . . . ,i^) = Vi;. (We will use this notation consistently).

Let -1- + \ = 1 . The dual space of H^'W for p ' < oo
is the space
H'^O^ {/o - d i v 7 : 7 = ( A , . . . , / . ) ,

^/wEL^n^) / = 0 . 1 , . . . , ^ } .

To see this, observe first that since w G L1 (ft, dx), a function /
satisfying f/w^lf^,^) belongs to L^ft.dx). Hence, an
element T =/o — div / of H"1'^^) is a distribution and acts
on Lipo(ft) by

< T , ^ > = = f /o(x)^+ f ~f ^^>dx.J^ J^
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This action extends in a unique way to all u in H1'^^)

<T,^ )== ^ f //x)^(x)rfx.
/ •=0 n

DEFINITION 1.3. -Ler TGH"1 '2^). ^ 5oy ^ L^ = T
in the H^2^) 56?^ y uCH1'2^) and D(u , v ) = (T , v ) for
every uGH^ ' 2 ^ ) .

THEOREM 1.4. -For every T in H"^2^) anrf 6?iw.y h in
H112^) ^/ze^ ^ a unique u in H^2^) satisfying Lu = T m
r/26? H^2^) sense and u - / zEH^ ' 2 ^ ) .
Property (*) of the introduction says that the inner product D(u , i;)
is non-degenerate when restricted to H^'2^). Thus the proof of
1.4 consists of the usual Hilbert space argument. (See, for example
[7].)

Fundamental Inequalities. We recall now the results from [5] needed.
The constants C, k > 1 , a > 0, and Po <°° below depend only
on the (A^) or (QC) constants of w(x) . In particular, they are
independent of r and p . Denote

B = BI = [y : \x -y\ <r} and B^ = {y : \x - y | < 2r} .

The basic inequality (*) of the introduction is the consequence of
a stronger inequality ([5], 2.3, 4))
/ 1 r ^ \ i /2 fc / 1 /. x i / 2
(———J l ^ l ^ w ) <Cr(——— I v ^ l ' w ) forall
MvCB)^ / v < w ( B ) J B /
d-5) ^H^(B).
Aslightvariant([5],2.3,5)) is
/ 1 /» / 1 /» x l /2
^)^ ^-^l2^^^^^ IV^w) , for all

0.6) ^H'^B). ̂ =^ ^.

Let ^ satisfy Lu = 0 in the H1 '2(B2) sense. Then u is Holder
continuous and ([5 ], 2.3.1, 2.3.12)

/ 1 (- x^2

(1.7) m a x | ^ | < C ( — — — / U2W} .BI ^ W ( B 2 ) ^ B 2 /
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/ 1 r \172
(1.8) sup \u(z)-u(x)\^C[——— \ u1^} (p/r^, forp<r.

\z-x\<p ^(B^) J^ /

If u is also non-negative, then Harnack's inequality says ([5], 2.3.8).

(1.9) max u(y) < C min u(y)
y(=Bi ^GBi

(1.10) Notations. — Let 2 = { y : \y\ < R} be fixed from now
on. The mapping GiH^'^S) —> H^2^) is uniquely defined
by the conditions u = GCDGH^^S) and Lu = T in the H^^S)
sense. (See 1.4).

The proof of 1.4 shows that

(1.11) G'.H-112^)—> H^2^) is an isomorphism.

If TEH"1 '^) for P > P Q , then u = G(T) is Holder
continuous in 2 and ([5],2.4.8).

(1.12) su^|<C||T||^.^

(1.13) sup \uW-u(y)\<Cpa\\^\\ ., .
x,yG'L H * (S)

\x~ y\<p

Note that since u G H^'2^), u vanishes on 32 .
Finally, we have the standard lemma ([8], 2.1): If Lu = 0 in

the H^^B^) sense, then

( 1 . 1 4 ) f \^u\2^<Cy-2 f \ u \ 2 w .^BI J^
The boundary variant says ([5], 2.4.2) that if Lu = = 0 in the
H112^ U B^) sense and u = 0 on 32 U B^ in the H1'^ H B^)
sense, then
(1.14)' f \^u\2w<Cr-2 f \u\2^.\ \
Truncation. Let u_ = (u , u ^ , . . . , t^) be an element of H^'2 (f2).
For ^ > 0, denote ^(.v) = min {u(x),&}. Let < .̂ € Lipo(ft)
be a sequence tending to u_ in H^'2^) norm. Then ^&) tends
to M^^ in L2^,^) norm and ^^ tends weakly to some
_^== (i;,i;i, . . . ,^) in H^'2^). But then i^^f, and as
remarked above, v uniquely determines v_. Hence v^ is unique
and we have proved
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LEMMA 1.15. - // u belongs to H^(^) g > 0, then there is
a unique ̂  such that for every sequence ^ E Lipo(^) with
^Pj —> u. in H^(n), (/?<<s) tends weakly to ̂  in H^2^).
Moreover, the first component of u^^ is u^.

Notice also that replacing ^w by the arithmetic means of a
subsequence, we can suppose (by the theorem of Banach and Saks)
that ^——> u^ in H^(^) norm.

We will have no further need in the remainder of the section to
distinguish between u_ and its first component. Similar considerations
to 1.15 yield

PROPOSITION 1.16.-// u belongs to H^(n), then \u\,
u+ =max(^ ,0 ) and u^ & > 0 belong to H^W. Furthermore,
I I M I I 1,2 ^ 11^11 1,2 an(^ other analogous norm inequalities

DEFINITION l.n.-Let K C F 2 . We say that u > c on K in
the H112^) sense if there exist ^ E Lip(?2) such that ^(x)>c
for all x G K and ^ —> u in H112^). (There is a similar defi-
nition for u < c on K, and u = c on K means u < c and
u> c on K.)

The weak maximum principle of Stampacchia says

THEOREM 1.18. - // u EH^2^), u > 0 on 9SI in the H^2^)
sense, and D(u, v) > 0 for every v in H^(n) such that v > 0
on a in the H^2^) sense, then u(x) > 0 a.e, x in ft.

The proof is well-known and uses truncation. (See [7] or [8]).

Capacity. - Let K be a compact subset of 2. (1.10).

DEFINITION 1.19. - The capacity of K in 2 is
cap(K) = inf {D(u, u): u C H^S)

and u > 1 on K in the H^2^) sense}.

THEOREM 1.20. - There exist a unique u in H^S) satisfying
D(u, u) = cap(K) and u > 1 on K in the H^S) sense. Moreover,
u = 1 on K in the H^S) sense and D(u, v) > 0 for every
v G H^(2) such that v > 0 on K in the H^2^) sense.
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Proof. — One can easily check that the infimum is taken over
a closed convex set in H^^S). As we observed in 1.4, D(u, v)
is an inner product for the Hilbert space, so the extremal function u
exists and is unique. A limiting argument using truncation shows that
u == ^(1) = 1 on K in the H^S) sense. Finally, if ^GH^CS)
and v > 0 on K in the H^^S) sense, then

D(u + &v , u + ̂ u) > D(M , ̂ )

for all S> 0 . Hence, 2&D(u, v) + S2D(v , t;) > 0, which implies
D(^, i;) >0 .

The function u is the capacitary potential of K in 2 . It follows
from 1.20 that Lu = 0 in the H^SMC) sense. Also, u = 1 on K
and u = 0 on 32 in the H^^S). Therefore, by 1.18,

COROLLARY 1.21. — A capacitary potential u satisfies
0 <u(x) < 1 a.e. x in 2.

Next, for any (^EC^(S) satisfying ^ > 0 on K, we have
D(u , < / ? ) > 0 . By L. Schwartz' theorem, there exists a positive measure
JLI supported on K such that D(u , < / ? ) = i (pdii for all </? CE C°°(2). It
is easy to see that the previous equality also holds for all <^ G Lipo(£).
The measure JLX is known as the capacitary distribution of K in 2 .

PROPOSITION 1.22. — The capacitary distribution p. defined
above is supported on 9K and JLI(K) = cap(K).

Proof — We can arrange using truncation that u is the limit of
^•ELipoCS) such that ^ .=1 on K. If </?GC^(£) is supported
in the interior of K, then D(u, </?) = lim D(^,, <^) = 0, because,-^oo /

V^. = 0 in the interior of K. Hence JLI is supported on 3K. Also,
JLA(K) = lim f ^.rfjLi = lim D(^,, u) = D(^, M) = cap(K).

/^ooj / y-»oo /

DEFINITION 1.23. — A measure jn is said to belong to H"1'2^)
if | f^rfjLiI <C||^|| ,. /or a// ^ecnZ). It is then clear thatJ »Q W r.
there exists a unique TEH"1'2^) so that j ^dfi = < T , <^> /or
a// (^ G C^(2). This equality immediately extends to all </? G Lipo(2).

Remark 1.24. - If jn is the capacitary distribution of K C 2,
then 11 GH^^S), and if ^ is the corresponding capacitary po-
tential, Lu = JLI in the H^^S) sense.
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Before proceeding with our development, we need to take a
closer look at capacity and at continuity properties of elements of
H^S). The results will be applied in the forthcoming sections.
Most of the material that follows is known in one form or another.
Unfortunately, we have been unable to find any reference in the
literature where these results are stated in the precise form we need
them.

For an open set © in 2 , and an arbitrary set E in 2 , denote
cap((S)) = sup{cap(K): K compact, K C ©}

cap*(E) = inf{cap(U): U open, U D E } ,

We will say that an equality holds quasi-everywhere (abbreviated q.e.)
on a set S C 2 if it holds on S\E, where cap*(E)=0.

PROPOSITION 1.25. — If the non-negative measure fi belongs to
H-1'2^) then, if E is a Borel set and cap*(E) = 0, JLI(E) = 0.

Proof. — Given & > 0, there exists an open set U, E C U
such that cap(U) < &. Let K be any compact subset of U. Then,
cap(K) < &. It is easy to see that cap(K) = inf{D(<^, ^p): ^ > 1 on
K, <^ELipo(2)}. Replacing </? by ^ , we can choose ^ > 0 in
2 , (^ > 1 on K, </? E Lipo(2) such that D((^ , ^) < 2&. Then,
JLI(K) </^djLi = < T , ( /?><CD((/? ,^) <Cg, Thus, jn(U) < C&, and
as 8> > 0 is arbitrary, /i(E) = 0 .

DEFINITION 1.26.— A function u defined q.e. in 2 is called
quasi-continuous, if given 8> > 0, there exists an open set U C 2.
with cap(U) < g so that u is continuous on 2\U. Our main
goal is to prove the following two propositions.

PROPOSITION 1.27. — Given u EH^^), there exists a sequence
{(^•} E Lipo(2), and a sequence of open sets Oj^, such that
cap(0^) —> 0, (̂ . —> u in H^(2), and {<^.} converges uniformly
in 2 \©^ for each k. Moreover, if u is bounded, the ^ can be
taken to be uniformly bounded, and if u = 1 on K in the H l>2(2)
sense, the ^ can be taken to be = 1 on K.

As a consequence of the proposition we see that given u E H^^),
there exists u in H^^) with u = u a.e., and u quasi continuous.
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PROPOSITION 1.28.-// S\ and u^ belong to H^S), are
quasi-continuous, and agree almost everywhere, they agree quasi-
e very where.

The following corollary is the main application of 1.27 and
1.28 that will be needed in the sequel.

COROLLARY 1.29. — Let ju be a positive measure in HT^^S).
Then, if u £ H^'^S), is Borel measurable, bounded and quasi-
continuous we have tudji = < T , u ) , where T is as in definition
1.23. J

Proof of corollary 1.29. — Pick a sequence {^} of Lipo(£)
functions and a sequence of open sets {0^} as in 1.27. Let E = 0 0^.
Then E is a Borel set, and cap(E) = 0. Let u = lim ̂ , where
the limit is taken in the pointwise sense. Clearly u is defined every-
where in S\E, and as jn(E) = 0 , it is jLi-measurable. Also, as
|E[ = 0, u is in H1'2^), and u = u almost everywhere. Because
of the uniform convergence of {</?•} in ^\0^, we see that u is
quasi-continuous. But then, u = u quasi-everywhere by 1.28. Thus,

r>^ ^^ r^-'

there exists a G§ set E so that u = u for every point in Z \E.
By 1.25, /^(E U E) = 0. Thus,

judfi = f ^ ud[i = j ^ udp. = j _ lim ^. d[i
J "^YEUE "SYEUE "^YEUE

= lim / .̂ d\x = lim / (p. dfJi = lim < T , < / ? . > = < T , ^ > .
/ ^XEUE f J^ f j '

The interchange of lim and integration is justified by the uniform
boundedness of {<^.} .

We now turn to the proof of propositions 1.27 and 1.28.

Proof of proposition 1.27. — We first note that

cap(Ki U K^) < cap(Ki) 4- capCK^)

for any two compact sets K^ and K ^ . This follows easily by
considering the test function M = = m a x ( ^ , ^ ) where the u^ are
the capacitary potentials of K^.. From this it easily follows that
capYU©^ < ^ cap(©,) for any sequence of open sets C\.. Pick

now a sequence <^.GC^(2), <^.——> u in H^CS) so fast that
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IL 4/ l l ^ + i - ^y I I 2 ! 2 < °° Let now
/ "o* <^

U, = x G S : \^^(x) -^.Oc)|>-

00 00

and ^ = U U^.. We know that cap((^) < ^ cap(U,.). On
7 -fc . / =fc

the other hand, 27 l ^+ i (x ) - <^.(x)| > 1 on U^., and so

cap(U,) < D(27 |̂  -^l^7!^ -^.|)

<4 /D(^ -^ ,^+ i -^).

Thus, cap ((^)—?- 0 as k —> oo ^ and the proposition follows.
Proposition 1.28 follows immediately from Theorem 5 in [3], once
we show that our definition of capacity of an open set 6 coincides
with the encombrement of an open set 0 as defined in [3]. We
recall the definition of enc((£)). For an open set ( 9C2 , let
Ve = {u e H^CS) : u > 1 almost everywhere on 0} . Then,

+00 if Ue == 0

enc^) = inf D(u, u) if U^ ^ 0
« C U e

We then have

PROPOSITION 1.30. - For any open set © C 2 , enc(^) = cap((9).

Proo/: - We first claim that if K C 2,

K^ = { x E S :d i s t ( ; c ,K)<p} ,

and u^H^CE) is non-negative a.e. in Kp , then M > 0 in K
in the H^^S) sense. To see this, pick < ^ = 1 in K , supp^CK
^ e C^(2). Then, ^u G H^CS), ^u > 0 in S . Thus, using trunc-
ation we can find a sequence g ^ , g^ > 0 in 2 , .̂ E Lipo(2), such
that ^ ——> ^u in H^2 (2). Pick .̂ E C^(2), .̂ ——^ ^ in
H^CS). Then, ( 1 - ^ ) ^ + ^ . — — ^ ^ in H^S), and on K ,
(1 — <^)/Zy + ̂  = g^ > 0, and the claim follows. Now, assume
enc((9) < 4- oo , capC^) < + oo . Then, there exists a M G Ue . Let
KCCe. By the claim, u > 1 on K in the H^CS) sense. Thus,
capC^) < D(^ , u), and so cap(©) < enc(©). Pick now a sequence
of compact sets {Ky} , K, C K^ , K, C © , Ky / C . Let .̂ be the
capacitary potential of K y . Since cap(©) < + oo, D(i<., u.) < C.
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Thus, there exists a subsequence u^ and ^GH^ 2 ^) so that
K. ——^ 1̂  weakly. Because of the Banach Saks theorem, it is easy
to see that u > 1 a.e. on ©. But, then,

D(u,u)= lim D ( ^ , ^ ) < l i m D ( M , , , M . , ) l / 2 . D ( ^ , ^ ) l / 2

k->»o IK k /K {K

<limcap(K, )l/2 .D(u,u)112

k Jk

^cap^^D^,^)172 ,

and so, D(u, u) < cap(©). Hence, enc(©) < cap(©). As it is easy
to see that enc(©) = + oo iff cap(©) = + °°, the proposition
follows.

As mentioned before, proposition 1.28 follows from 1.30 by
the results in [3].

2. Weak solutions and the Green function.

Recall from 1.12 and 1.13 that if p > p ^ , G maps H-^CS)
into Co(S), the class of continuous functions in 2 that vanish
on 32 . Denote by M(2) the class of finite measures supported
in 2 . A function u in L1 (2 , w) is called a v^eak solution vanish-
ing on 32 to Lu = JLI provided

f u(x)^(x)\^(x)dx == f G(^w)d/x,
^S ^E

for every ^ G L°° (2 , w). Notice that ^w G H"1'^) for all p ,
since ^w == /o - div 7, where ~J = 0 and /o/w = ^ G Lp(2 , w)
for all p . Consequently, G(^w) is continuous in 2 and the right
hand integral makes sense.

PROPOSITION 2.1. — For every jL iEM(2) , there exists a unique
v^eak solution u to Lu = ju . Moreover, there exists u^- H^ (2) so
that u = ( ^ , ^ , . . . , ^ ) and ^^.p^. ̂  c l l ^ l l M ( 2 ) f^
K P ' < P O -

Proof. — The existence of u follows from the fact that the
adjoint of G, G*, is bounded from M(2) to H^(2). Put
^ = G * ( ^ i ) , then by definition (using the representation
^w = /o — div / with 7 = 0 above)

f ^w=<^,^w)==<G*(/ i) ,^w> = <JLI,G(^W)> = f G(^w)d^i .
^S — ^E
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The function u is unique in L1 (2, w) because it is determined
by f u^w for all ^EL°°(2 ,w) .

"s

PROPOSITION 2.2. — // JLI > 0, then the weak solution u to
Lu == iJi is non-negative a.e. in 2.

Proof. — It is enough to show that j u^w > 0 for all non-
negative ^ E L°° (2 , w). But ^w > 0 implies GQ&w) > 0 by
the weak maximum principle 1.18. Hence,

f u^w = f GO&uQrfjLi > 0 .
^S ^E

PROPOSITION 2.3. - Assume that p. > 0 , am/ ju G H~x '2 (2).
TT^n, ^ w^ solution u of Lu = fJi belongs to H^2(2).
Moreover, Lu = JLI m ̂  H^2(2) ^AZ^.

^-oo/ -Since ^EH"1 '^), by 1.4 and 1.29 there exists
a uGH^^) such that D(v^)=(^, ^?) forall ^GC(2)n H^(2).
For ^ G L°°(2 , w), G(^w) G C(2) 0 H^'2 (2), and thus by defi-
nition of G, < i ; , ^w)= D(GOPw),i;) = D(t ; ,G(^w))==<jLi ,G(^w)>.
Hence, v is the weak solution to Li; = p., and the proposition
follows.

Note that because of remark 1.24 and 2.3, if JLI is a capacitary
distribution and u is the corresponding capacitary potential, then
u is the weak solution to Lu = p..

Fix y € 2 . Denote by ^(^ , y ) the weak solution of Lg = Sy
as a function of x . (8 is the unit mass at y .) By Proposition 2.2
g ( x , y ) > 0 for a.e. x in 2 .

PROPOSITION 2.4. - g ( . , y ) ^ H 1 ̂ (2^ ( y , r)) for any r>0.
Moreover, g ( . , y ) can be modified on a set of measure zero so that
it is Holder continuous in 2\{^} and vanishes on 32.

Proof. — Define a measure d^ == ^^wdx , where

1MBO-,/-1)) x e B ( y , j - 1 )
0 elsewhere.

^•00 =

Then p.- tends to 5 weakly, and ^.GH~1 'P(2) for every p . Let
Uj be the weak solution to Lu^ = ^.. Since G* is bounded from
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M(2) to I/(2,w), P > P Q , || M ^ <C is independent
/ L^ (jS,w)

of / and u^ tends to g ( . , ̂ ) weakly in If (S , w).

By 2.3, we see that ^GH^Z). Moreover, L^. = 0 in the
H^ZXBC.y,/-1)) sense. Thus we can choose the Holder conti-
nuous representative of My(1.8). Also by 2.2, Uj is non-negative, so
Harnack's principle applies (1.9). Thus

i (~^
^)<C(——— f ^ ( z ) w ( z ) d z ) ) < — — — 1 1 ^ . 1 1

/ Vw(B) ^B / W(B) / L^ (£,w)

where x G 3B(^ , r) , B = B(x, r/2), /-1 < r/4. Thus by the
maximum principle, 0 < u^(x) < Cy for all x G 2\B(^, r) ,
/~1 < r / 4 . Next, by 1.14 and l.H^ we also have

^B^)'^^12^^^'

and thus the sequence u^ is uniformly bounded in H^SVBCy, r))
norm. Thus a subsequence converges weakly and it follows that
g ( . , y ) E H^S \B(y , r)). Finally, it also follows that Lg(., y ) = 0
m the H^SABC^, r)) sense, and g ( ' , y ) vanishes on 32 in the
H1'2^^^, r)) sense. Therefore g ( ' 9 y ) is Holder continuous in
^\{y} and vanishes on 32. (Seel . l2andl . l3) .

LEMMA 2.5. - Let ^ E L^S , w). Then

GO&w) (y) = f ^(x, y ) ̂ f(x) w(x) dx .J^
Proof. -

r g(x,y)^(x)w(x)dx = <g(.,.>0,^w>
2 = <§^,G(^w)>=G(^w)(^).

From now on we will only use the representative of g ( x , y ) that is
continuous in x for x € 2 \{y}.

PROPOSITION 2.6. - g ( x , y) is jointly continuous in 2 x 2 \A,
where A = {(y , y ) : y G 2}.

Proof. — Fix x and let
^)^=(l^(B(^,r1)) ^B(x, /-^)

( 0 elsewhere.
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From 2.5, the solution $^€ H^(2) n C(2) of L^ = ̂ w
is given by ^(y) = f g(z , ^) ̂ ^(z) w(z) dz . If ^ ^ ^ , then

f »/£ ^

^"^(.y) tends to g ( x , y ) . Even better, if J and K are disjoint
compact sets in 2 , then ^^(y) —> g(x , y ) uniformly for x G J ,
y G K. In fact, 1.8 implies7 for z G J* = {z: dist(z , J) < /-1} and
7 large,

\ g ( z , y ) - g ( x , y ) \ <C\z -x^ (^^(z^)2^)^^2 .

By the proof of Proposition 2.4, the integral is bounded independent
of y E K. Hence, for sufficiently large /,

I^OO-^,^)!
= I j[ (g(z , y ) - g(x , y)) ̂ \z) w(z) dz \ < C/-^ .

On the other hand, ^^(y) is continuous in J x K for large / .
This is because (1.12) implies

sup I^OQ - ̂ OQI < C H^ - ̂ H .
y(=K f J ! f L^^w)

for p > PQ . Clearly the right hand side tends to zero as z ——> x .
Finally, for x G J ,

\^\y) - $W)1 < C \y - yr ll^ll .,7 / / L^CS.W)

LEMMA 2.7. - For every JLIEM(S), u(x) = fg(x, y ) d ^ ( y )
exists for a.e. x and u is the weak solution to Lu = ^ i .

Proof — Assume that jji > 0. Since g(x , 3^) is continuous in
2 x 2 \A and dx x rfjLi(A) = 0, g(x , >^) is dx x dp.(y) measurable
on 2 x 2 . Let ^ > 0, ^ E L°°(2 , w). Then by Fubinfs theorem,
and 2.5,
<G(^w) , ^ ) = f f g ( x , y ) ̂ (x) w(x) dx d^(y)

= J^(x)w(x)^(jc)dx

because ^(x , y ) > 0 for (x , ̂ ) ̂  A. These integrals are always
finite because G(^w) is continuous. Thus u(x) exists a.e. x , and
we can drop the restrictions ^ > 0 and fi > 0 .

PROPOSITION 2.8. - ^Oc, y ) = g0 , x ) ,

Proof. — Fix XQ ^ YQ . Let v^ E L°°(2 , w) be supported near
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YQ and disjoint from XQ . By 2.7 and 2.3,
^i00 = fg(x , ^) ^(>Q wOQ dy

represents the H^S) solution to L$ = vhv. By 2.5

^00 = f§(y , ^) ̂ 00 w(^) dy

also represents this solution. But since g ( x , y ) is continuous near
(^o ,^o )» both <^ and ^ are continuous near XQ. Therefore,
^i^o) = ^2(^0)- Now using arbitrary ^ and continuity of g we
see that ^0,^0) ==<?(^o^o).

3. The size of the Green function.

We will say that A^(x) ̂  A^x) if there exist positive cons-
tants Ci and C2 such that c^ < A^x)/A^(x) < c^. The constants
depend only on the (A^) or (QC) constants of w and not on x ,
whose range will be specified.

LEMMA 3.1. - // B(x , 2r) C 2 and y E 3B(x , r) , then
g ( x , y ) 9= l/cap(B(^, r)).

Proof. - Let ^ be the capacitary distribution of B(JC , r) and
^^ = j § ( z , y ) d ^ i ( y ) a representative of its capacitary potential
(see 2.3 and 2.7). Since ^ is supported on 9B(x, r) and H ( z ) = 1
on B(x, r) in the H^^S) sense, ti is continuous in the interior
of B ( x , r ) and 1 = u(x) = f g ( x , y)dfi(y) (see 1.20 and
1.22). Therefore, ^B(^)

min g(x , ^) cap(B(x , r)) < 1 < max g(x , y ) cap(B(^, r).
y(=9B(x,r) ^e3B(JC,r) ' /

By 2.4 and 2.8, g(x , .) G H1'2 2\ (a(x , ^)) and ^(;c , .) > 0 there.
Thus Harnack's principle applies, giving

max g ( x , y ) ^ min ^(x ,^) ,
y^9B(x,r) y(=9B(x,r)

and 3.1 is proved.

LEMMA 3.2. -// A - E S ^d - r<dist ( x , 32) <8^ , ^n
cap(B(x , r)) ^ w(B(x , r ) ) / r 2 .
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Proof. - Choose ^ E Lipo(2) with ^ = 1 on

B(^ , r), supp ̂  C B(x, 2r), 0 < ̂  < 1, and | V^| < Cr-1.

Then cap(B(x , r)) < D(^, ̂ ) < cf |V^|2 w ^ w(B(;c, r))/r2, by
(1.2). Conversely, let u be the capacitary potential of B(x, r ) .
Let ^ be the point of 32 closest to x . By Holder continuity at
the boundary (1.13), for p < r

max _ u(z) < C(p/rr (————— f _ u(z)2 w(z) dz)112

zGB(x,p)n^ ^w(B(x, r)) ^(^^ns /
^^p/r)^

The last expression is less than — if p = &r for some S > 0

(independent of r). Now applying Harnack's principle on a chain
of balls connecting the point of 9K(x , &r) 0 S on the ray between
x and x to 3 B ( x , ( l + S ) r ) to the (non-negative) function
1 - u(z), we find that 1 - u(z) > c > 0 for all

z E B ( x , ( l + 28)r)\B(x,(l + 6) r) = A .

By the doubling condition (1.2), w(A) ^ w(B(x, 2r)). Also,
u < 1 almost everywhere. Hence,

f u ( z ) w ( z ) d z < 1 - & '
"B^^d^

u
w ( B ( x , ( l + 2S)r)) ̂ .(i^r)

where S ' > 0 , and &f depends only on c, & and the constant
in (1.2). Define <^(z) = ^(z)(^(z) - i7). Then < ^ > g ' in B ( x , r )
and by 1.6,

(ST^BOc.^Xcr ^ l ^ l ' w ^ c f ^ ^ _ ^ ^
^B^,/-) ^B(jc,2r)

<cr2 f |V^|2 w ^r2D(M,u) = r2 cap(B(x,r)) .

THEOREM 3.3. - Let x and y belong to 2' = ] z : |z| < -1- R
Denote r = | x - y \. Then {

R s2 ds
g ( x , y ) ̂  f

r W(B(X,S)) S

Proof. - Denote by g^x , y ) the Green function for B(x , 2/ r) ,
/ = 0 ,1 . . . . . N , with 2^ r < R < 2^2 r . Lemmas 3.1 and 3.2
show that ^.(x,^) ^ (2 /^)2/w(B(JC,2 /r)) for y G 9B(;c, 27-1 r).
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Denote u^y) = g ^ x , y ) - g ^ ^ x , y ) for y G B(x , 27-1 r) . A
limiting procedure like the one in the proof of 2.4 shows that u\y)
solves L^. = 0 in the H^CBQc, 27"1 r)) sense. Also, by (2.4)
Uj is continuous in the closed ball B(x , 27"l r) with ^ (^) = g. (x , ̂ )
on aBO;^7"1/-) continuously and in the H^CB^ , 27"1 r)) sense.
Thus by the maximum principle u^y) ̂  (27r)2 /w(B(JC, 27"1 r)) for
all ^GBOc^ 7 - 1 ^ . Let ^) = g ( x , y ) - g ^ ( x , y ) . A similar
argument shows that u(y) ^ (2N^)2/w(B(;c, 2Nr)) for
^eBtjc^1^/-). In all, by 1.2

N N+l
g ( x , y ) = u ( y ) + ^ u^y)^ ^ (2 /^)2 /w(B(x, 27^))

,^______^.
^ w(B(x,5)) 5

We will now define g(y , y ) as follows. If cap({^}) = 0, then
let g ( y , y ) = ^ . If c ap ({^} )>0 , then let g(y , y ) = l /cap({^}).
This definition is justified by

PROPOSITION 3.4. - // cap({^}) = 0 , then lim g(x , y ) = oo .
// cap({^}) > 0, then lim g ( x , y ) = l/cap<{^). y

x ^y

Proof. - We first claim that cap({^}) = lim cap(B(^,/-)) .
Clearly cap(B(^,r)) decreases as r decreases and^

lim cap (B (y , r)) > cap ( {y }) .
r->0

Let Uy denote the capacitary potential of B ( y , r ) . Then for ^ < ^ ,
D(^, u,) = cap(B(^ , r)) < cap(B(^ , ̂ )), so that u, is uniformly
bounded in H^'^S) norm as r -> 0. Choose a sequence r^ \ 0 so
that u^ converges weakly to u in H^2^). Then u is the capa-
citary potential of { y } . By the Banach-Saks theorem we can pass
to a sub-sequence (still denoted ^.) such that the means
^/ =7~ l (^ 4- • • • 4- .̂) converge to u in H^'2^) norm. Thus
cap({^}) = D(^ ,^ ) = lim DO&,,^,) . But ^, = 1 in the H112^)

y —»• oo ' ' '
sense on B(^ , ̂ .), so D(^ , ̂ .) > cap(B(^ , /-?) and the claim
follows. Lemma 3.1 and the claim imply that if cap({^}) = 0, then
lim g(x , y ) = oo .

x-> y
Now suppose that cap({^})>0 . Recall from the proof of

3.1 that
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min g ( x , y ) cap(B(^,r)) < 1 < max g(x , y ) cap(B(y , r)) .
xGbB(y,r) xG3B(y,r)

Thus it suffices to show that

lim sup \ g ( x , y ) - g ( x ' , y ) \ = 0 .
r->0 \x -y\== r

\xf-y\=^'

Since cap({^}) > 0, the claim and 3.1 imply that g(x , y ) < c for
/^R s2 ds

all x ^ y . Hence by Theorem 3.3, / —————— — < oo . Recall-
^o w(B(y,s)) s

s2

ing 1.2, we have in particular, lim ———;——— = 0. The capacitarys->o w(B(.y , 5))
potentiel u for {y} mentioned above satisfies Lu == ^ for a measure
JLI supported on { y } . Also, ti({y}) == cap({^}). Thus

g ( x , y ) = u(x)lcsip({y}) .

There is a dimensional constant N such that every two points
x and x ' of Q B ( y , r ) can be connected by points

x — x ̂ , x^, . . . , x-^_ ̂ ,

XN = A:7 such that JCy G 9B(^ , r) and |^.+i — x. | < —— r . Then
1.6 and 1.7 imply 100

l^,)-^,)l<c.(^^/^^iv.i^)"'

"^..^b^)'"""1^)'
which tends to zero as r —^ 0 .

From 3.4, and 2.6 it follows that

COROLLARY 3.5. - g ( x , y ) is Borel measurable.
Another consequence of 3.4 is

LEMMA 3.6. — If ^ is a positive measure, then

u(x) = f g(x ,y)dfi(y)

is lower semicontinuous, that is, lim inf u(y) > u(x).
y-^x

Henceforth we will always use the lower semicontinuous repre-
sentative given above of the weak solution to Lu = jn .
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Proof. — Fix a point XQ G 2 , and write jn = JLI^ + ju^, where
M i ( { ^ o } ) = 0 , and ^ == M({^o}) 6^ • Then?

u(x) = f g(x , y ) d ^ ^ ( y ) + jLi({^o})^(^ , ̂ o) •

(We use the convention 0 . °° = 0). Hence,

liminf 600 > liminf fg(x , y ) d ^ ^ ( y ) + ^ { x ^ } g(XQ , x ^ ) ,
x-^o x-^o

by 3.4. Pick now a sequence of functions <p .GLip (R) , <^. ^<A-+ i ,

<^=0 near 0, <^(0=1 for r>-, so that ^.(0—> or •

Let gj\x,y) = g ( x , y ) ^ ( \ x - y \ ) . Then ^(x, j^) < g ^ ^ x , y ) ,
g j ( x , y ) f g ( x , y ) except at x = y . Since ^({:^})=0,
f g ( X o , y ) d f J i ^ ( y ) = Urn J^OCo ̂ ) ^Mi^). But, j gj(x , y ) d^(y)
is a continuous function by 2.8, and so,

f^(^o ̂ )^i(^)= I™ infr^.Oc,.y)djL400< liminf f g ( x , y ) d ^ ^ y ) .
J ' X-^XQ J ' x->-xo J

Thus, f g ( x Q , y ) d ^ ^ ( y ) < lim inf ( g(x , y ) dii^(y), and the pro-
J X-^-XQ J

position follows.

4. Capacitary potentials and distributions.

In this section we will prove basic results on capacitary potentials
needed in the proof of the Wiener test. These results are easily deduced
from the properties of the Green function of Section 3.

LEMMA 4.1. — Suppose that cap({y}) = 0 and fi is a capacitary
distribution. Then lim f g(y , x) dp.(x) = 0 .

r^O J\x-y\<r

Proof - By 1.24 and 1.25, ^({y}) == 0. Also,

f g ( y , x ) d i J i ( x ) < \

because the capacitary potential of a set K , u(y) = / g(y , x) d^i(x),
0 "

is continuous in S\K and K, <1 a.e., (and hence everywhere
on 2\K and K) and is lower semicontinuous. The result now follows
from the dominated convergence theorem.
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LEMMA 4.2. — Let ^ and ^ be positive measures, and
u^x) = f g ( x , y ) d ^ . ( y ) , j == 1 , 2 . Then,

fu,(y)d^(y) = fu^x)diji,(x)= ff g ( x , y ) d t i , ( x ) d ^ ( y ) .

The lemma follows from 2.8, 3.5, 3.6 and Fubinfs Theorem.

LEMMA 4.3. - Let K C 2 be a compact set. Let

u(y) = j g(x , y ) d p . ( x )

be the lower semicontinuous representative of its capacitary potential.
Then u is quasi-continuous in 2 .

Proof. — The proof follows very closely the one of Lemma 6,
section III of [1]. Some modifications are needed to take care of
the points y such that cap {y} > 0 .

Let EI == [x G 9K : cap {x} = 0} , E^ = {x G 3K : cap {x} > 0}.
By 3.4 and 3.5 E^ and E^ are Borel sets. We first claim that given
&> 0, there exists a closed set F^ C E^ , with JLI(E^/F^) < & such
that if jL4 (E) = JLI(E H F^), and u^ (x) = ^(x , y ) d^ (y) , then
u^ is continuous in 2. (Note that as ^(E)<JLI(E) , jn^ E H"112^),
and therefore by 2.7 and 2.3, u^^H^12^)). Given ^ E E^ , define
^>(m,y)= sup_ l^ (x ,^ ) - g ( x Q , y ) \ . By the definition of E^ ,

jcoes
x e s j x - j c o K i / w _

and 2.6 and 3.4, ^ ( — , ^ ) is continuous in 2. Thus, o?(w,^) is

a Borel function of y . Let E^ ^ = y G E^ : co(m , .y) < — [ •

E^^ are Borel sets, and for every fixed n, E^ „ / E^ . Thus, given
& > 0, and n, we can find a closed set F^ , F^ C E^, ^ , so that

Q

jLtCE^F^) < — . Let now F^ = Q F^ , so that ^(E^F,) < & .

Also, given i? > 0, we can choose § = 6(17) so that, for any y E F^
and, for all jc^ G 2 , x £ 2 , \x — XQ \ < 5 implies that

\ g ( x , y ) - g(xQ,y)\ <T? .

Thus, u^(x) is continuous in 2. For further reference, define
^ (E) = jiz(E n (E^F^)), so that ^ (2) < S , and

u^OO = fg(x,y)dv^(y) .
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By lemma 4.1, we know that for each x E E^ , we have
lim f g(x , y ) d f i ( y ) = 0. By standard measure theoretic
r-^O J\x-y\<r
arguments, given 8 > 0, we can find a closed set F^ C E^ , with
/ x ( E ^ \ F ^ ) < 8 , so that given 5 > 0 , there exists T? = 17(8) so
that for all x C P , f g(x , y ) dfJi(y) < 5 . Let

^IX-^KT}
j^(E) = / i ( E n F ^ ) , and ^(x) = f g(x , y ) d^(y) .

We claim that ^ is continuous in 2 . It is enough to check it for
x G F^ . Let {x^} be any sequence, x^ —> XQ G F^ . Then,

lim ^i (^) = lim f^(^ , y ) rfj^ QQ < f g(^, ̂ ) d^i (y)
n n J ^\XQ-y\>^

+ lim f ^(X^ , J/) rf^i (^) .
" ^I^-^K^

To analyze the last term, note that there exists a number N , depend-
ing only on the dimension of the space, such that for any x there
exist N overlapping closed cases Qy, with vertices at x , such that
if $y is the point of Qy n F^ which is closest to x , any other point
y CE F^ is closer to some ^ then to x . Because of 3.3, if the ^ are
chosen for x = x ^ , g ( x ^ , y ) < C { ^ g ( ^ , y ) } for all y G F^ .
Thus, ^ /

Mm u^(x^) < I g(xQ , y ) d^^y)
n ^iy-XQ^rf —— N

+ C l i m ^ J g ( ^ , y ) d ^ ( y )
n T "l^-^K^

< f g ( x ^ y ) d ^ ( y ) + C N 6 .
^ly-Xol^T}

Hence, lim u^(x^) < ^^(^o), and so from 3.6 we see that u^ is
continuous at ;Co .

Let ^(E) = JLI(E n (Ei\F^)) so that

^ i (2)<§, and v,(x) = fg(x , y ) d v ^ y ) .

Then, ^(x) = u^(x) + v^x) 4- M2(^) + v^(x), and the .̂ are
continuous. Let S^ = {v^ > l / n } , S^ = {^ > l / n } . By 3.6 these
sets are open. Let K C S^ , K compact, and u^ its lower-semi-

continuous capacitary potential. — p,^(K) < J v^d?.^ = u^dv^
by 4.2. By the remarks in the proof of 4.1, u^ < 1 , and so
cap(S^) < ^&. Similarly, cap(S^) < n&. Let 77 > 0 be given, and
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choose ^./oo, g,\0 so that ^ ^ g, < 7?/2. Let © = U S^ U U S^ .
/ / / i /

Then, © is open, and cap( ©) < 7?. Also, it is easy to see that u is
continuous in 2 \ © , and thus the lemma follows.

We now turn to an alternative definition of capacity.
Let K be a compact subset of 2 . Then define

capi(K) = sup^(K): ( g ( x , y ) d v ( y ) < 1 for all x £ K ,
. )v is a positive measure .

Let fi be the capacitary distribution of K and u the (lower
semicontinuous representative of the) capacitary potential. By lower
semicontinuity u(x) < 1 for all x . Moreover, ^n(K) = cap(K).
Therefore,
(4.4) capi(K) > cap(K).

We will say that an equality or inequality holds p.p. if it holds except
on a set of cap^ size zero. The capacity capi is treated for instance
in Carleson's book [1]. Although the hypotheses are slightly more
restricted there, the same proofs hold with some modifications to
take care of y with g(y , y ) < + oo, as in 3.6 and 4.3. In parti-
cular, we have ([ 1 ] Theorems 4 and 7, Chapter III.)

THEOREM 4.5. — All analytic sets are capacitable for capi .

THEOREM 4.6. - For any compact set K C 2 , thee exists a
positive measure v supported on K such that

v(x) = j g ( x , y ) d v ( y ) < 1 everywhere v(x) = 1 p.p. on K
and ^(K) = capi(K).

Our goal is to prove

THEOREM 4.7. - With the notations above, cap^(K) = cap(K),
v = u, v = JLA , and p.p. and q.e. are equivalent.

THEOREM 4.8. - v belongs to H"1'2^).

By 4.2, jfg(x,y)dv(x)dv(y) = f v(x) dv(x) < v(K) <oo.
Recall that G is an isomorphism G : H"^2^) ̂  H^2^) and
the norm on H^'2^) can be taken to be \\u\\ i 3 = D(^ , u)112 .
Let ^eL°°(2 ,w) , then Ho (£)
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I ̂ w II2 -, o ^ D(G(^w), G(^HO) = < G(^w), ̂ w)
H ' (S)

= jfjrg(^,^)^(^)w(^)^^(^)w(^)^ .

Let Q. ^ be a grid of non-overlapping cubes of side 2"^ covering S.
Let c^ ̂  = ^(Qy,fc)MQ,,fc) and dv^(x) = 2^ c^ w(x) XQ .̂ ^ ( x ) d x .
The measures ^ tend to i/ weakly (and hence in the sense of
distributions). It therefore suffices to show that || Vj, || , ^ is

K H~ l '2(2;)
uniformly bounded as k —^ °°. Since supp v = K CC 2 , we
can assume k is so small that all the cubes Q^ for which c^ i= 0,
have the property that their doubles are still contained in 2 .

j j g ( x ,y)dv^(x)dv^y) = ̂  ffg(x ,y)w(x) dxw(y) dyc^^c^^ .

By Harnack's inequality, g ( x , y ) is essentially constant for ( x , y )
in Q, ^ x Q. ^ provided Q{ ^ and Q -̂ ̂  are neither adjacent nor
equal. Thus it is easy to dominate this part of the sum by the corres-
ponding integral for v . To handle the case of pairs of nearby cubes,
consider a ball B = B(XQ ,2~k+2) . Let X == ^(Xo .JO for some

y E 3B . By Harnack's principle, if x , y ^ B and | x — y \ > —— 2"^ ,

then g(x , y ) ^ X . Furthermore, by 3.3, if x and y are any points
of B, then Cg(x,y)>\. Therefore,

C [ f g(x,y)dvWdv(y)>\vW2 .
^B

Suppose that we can show for any x E B

f g ( x , y ) w ( y ) d y < C / . . g(x , y ) ^ ( y ) d y . (4.9)JB ^-^o^-y^-^2

j /GB

Then the proof of 4.8 is concluded as follows. If Q^ and Q^ are
cubes of side 2~k in B, then (recalling 1.2),

[ f g ^ x ^ y ^ w W d x w ^ d y ^ ^ ^ ^^QI ̂  w(Qi) ^(Q^)
^n r r ( \ { ^ / ^ ^ ^(Ql) l;(Q2)
<CU^?J;)wwrfx^)^w(Q,)^(Q,)

^CX^B)2^^^^
w(Q,) w(Q,)

<CX^(B) 2
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<C f f g(x,y)dv(x)dv(y).
^B ^B

This shows that jj g(x , y ) dv^(x) dv^(y) is uniformly bounded.

To prove 4.9, note first that we can assume (for simplicity)

that x = Xr.. Denote w, = w(B(x. , 2~1)), L, =f . ——s-———-s- •v v ° 9 ^ / ^-^(BOCo^)) s
Then the left hand side of 4.9 is equivalent to

00 00

S ^i - ̂ i)^- "^^ + E ^-(L/ - L/^).
< Es k i = fc +1

/•2-1'1'1 c2 x7c
Bu, »,(L,-L,_,)->.(B(..,2-')^, ^^^^.2-".

In particular, vv^L, > c 2 ~ 2 1 . Hence
00

^4 + I ^(L, - L,.,) - w^4 + 2-2^ - ̂ 4,
» = f c + i

and w^L^ is comparable to the right hand side of 4.9.

Proof of 4.7. — By 4.4 and 4.6, i; = 1 q.e. on K. Hence, by
1.24, 1.25 and 4.2, ^i(K) = f vdy. = j udv. By the proof of 4.1,
u < 1 . Recall that u = 1 on K in the H^'^S) sense. Thus, there
exists a sequence <^.GLipo(2) such that < .̂ ^ 1 on K , and
^ —> u in H^CS) norm. By 4.8, 4.3 and 1.29,

/ udv = lim f</?, d^ = i/(K) .
•̂  » —»• 00 J '

Thus, cap^(K) = cap(K) and q.e. and p.p. are equivalent. By the
proof of 4.3, v is quasi-continuous in 2 , and is also 1 q.e. on K .
By 4.8, 1.29 and 2.3, D(t;, v) = f vdv = i/(K) = cap(K), so that
D(i;, i;) = D(u , u) . By a similar argument,

D(v,u) = fvd^i = JLA(K) = cap(K).

Hence, u = v as elements of H^^S) and by 2.3, ju = v . But then,
u = v pointwise.

THEOREM 4.10. — The extremal problems

A"1 = inf /T g(x , ̂ ) A»(x) d^O) : v(K) = 1, v a positive measure
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B = i n f M K ) : f g(x,y)dv(y)>\ p.p. on K}

C = sup {v(K) : f g ( x , y ) d v ( y ) < \ p.p. on K}

are equivalent so that A = B = C = cap(K).
This is an easy consequence of 4.5, 4.6, and 4.7. (See [ I ] , Theorem 5,
Chapter III.) The pair of characterizations B and C and the formula
for the Green function 3.3 make calculation of capacity up to a
bounded factor as easy as in the classical case.

5. Regular points.

Let ft C 2' = ^ z : |z| < . R^. Denote by H the quotient

space H1'2^)/^'2^). By Theorem 1.4, there is a bounded linear
map B : H — > H112^) such that if AGH 1 ' 2 ^) represents an
element h of H, u = Bh satisfies Lu = 0 in the H112^) sense
and u -J^eH^Cn). Notice that by 1.8, Bh is Holder continuous
in ^2. If h is bounded on 80 in the H112^) sense, then

sup | Bh | < max | h \ ,
n an

where max | h \ means the smallest number c such that h < c and
_ an

-h <c on 3ft in the H^2^) sense. In fact, ||| Bh ||| < C max \h \,
, anwhere

111^111 = s^p |^|
. ( M \SW-g(y)\ 14- sup { r^ ——————— : \x - y | < — r , dist(x , 3^) = r

( 1^ - ^1 2

for some large value of M. Since the restriction of C°°(R") to 9SI
is dense in the space of continuous functions with the supremum
norm, B extends uniquely to a mapping from continuous functions
h on 8^2 to functions Bh that are Holder continuous in ^l. (It
is also easy to see that LBh = 0 in the H^2^') sense for any
Sl' cc n).

A point y £ 3^2 is regular if for every continuous function h
on 8^2, the solution u = Bh to the Dirichlet problem satisfies
lim u(x) = h ( y ) .

x-»-y
xen
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THEOREM 5.1 (Wiener test). - y E 3^ is regular if and only if
ds^

a) / < o°, or

dp
^0̂o w(B(^,^)) s

/•R p2

b) J cap(K,) ——p
^n " wlKnw(B(y , p)) p

w/^n? K ,̂ = (2 \B) 0 B(^ , p).

COROLLARY 5.2. — The set of regular points of 9^1 depends
only on w(x) and not on the particular operator L.

Conditions a) and b) are mutually exclusive. Condition a) does
not depend on Q., so in case a) y is regular for any domain. (See
(i)-(iv) of the introduction.)

Denote the capacitary distribution of K. by ^i. . Denote

/ p p
Up(x) = g ( x , y ) d y i p ( y ) the lower semicontinuous representative
of the capacitary potential of Kp . The following lemma is proved
in the same way as the remark at the end of section 3 of [8 ].

LEMMA 5.3. — y is regular if and only if lim u,,(x) = 1
X~^ Vfor all p > 0 . jces\Kp

LEMMA 5.4. — Suppose that cap({^}) = 0. Let ^ be a positive
H~1'2 measure and u(x) = j g(x , z) rf^(z). Then,

u(y) > lim inf u(x) .
x-^y

Proof. — The proof follows closely the one of Lemma 8.1 of
[8]. Let /

t t <a

t - — (t - a)2 a <t <3fl.
4a

F,0) =

\la t>3a

By monotone convergence, u(y) = lim fF^(g(y , z) d^(z). Since
§(y , y ) = + °°, F^(^( ̂  , -)) £ H^S) H C(2) , and is the weak
solution of
LF,(^,-))

— ;̂ ̂ ig(y , x) 9fg(y , x) on a < g(^ , -) < 3a
=f(x)dx,
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where /GL^dx). By 1.28, F,(g(y , - ) )== fg(x , z) f(z) dz
q.e., and so, because of 1.25, and 4.2

f F ^ g ( y , z ) ) d ^ ( z ) = ̂  f u ( x ) a ^ Q f g ( y , x ) ^ g ( y , x ) d x .

By our assumption on y , {x : a <g(y , x ) < 3a} shrinks to ^ as
a —> oo. Also, .y G int 3^ , where J^, = {x : g ( y , x ) > a } , by
3.4, and by 2.6. 3J^ = {x : g ( y , x ) = ^}. Let v be the capacitary
distribution of J^ , i;(x) = fg(x , z) dv(z). Then,

1 == v ( y ) = /" ^(j^ ^) ̂ (^) = a cap(J^),

1 9Jfl

so that cap(J^) = - . By the remarks prior to 1.21, we see that
g(y jc)

v equals 1 on J^ , and ——'— on S\J^ , so that

1 1 r-^ = cap(J^) = —^ j a^ Qfg(y , x) 3^ g(y , x) dx .

(Here we used the fact that V/z = 0 a.e. on the set where h = 0,
for A GH^CS). See the remark prior to Lemma 2.1 in [5].) There-
fore,

1 /.
— y a^ 9 { g ( y , x) 3,5^ , x) dx = 1 .
Id va<g<3a

Hence,
1 „

u(y) = lim — / u(x)a.. 3^0,x) 8,^(^,x)dx > l iminf^(x) .
a-*'00 la ^ ' x -ry

LEMMA 5.5. - Suppose that cap{^} = 0, and that u is the
lower semi-continuous capacitary potential of a compact set K . Then,

u(y) == lim inf u(x).
x-^y

x^\K

Proof - By 3.6, u(y) < lim inf u(x) . Let
x-^-y

^e2\K

( u(x) in 2\K
u(x) = {

( 1 in K

Then, u(x) = u(x) a.e., and the proof of lemma 5.4 shows that
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u(y) > lim mfu(x). Now, by the proof of 4.1, u(x) < 1 , and so
x -^y

lim inf u(x) = lim infu(x), and the lemma follows.
x->y x-^y

jce2;\K

COROLLARY 5.6. — Suppose that cap{^} = 0. Then y is
regular if and only if u^ (y) = 1 for all p > 0 .

The corollary follows from 5.3 and 5.5.
The following lemma follows closely 9.8 of [8].

LEMMA 5.7. — Suppose that cap({^}) = 0. Then, y is not
regular if and only if lim u.,(y) = 0 .

p-^o p

Proof. — If u^(y) —^ 0, by 5.6 y is irregular. Assume now
that y is irregular. Because u^(y) < 1 (see the proof of 4.1), we
must have u (y) < 1 for some ?o , by 5.6. By 4.1, given & > 0,

'•0 /» -

we can find o < po such that ; g(y , z) d^i. (z) < g. Let
^{z-y^a - 0

v(x) = I g(x , z) d ^ i ( z ) , ^(x) = / g(x , z) dyi (z).
^|2->/|>0 ^0 J\z-y\>a ^0

Then ^ (x) = v(x) + ^(;c), v(y) < &, and in view of 2.7 and 2.3,
i;, ^GH^CS) . Also ^ is continuous at y , u(y)<u (y)<\.

Hence, there is a r with 2r < a such that u(x) < — (1 + u pAy))

on B(.y , 2r). Therefore, by the claim in the beginning of the proof

of 1.30, v W = l - u ( x ) > ^ ( l - u ^ ( y ) ) on K, in the H^S)

sense. Since u pW ^ 1 on K and hence on K^ in H^^S)

sense, v(x) > -^ (1 - u^(,y)) u^(x) on K^ in the H^CS) sense. By

1.20, 2.3 and 1.18, v(x) > ̂  (1 - u^(y)) u^(x) almost every-

where in 2\K^ . Choose now § < — (1 — u ( y ) ) . Then, as
1v(x) > — (1 — u (y)) a.e. on K^ , and uOQ < & , i;(x) is bounded

away from v(y) a.e. on K^.. Because of 3.6, t;0) < lim inf v ( x ) ,
x-^y

x^\^ _
and the proof of 5.4 shows that v(y) > lim inf v ( x ) , for any v

x->y
jcesXiCr

which equals v a.e. Thus, v ( y ) = lim inf v(x). On 2\K^, u^
x-^y

xes\K^
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and v are continuous, and so, v(x) > — (1 — u ( y ) u^.(x) every-

where in 2\K^. Moreover, by 5.5, u^y) = lim inf u^x). Thus,
x->v

x^\K^

&>v(y) = lim inf v (x) > — (1 - u. (y)) lim inf u. (x)
x->y 2 ^0 ^

xes\K^ jce£\Ky

= ^ (1-^00)^).

Therefore, the lemma follows.

LEMMA 5.8. - If p > r , then

^(K,)=^(K,)+/^ u,d^.

In particular ^(K,) < ^(K,) = cap(K,).

Proof. - By 1.25, 4.6, 4.7 and 4.2

^(K,) = y ̂  ̂  = /^, d^ = /^ ̂ rf^ + J^ ^^ ^^^

'^^^X^^^-
Proof of 5.1.

Case I cap({>}) > 0 .
Let M be the (continuous representative of the) capacitary

potential of {y} . (See the proof of 3.4). By the maximum principle,
u(x) < u^(x) for x E 2\K^ . But by 3.4, lim u(x) = 1 , so

jc ~> y
lim ^.(A:) = 1 in 2\K and y is regular by Lemma 5.3. Moreover,
x-^-y '
cap({^}) > 0 is equivalent to (a).

Case II cap({>}) = 0.

^00= f g(x,y)d^(x)^ ^ f1' — — — — ^ ( « ( K / )J^ p ^ ^-^ w(B(^,5)) ^ ^v 2-^p

-^(K^_,_^)).
Notice that by 4.1,

""o "^ ̂ H^b))f<chmo4 ̂ ^^^w = o.
Therefore, we can apply summation by parts and obtain
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(5•9) „. ^R s2 ds /•P r2 dr^) - ^p(Kp) J, ^^ - + ̂  ̂ ^ ^(K.) ̂ -.
Denote c(p) == cap(K^) and 0(^) = ^/w(B(^ , s)) . Then by 5.8,
^pGO < c(p) f 0(s)ds + fp c(s) 0(s) ds . Suppose that (b) fails,
then [R c ( s ) 9 ( s ) d s = C < o o . Evidently, F c ( s ) 9 ( s ) d s tends

^0 ^0 5

to zero as p ——> 0 . Choose §. > 0 so that f 2 c(s) 9(s) ds < 8>.
^o

Since, c(^) is increasing and lim c(s) = 0 (see the proof of 3.4)
s->0

we can choose 5^ < 5^ so that for all p < S^ , c(p) < & c ( S ^ ) .
Now, for p < 5^

c(p) I^O^ds^ [ ^c^Q^ds 4- g f R c ( s ) e ( s ) d s < g+ Cg.
^p */p ^62

In all, ^^(^) tends to zero as p——> 0, so that y is not regular
(Lemma 5.7).

Conversely, suppose that y is not regular. 5.9 implies that
/»? r2 dr

Jo ~nTf——^ ^p^r) — is finite. To prove (b) fails, it suffices to
show that c(r/2) < 2jn^(K^) for r < p and p sufficiently small.
In fact,
c(r/2)=^(K^)=^(K,/,)

^^"'"^•'•'^/K^ "'"*'•

By Harnack's principle and 3.3, if jc£K^\K^ and z £ K^ , then
^(x , z) < C^(x , j^). Hence

^W"^ = ^\K/K^ ^,z)d^)^W

< C X\K X ^x'•^/)^/2^)^W<C^^)c(r/2).''•pX11-?' '^r/2

Thus, c(r/2) < Mp(K,) + Cttp ( y ) c(r/2). Since u^y) tends to
zero as p——>• 0, c(r/2) < 2^(K,) for sufficiently small p .
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