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ASYMPTOTIC BEHAVIOUR
OF THE SCATTERING PHASE

FOR NON-TRAPPING OBSTACLES

by V. PETKOV and G. POPOV

0, Introduction.

This paper is devoted to the asymptotics of the scattering phase
s(\) related to the laplacian in the exterior of a bounded domain
© C R" . The first result concerning the asymptotic behavior of
s(\) for strictly convex domains and the Dirichlet problem was
announced by Buslaev [7]. Recently, the same problem has been
studied by Majda and Ralston [24] where the first three terms in the
asymptotics of s(\) are found (see also [34], [35]). The techniques,
used by Majda and Ralston, are connected with a trace formula, proved
by Jensen and Kato [15], as well as with the important progress,
made by Melrose [30], in the investigation of the forward scatter-
ing amplitude for strictly convex bodies.

For non-convex domains the best known result is due to Jensen
and Kato [15] where for starlike domains the first term in the asymp-
totics of s(\) is given. The approach in [15] is based on a trace for-
mula, discussed below, and on the monotonic property of s(\)
which enables one to apply a Tauberian theorem. For domains
with more complicated geometry, the monotonicy of s(\) is not
known (see [16]). On the other hand, the estimate for the remainder
in [15] is not the best possible, since the tools related to the Laplace
transform are usually not sufficient to obtain a sharp estimate. Finally,
notice that Majda and Ralston [24], [35] have conjectured that the
asymptotic expansion, given in [7], [24], holds for every non-trapping
obstacle.

The analogue of s(\) for bounded domains is the function
N(X) equal to the number of the eigenvalues of the laplacian which



112 V.PETKOV AND G. POPOV

are not greater then X 2 . After the classical works of Weyl [41] and
Courant [9], the efforts have been concentrated on the proof of a
sharp bound for the remainder in the asymptotics of N(X), predicted
by the WeyFs conjecture. Recently, Seeley [39], Pham The Lai [33]
and Ivrii [13] succeeded to obtain a rigorous proof of this conjecture.
In particular, Ivrii [13], under some assumption on the set of the
periodic bicharacteristics, established a stronger result, concerning
the form of the second term in the asymptotics of N(X). In his
work Ivrii developed a new perturbation technique for the investi-
gation of the singularity at t = 0 of the Fourier transform of N(X).
The knowledge of this singularity combined with a Tauberian theorem
leads to an estimate for the remainder. Recently, Ivrii [14] proved
a remarkable result, describing the asymptotics of the spectral func-
tion for the laplacian under general boundary conditions. Notice
that the monotonicity of N(X) is crucial for the application of a
Tauberian theorem.

The main purpose of this paper is to prove the conjecture of
Majda and Ralston for non-trapping obstacles. Our analysis is based
on a precise examination of the Fourier transform a(t) of the scatter-
ing phase s(\) . To study a(t), as \t\——> °°, we apply some facts
concerning the kernel of the scattering operator, while for the inves-
tigation of a(t) for t close to 0 we use the techniques due to Ivrii.
On the other hand, we study the Dirichlet problem as well as the
Neumann one with an additional term. In this direction, our results
are new even for strictly convex domains.

In order to give a precise statement of our main result, we need
to introduce some notations. Let S2 C R" , n > 3, be an open
domain with bounded and connected complement © = R"\ft and
smooth boundary 3^2. Denote by Ho the self-adjoint extension
of the laplacian - A in L^R"). Next, let HD(HN) be the self-
adjoint extension of the laplacian — A in L2^) with boundary
condition of Dirichlet (Neumann) type on bSl. Throughout this
paper the Neumann boundary condition has the form

(^ (x)-^^x)u(x)) =0 ,
\ Qy /9I2

where j(x) € C°°(9^2), y ( x ) > 0 and v is the outward unit normal
to 8^2 , pointing into © . Associated to H , / = 0, D , N , are
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the following quadratic forms

q^f. g) = (V/, V^^, ̂ (/, g) = (v/, V^^ ,

<7N(A g) = (V/, ^g\2^ + / 7M fW ~gW dS^ .

These forms are positive, closable and the self-adjoint operators, cor-
responding to the closure of q ^ , are just H. . Consider the operators
B. = \/H. with domains

D(B^) = H i ( R " ) , D ( B N ) = H I ( ^ ) ,

D(Bo) == { ^ G H i ( f t ) , u\^ = 0}.

Denote by [D(Bo)] the closure of D(B()) with respect to the
norm || B^u ||2^ „ and introduce the Hilbert space

L (R )

The operator
3Co = ^(Bo^eiAR").

^ 0

.-H,
Ao == i

with domain D(A()) = D(B^) 0 D(Bo) is self-adjoint in ^o and
generates a group ^(t) of unitary operators on KQ . Similarly,
let [D(BI))] denote the closure of D(B^) in the norm I I B o M l l ^
Consider the Hilbert space 3^ = [D(BI))] ̂  L2^) and the self-
adjoint operator y \

[ 0 I\
AD = M\^ oy

with domain D(Ao) = D(B^)C D(BI)). Let ^(^ be the group
of unitary operators on 5C^ generated by A^ . The wave operators
W±(AD , Ao ; P) = s - Urn "IVD P ̂ (-t) exist and are com-
plete (see [19, 20, 10, 37]). Here P : 5fo——> X^ denotes the ortho-
gonal projection. Everywhere in what follows we use the notations
of Reed and Simon [37] for the wave operators and the associated
scattering operators. The scattering operator for the Dirichlet problem
becomes S(AD , A^, P) = (W_ (A^, Ay; P))-1 W^ (A^, Ao ; P).

To handle the Neumann problem, it is convenient to extend
HN on L^R"), setting HN/ = / for /G (L2^))1, where the ortho-
gonal complement is taken in L^R"). Similarly, we put B^/ = /
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for /^(L2^))1. Denoting by [0(8^)] the closure of D(BN) with
respect to (q^(u , u))112, we introduce the space

WN ^(^(B^ieL^eLW)
and consider the self-adjoint operator

I ° l}
A N = l H 0 •\- "N °/

Since Kg C X^, we can determine the wave operators

W, (AN , A,,) = s - lim ^rAN 'Uo(- t)
f—*- +00

without using a suitable projection. Following the approach, develop-
ed in [37], we prove the existence and completeness of W+ (A^, Ao).
Therefore, we set S(A^ , A^) = (W_(A^ , A^))-1 W^ , A'o).

In what follows, for brevity of the notations, we use the sign 4-
for the Dirichlet problem and the sign — for the Neumann problem.
The scattering operator becomes an operator-valued function S±(X)
in the spectral representation of AQ (see [6, 19, 20]). Moreover,
*S+ (X) has the form

S,(X)= I + K + ( X ) (0.1)
where K+(X) is trace class [19, 20}. This important property can
be deduced from the one established for the scattering operator
S(B. ̂  I , Bo), / = D, N (see section 2). As it is shown in [11, 38],
the representation (0.1) implies the existence of det S+(X), and
we obtain e"2"1^ = det SJX). The function 5±(X), called
scattering phase, coincides with the spectral shift, studied by Krein
[17, 18] and Krein and Birman [6]. Another important objective
is the fact, that we can choose •s'+(X) to be smooth for X > 0. This
phenomenon is connected with the Rellich's uniqueness theorem
which holds for the problems under consideration (see [19, 20]).

Now we shall precise the non-trapping condition. For this
purpose consider the generalized bicharacteristics of the operator
32 -A , introduced by Melrose and Sjostrand in [26, 27, 28]. The
projections of the generalized bicharacteristics on S2 will be called
generalized geodesies.

DEFINITION. — We say that Q is non-trapping if for every R > 0
with & C BR = {x ; \x\ < R} there exists a number T(R) > 0 such
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that there are no generalized geodesies with length T(R) within
n o B ^ .

Our main result is the following

THEOREM 1. — Assume © non-trapping. Then we have
-n- -f"~1)

(A'jr\ 2 (^TT\ 2

^(X) = ——————volOX" ± v ) ,———— volBOX"-1

r(^i) 4r(^.i)

_ ( 4 ^ ^ H ^ _ . (0.2)
^n\ ^V 6 ^ ^ ^

V 2 / +0(X"-3), X —>• +°°,

w/iere HGx) denotes the mean curvature at x £ 3 ®, c?S^ is ^e
Lebesgue measure on 9© and /or s+(X) rte ^mi, involving ' y ( x ) ,
must be omitted.

The proof of theorem 1 is very long. The analysis of the Fourier
transform a^(t) of s^(\) is based on a suitable trace formula. In
[ 15 ] Jensen and Kato proved that

trOT'"0 0 0 - e"'"0) = t f ° ° e-^s^^dk, (0.3)
— fH

where e D is extended as 0 on (L2^))1. This formula actually
appears in [7] with heat kernels replaced by powers of resolvent
kernels. Working with (0.3), we could not obtain an information about
the singularities of a+(^). It is more convenient to use the formula

2tr f°° p ( t ) (cos BD t 0 0 - cos B.r) dt
v—— 00

= Li ̂  (X)^(X)rfX, p£C;(R), (0.4)

where cos B^ is extended as 0 on (L2^))1 and

P(x)= f^PWe-^dt.
This result for /i odd is given by Lax and Phillips [21] for starlike
domains and by Bardos, Guillot and Ralston [2, 3] in the general
case. One way to prove (0.4), is to exploit the trace class property
of the operator
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( H o + D - ^ O - C H o + I ) - ^ (0.5)

where K > — . This assertion for Dirichlet and Neumann problem
is established by Birman [4, 5], provided the boundary smooth. For
domains with more complicated geometry similar results are given
by Deift [10] (see also [37]). Following the ideas, used in [15], we get

THEOREM 2. - For every p G C^ (R) we have

2tr f_ p(t) (cos B^t 0 0 - cos BpO dt = f — (X) ^(X) d\
dK (0.6)

where B+(B_) stands for B^B^).

Theorem 2 can be proved, without appealing to the trace class
property of (0.5) (see [32]). Notice that a trace formula, involving
the scattering phase for the Schrodinger operator, has been obtained
by Colin de Verdure [8 ] and Guillope [12].

The monotonicy of the scattering phase s^(\) for non-trapping
obstacles is an unsolved problem. For this reason we cannot apply an
argument, based on a Tauberian type theorem. Nevertheless, the non-
trapping hypothesis enables us to overcome this difficulty and to
obtain a^(t) £ C°°(R\0). To do this, we use essentially the recent
results of Melrose and Sjostrand [26, 27, 28] on the propagation of
singularities, involving those about the case when the bicharacteristics
are tangent to infinite order to T*(3ft). Moreover, examining the
kernel of the scattering operator, we show that ta^(t) coincides,
as \t\ —^ °°, with a function whose Fourier transform is rapidly
decreasing.

Finally, it is necessary to study the singularity at t = 0. It is
easy to reduce the situation to that, investigated by Ivrii [13].
Therefore, the arguments of Ivrii lead to the asymptotic expansion

—^— ~ ^ c± X""1"7. With this observation in mind, we can apply
^x /=o 7

the trace formula (0.3) and the result of McKean and Singer [25],
to find c^ . In the same fashion, one could cover the Neumann
problem with j(x) = 0 , but the case 7(x) ^ 0 makes some troubles.
For this reason we prefer to compute c?, taking into account the
perturbation formula for the kernel of cos B^ t ̂  0, due to Ivrii [ 13].
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We believe the same approach might be useful for some other scatter-
ing problems. To simplify the calculation, we work near the boundary
with special local coordinates. In these coordinates the operator
32 — A , frozen at a point on the boundary, has coefficients which
preserve some of the geometrical information connected with 3©.
Furthermore, we study the integrand in the third term in (0.2) at
some suitably chosen point x £ 3© and reduce the general case to
the special one.

The plan of the paper is as follows. In sections 1 and 2 we intro-
duce the scattering phase and prove theorem 2. In section 3 we study
the behavior of a^(t) as 11\ —> oo. In section 4 we expose the mo-
difications to the argument in [1 ], needed to show or± (t) £ C°°(R \ 0).
Finally, the sections 5 and 6 are devoted to the computation of
c~ , / = 0 , 1 , 2 . A part of our results, concerning the case n odd,
was announced in [31,32].

The authors are grateful to James Ralston for helpful comments
about the case n even and to Johannes Sjostrand for the discussion
on the propagation of singularities.

1. Scattering phase related to the operators B^ , Bg .

Let H., / = D, N be the self-adjoint extension to the laplacian
— A in L2^), defined in the introduction. Using the functional cal-
culus, consider the operators CQ = (I + Ho)^ and Cy =(14- Hy)"^,

7 = D, N , where K > y is an integer, which will be fixed in what
follows. It is convenient to extend Cy as 0 on (L2^))1. The extend-
ed operator will be denoted by Cy ^ 0. Next, for simplicity of the
notations, we write C^ for C^ or CN and B^ for B^ or B^ if
some special choice is not mentioned.

The following proposition plays a crucial role for the existence
of the scattering phase.

PROPOSITION 1.1. - The operator C\ 0 0 - CQ is trace class in
LW).

Since we consider domains with smooth boundary, the propo-
sition 1.1 is contained in the results of Birman [4, 5]. A stronger
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result has been obtained by Deift [10], provided the boundary has
the cone property (see also [37], Appendix to XI. 10).

The first consequence of the above proposition is the existence
of the scattering operator S(C^ ® 0, Co). In the spectral represen-
tation of CQ this operator becomes an operator-valued function
S(X, C^ © 0, CQ ) which differs from the identity by a trace class
operator. This enables us to define det S(X, C^ (& 0, Co) (see [6,
11,38]).

The second consequence of the trace class property is the exis-
tence of the function

S(X)=S(X ,C ,CO,Co)
= 7T-1 Urn arg det(I 4- (C^ $ 0 - Co) (Co - z)-1)

z-*-\+i0

for a.e. X G R . This follows from the Krein theory of the spectral
shift, developed in [17, 18, 6]. Before we proceed with the operators
B ^ , Bo, let us list some properties of ^(X):

(a) S(X) e L^R), F S(X) d\ = ir(C, C 0 - Co),
V —-00

(b) S(X)== 0 for X ^ [ 0 , l ] ,

(c) given a function 0 E C^(R), the operator 0(Ci C O ) - 0(Co)

is trace class and tr(0(C, C O ) - 0(Co)) = f00 0'(X) ^(X) rfX ,
J—w

(d) ^-21^^W = det S(X, C^ C 0, Co) for a.e. X £ (0, 1).

The properties (a)-(d) are established in [17, 18, 6]. Another
detailed proof of (c) and (d) is given in [ 12], Chapter II.

In what follows, {(X) will be called scattering phase. This
notion is motivated by the property (d). The following lemma garantees
that we can choose {(X) to be smooth for X E (0 , 1).

LEMMA 1.2. — The function {(X) is real-analytic for X £ (0, 1).

Since C^ 0 0 has no eigenvalues X G (0, 1) and the resolvant
(Co-z)~ 1 allows an analytic continuation from the upper half-
plane across the interval (0, 1), the proof of lemma 1.2 goes like
that of lemma 3.2 in [ 15 ]. We leave the details to the reader.
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Next, we wish to apply the invariance principle (see [37], p. 30)
with an admissible function

((X^-l)1 /2 , X G ( 0 , 1 ) ,
^/(X) = <

( 0 , X ^ ( 0 , l ) .

To avoid the eigenvalue 0, we extend C^ , setting C^f=f for
/E (L2^))1. The extended operator will be denoted by C^I.
This modification on the interior of the obstacle does not affect the
scattering operator, namely S(Ci 0 I , Co) = S(Ci 0 0 , Co). We
omit the easy proof of this fact.

Since V/(X) has a finite limit at 1 and the point spectrum of
CQ and Ci S) I does not contain 0, we can apply the invariance
principle, leading to the existence and completeness to the wave
operators WJV/(Ci C I), V/(Co)) = W,(Bi C 0, Bo). Consequently,
we obtain

S ( B i ® 0 , B o ) = S * ( C i C I , C o ) . (1.1)

As above the modification of B^ on (L2^))1 does not influence
the scattering operator and we have

S ( B i O I , B o ) = S ( B i O O , B o ) . (1.2)

To obtain a link between {(X) and the scattering phase related
to B ^ O I and Bo , we need to work in a suitable spectral repre-
sentation for BQ and CQ. Let L^R^N,^) be such representation
for B Q , where N = L^S""1) and ^ is a measure on ^. In this
space Co acts as a multiplication by (1 +X 2 )" ' K . Therefore, changing
the variable, we can find a spectral representation for Co. Namely,
consider the space L^O, 1); N , ?) with the measure

rf?(T)=-^(r)^(V/(r)).

In this space Co acts as a multiplication by r. Using the unitary
operator ^ : L2(R+ ; N , ^i) 3 /(r) —> /(V/(r)) £ L^O , 1); N , ?)
and taking into account (1.1), (1.2), we conclude that
S ( X , B i O I, Bo) = S*((l ^ X ^ ^ C i O I.Co) fora.e. X>0.(1.3)

According to lemma 1.2, we can choose a smooth scattering phase for
Bo and BI C I, that is

^ ( X , B , e i , B o ) = - ^ ( ( l ^X^), X > 0 . (1.4)
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In what follows, this scattering phase will be denoted by ^(\).

2. Trace formula.

This section is devoted to the proof of theorem 2. Introduce
the function

( Si(X), X > 0 ,
s,(\)={ (2.1)

[ -S i ( -X) , X < 0 .

First, we shall prove the following

PROPOSITION 2.1. — For every pEC^(R) we have

2tr f00 p ( t ) (cos B, re 0 - cos Bo DA = F -^ (X) s^(\)d\.J-oo ^-oo d\ (^ ̂ \

Proof. — Given pGC^R) , consider the cosine transform
r p ( t ) cos ^/~at d t , a > 0. Extending this function smoothly

V——00

for a < 0, we obtain a function 0i(a) GS(R). Let

( ^(0)^(0"^- 1), a > 0 ,
0(o) = {

[ 0 , a < 0

where </?E C~(R), <^ = 1 in a neighborhood of the interval [0, 1].
Obviously, 0£C"(R), hence applying the property (c), mentioned
in section 1, we deduce that the operator

0(C, Q) 0) - 0(Co) = 0i(B^)e 0 - 0^)

is trace class and
tr(0,(B?e 0 - 0i (B^)) = /1 0{(a) S;(a) d o .

According to (1.4), we get

tr f°° p ( t ) (cosB^t^ 0 - cosBQt) dt
U——00

= f^ ^ (^ P(0 cos ^\> ̂ ) Si(^A) rfX

1 r ° ° dp
= 2 i- ^ (x) s^^ rfx

and this completes the proof of (2.2).



SCATTERING PHASE FOR NON-TRAPPING OBSTACLES 121

In order to prove theorem 2, it suffices to show, that s^(\)
coincides with the scattering phase related to the operators AQ and
AD or AN . To do this, we shall use essentially the approach in
[37], section XI. 10. In what follows, we restrict our attention to the
Neumann problem. The modifications, needed to cover the Dirichlet
problem, will be sketched in the end of this section.

For simplicity of the notations, we denote by B^ the operator
BN $ I. Introduce the unitary operator 3 : 'KQ——^ K^ , given by
3(u , v) = (B^1 B^u , v). Next, we wish to reduce the existence and
completeness of the wave operators W± (AN , A() ; 31) to that for
the operators W^ (B^ , B()) . Consider the unitary operators

^k'-^k——> L^FDO I-AFT), A : = 0 , N ,
given by . .

1 /B. i
T,

^B.
A simple calculation shows that

/W,(BN,B(,) 0 \
W,(AN,A(,;^)=V To

^ 0 W,(-BN,-Boy

which implies
/S(BN,B,,) 0 \

ToS(AN,Ao;^)To1 = . (2.3)
\^ 0 S(-BN,-BO)/

On the other hand,

TO -^—N ' 0 '' u ' 0 ~ ^ N -"N l N ' - 0 •̂ 0 0 /

and
/B, 0\

^^~-[. -B,)- '"0-"-

Let us introduce the space
L^R-.N.M^/i-^ L ^ R ^ N . ^ ^ e L ^ R - i N . M - )

with N = L^S"-1), d^(\) = (± X)"-1 d\ on R1 . Therefore,
in the space L^R* ; N , JLT) the operator ± BQ acts as a multipli-
cation by X , while T^A^T^ acts as a multiplication by X in
L ^ R i N . ^ e ^ - ) . On the other hand, in L^R ; N , ^+C ^-)
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we have T^A^ T^1 == B^ 0 (- Bp^) . Taking into account (2.3)
and the equality S(X , - B^ , - B()) = S*(- X , B^, B^), X < 0 , we
conclude that

( S ( X , B N , B Q ) on L ^ R ^ N , ^ ) ,
S ( X , A ^ , A O ; ^ ) = ^

[ S*(-X , BN , Bo) on L ^ R ^ N , ^ - ) .

This equality shows that S(X , A^ , AQ ; <?) — I is trace class, hence
det S(X , AN , AQ ; 3) and the related scattering phase s(\, A^ , AQ ,!f)
exist. This observation shows that we can take

( ^ ( X , B N , B O ) , X > 0 ,
^ ( X , A N , A O ; ^ ) = ^ (2.4)

( - ^ ( - X , B N , B O ) , X < 0 .

Finally, it remains to prove S(A^, AQ ;iQ = S(A^ , A^). To
do this, we shall establish the asymptotic equivalence of 3 and the
inclusion operator 1̂  : 3fo ——^ IC^ , that is the relation

^(^-10)^0)^=0, < ^ £ 3 f o - (2.5)

where the limit is taken in X^. Then an application of the propo-
sition 5c in [37] yields the above link between the scattering operators.

The relation (2.5) can be proved, applying the argument in [37].
For the sake of completeness, we briefly sketch the proof. Let
^ (0^= ( u , ( t ) , u ^ ( t ) ) . Then

IK^-Io^oO)^ = [|(Bo -B^)u,(t)\^ ,

where |[ • \\Q denotes the norm in L^R"). On the other hand,

u^(t) = (cosBoQ^ + (sinBo^) Bo 1^. < ^ = (^1^2)-

Let (B C ^(R") be the space of functions whose Fourier transforms
vanish in some neighborhood of 0 . It suffices to show that

iffs
||(Bo -B^)e °w\^ ̂  0, wCO).

Choose V/ £C^(R") with 0 < V/(x) < 1 , ^(x) = 1 on a
neighborhood of the obstacle 0. Since

(Bo -BN)(I - 4/)e~itBow=0,

we need to study the term (By — B«) \j/e~ltvow . It is easy to see,
that the operator (By - B^) ^ Bg2 is compact in L^R"). Recall
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that BQ has an absolutely continuous spectrum. Therefore,
^ — j ^ B ^ weakly

using a standard argument, we obtain B^e "w ^^ > 0 and
this completes the proof of (2.5).

Passing to the Dirichlet problem, notice that the trace formula
(0.4) is proved by Bardos, Guillot and Ralston [2, 3] for n odd. For
the sake of completeness, we shall sketch how the above argument
can be applied to cover this case. First, extend B^ as BD/= / on
(L2^))1 and set ^ 0 = ^ 0 ® (L\€)^ L\e)). The extended
operator will be denoted by B^ . As for the Neumann problem,
we are going to the equality

( S ( X , B D , B O ) , X > 0 ,
5 ( X , A o , A o ; 5 ) = ^

( - S ( - X , B D , B O ) , X < 0 .

Let P: 'KQ——^ WD be the orthogonal projection. Setting P/= 0
on © , we can consider P as an operator from 5Co into Hp . It
remains to prove the asymptotic completeness

Urn ( 3 - P ) ^0)^= 0, <pE3fo,
^±00

where the limit is taken in IC^ .

Let <^£C^(R") , ^o^) ^ = ("i(0. u^t)). The projection
P has the form P(i^(r), u^(t)) = (u^t) - v ( t ) , X^u^(t)), where
X is the characteristic function of ^2 and v ( t ) is defined as follows

Av(t) = 0 on ft , v(t) —> 0 as \x\ —> °°,

v(t) = u^(t) on ©.

Using the local energy decay, it is easy to show, that as \t\ —> °°,
we have ||(1 -x^) B^i(r)|lo —> 0, ||Bo^(x) u^t)\\^ —^ 0,
11(1 -Xn)^^)^ —> °' where ^W is chosen as above. With
these observations in mind, we can reduce the asymptotic completeness
to the proof of

IIB^W) - V/Qc) ^i(O)ll^) T^ ° ' a6)

Applying an integration by parts together with the local energy
decay, we get (2.6).
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3. Analysis of the behavior of a(t) for \t\——^ °°.

The purpose of this section is to investigate the behavior of the
Fourier transform a(t) of the scattering phase s(\). Our analysis
does not depend on the boundary conditions and we shall write
s(\), a(t) without especially saying what is the boundary condition.

First, let us recall some results concerning the kernel of the
scattering operator S. Given /= (/i,/s) ̂  5Co ' set ^f^ ^sfi ~ fi
where f^(s,u})= / f^(x) dS is the Radon transform of /..

^(x.uj^s
The translation representation (R^ of the unitary group ^Uo^)?
found in [19, 20], depends on the parity of n. For n odd (R^
becomes ^f=d^n-1^2Rf, d^ = l/2"7r<1-^/2. For n even
there are two representations, related to the outgoing and incoming
spaces D,, (see [20]). Namely, (R^ == ̂ ± * R/ with

( ^-1)/2, $ > 0 ,

p±a)=) ^-3).
(,^^-w^1^^ ^ < Q .

The basic property of these representations is (R* ^UoC^) = T^fi*
where Ty denotes the operator of translation to t in the space
L^RxS"-^ .

Associated to (R^ is the scattering operator S = (R^ S((R^)~1

where for n odd we put (R^ = <R^ . Recall that S is an unitary
operator which commutes with T^. Therefore, its kernel will
be a distribution 7(r - t\ 6 , CD) E(D\R x S"~1 x R x S"-1) with
(^ .c^ER xS"-1 , 0 , 0 ) G R xS"-1 .

The representation of 7(r,0,o;), which we need, is closely
related to the boundary values of the solution w5^, x , a?) to the
mixed problem

(3? - A) w5 = 0 ,

(KW + 80 - <^ ̂ »)IR^ = 0 , (3.1)

^1^ -A- 0 -

Here A = sup { | x | ; x£ ©} and (B corresponds to Dirichlet or
Neumann boundary conditions. The distribution ?(^ ,0 ,c j ) has
the form



SCATTERING PHASE FOR NON-TRAPPING OBSTACLES 125

^t,6,u)= §(f)5(0-u)+^M^;~2

n r Qw5 Qw5']
X § 0 + T - < ; C , 0 » —— - < ^ , 0 > —— (T,X,0;)rfT^.

.. ^ L ov 3r J

Here dS^ is the measure on 3^2 and

( Id, n odd ,
M , =

^"-1H, ^2 even,

H being the Hilbert transform, i.e. H/= (sign X)/(X), where /(X)
is the Fourier transform of f(t). The formula (3.2) has been establish-
ed by Majda [22] for n odd and by Melrose [30] for arbitrary dimen-
mension n > 2 . Note that a factor i in the formula (6.12) in [30]
is omitted.

The treatment of (3.2) for the Neumann problem with 7(x) ^ 0
is a straigthforward repetition of that for 7(x) = 0. Moreover, the
modification of H^ on (L2^))1, which we have used in section 1,
does not affect the action of ^"N on the space D^ = ̂  (- A) D_ .
It turns out that, this modification does not influence the formula
(3.2). Indeed, the starting point for the proof of (3.2) is the expression

Sk= I™ T^.^e^^W^^'k.

Therefore, given k £ C^(R x S"-1), with k = 0 for | s I > RQ ,
we have T_ ^ k e (R,, D^ for t ' > RQ + A.

Using a simple argument, we deduce from (3.2) the relation

7 ( r , 0 , o ; ) = 0 for r > 2 A . (3.3)

The reader should consult [22] for a stronger result. Similarly, for
the distribution 7*(^,0,a;) , related to the adjoint operator S*,
we obtain

7*0,0 ,o; )=0 for t < - 2 A . (3.4)

A more important information is contained in the following

PROPOSITION 3.1. —Assume 6 non-trapping. Then there exists
a number To > 0 such that 7( r ,0 , a?) can be written as the sum
7(r, 0,a;) = 50) 6(0 -a;) + MJa(r, 0,a;) + & 0 , 0 , c o ) ) where a
and b have the properties:
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i) supp a(r , 0,c.)) C (-To, To),

ii) max supp b(t, 6 , a;) < - T^ 4- 1 ,

iii) b ( t , 0 , a;) ^ smooth and

l a^^x . e . ^KCNixr 1 ' , 7 = 0 , 1 , v N . i x i — ^ o o . (3.5)
Moreover, these properties are uniform with respect to

(0,0;) ES"-1 xS"-1 .

Proof. — The non-trapping hypothesis and the results for pro-
pagation of singularities [26, 27, 29] imply the existence of a constant
T > 0 such that w^t, x , CD) £ C°° for ^ > T , | j c | < 2 A . Given
p £ C^(R) with supp p C (- oo, - T — A), we obtain

(Va,0,o;),pa))

-(^Un^-^^-^]^-")

, / * / » / Bw5 8W5 \ <,
=(-1)"" 'J J (r- -<^0> ̂ ar P^^'^-^^^X-^R ^n^ 9v QT / t

Obviously, we have t > T for «x , 0) — t) e supp p . Consequently,
the traces

Qw5 W
— — ( T , X , ^ > ) , —— (T ,JC ,CJ )
o^ Rxan BT Rxan

are smooth functions and we conclude that

(V0),p0)) = f F(t) p(t) dt

with F(r) £ C°°(R). Choose T^ > T + 2A + 1 and a cut-off func-
tion (^GC^R) with 0 < ^ ) < 1 , < p ( 0 = l for | ^ | < T o - l ,
^p(t) = 0 for | r | > T o . Setting a = <^V, 6 = (1 - <p) V, we
arrange i), ii) and the first part of iii). In order to obtain the estimate
(3.5), some information about the rate of local energy decay is needed.
Namely, assuming n odd, and sufficiently large T , we have

3 V / 3I (-"-y (^I^Br/ YBx/I^TAI^U ̂ ^ <C^,6>0,r>T (3.6)

for / + | a | < N , where C^ depends on N and A. For the proof
of this result we refer to [40, 23, 29, 36].
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For n even a similar result with a weaker rate of decay holds.
More precisely, we have

max (-)7 (—)a W^T , x , (^) < C^ r"2'"7, r > T (3.7)
|^|<2A V8T7 ^3jC/ N

for 7 4- | a | < N , where C^ depends on N and A. The proof
of (3.7) is given by Melrose [29, 30] (see also [36] for a sharper result
established for mixed problems with initial data in the energy space).
The modifications, needed to treat the Neumann problem with
7(x) i=- 0, are obvious, since the Rellich's uniqueness theorem holds
for the problem under consideration.

Now, it is clear, that the second part of iii) follows from (3.6)
and (3.7). In particular, for n odd we can arrange 6 ( ^ , 0 , 0 ; ) ^ 3?(R).
Thus, the proposition 3.1 is proved.

A similar result is true for 7*(^, 6 , o;), which we state without
proof.

PROPOSITION 3.2. — Assume © non-trapping. Then there exists
a number T^ > 0 such that 7*(r, 9 , a?) can be written as the sum
7*0, 6 , ^ ) = 5(t) 8(6 - a;) + M^(c0 , 6 , u) -^- d ( t , 6 , o;)) where
c and d have the properties:

i) s u p p c O , 0 , a ; ) C ( - T o , T o ) ,
t

ii) min supp d ( t , 6 , a?) > To — 1 ,
t

iii) d ( t , 0 , a?) is smooth and

l a ^ x . ^ c ^ i ^ C N i x r ^ / = 0 , 1 , VN, 1 x 1 — ^ o o . o.g)
Moreover, these properties are uniform with respect to

(0, a;)es"-1 x s"-1.
After this preparatory work, we turn to the analysis of a(t)

as | ^ | —> °°. The basic tool will be the well-known formula (see
for example [11])

d- Log det S(X) = - tr (s(X) d S*(X)) , X ̂  0 . (3.9)
d\ \ dh '

First, consider the case n odd. According to the above propositions,
we deduce the existence of the convolution
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7(r,0,oj) *^*0,0,o;) =/0,0,^) +7(^,0, cj)

where /£ &'W and 7£§(R). Let A ; ( X , 0 , o ? ) be the kernel of
the operator S(X) — I. Following the arguments of Majda [22],
it follows easily that k(\, 0 , a;) depends smoothly on 0 and a?.
Therefore, we get

tr (^ 3T s*^)) = f ^- ̂  ̂  a;) rfcj\ d\ ' ^s"-1 ^X

"h j j fc(X, T? , a?) — fe(X , a;, 17) dr]dcj ,
« i u^-SM-l^-1

and taking into account (3.9), a representation formula for ta(t)
can be found. Namely, there exists a distribution /£ S'(R) and
a function r £ <S(R) so that

ta(t)=f(t) + r ( r ) . (3.11)

For ^ even some new terms appear in the form of ta ( t ) ,
This phenomenon is essentially related to the singularity at X = 0
of the scattering operator S(X) (see for more details [20]). On

dsthe other hand, our aim is to study the asymptotics of — (X) as
d\

X —> 4- oo ^ hence the terms which vanish for X > 0 can be omitted.
dsTo make — in a suitable form, introduce a function <^(X) £ C^(R),

such that <^(X) = 1 for 1 1 \ < 5 and <^(X) = 0 for 11\ > 25 > 0 .
Making use of formula (3.9) for X ^= 0 and performing some calcu-

dslations, we can write — (X) as follows:
d\

^ (X) = <^(X) ^ (X) + ^(1 - ̂ (X)) signX
d\ d\

x f f (a + b) d- (sign X(c + d)) drfdo}v \ d^s/i-ixs"-1

- i^d^l - ^(X)) sign X f d (c + d) d^ == ^(X) ds (X)
^n-i d\ d\

4- (1 - <^(X)) (7+7) - i^d^l - ^(X)) (sign X - 1)
r d . .

J -,r-(c+d)da;."SM-I aX
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Taking the Fourier transform, we obtain

to(t)=f(t) +r0) +g0) (3.12)
where f(t) E g'(R), r ( t ) E C°°(R) and r(X) is rapidly decreasing
and supp g(\) C (— oo ^ — §).

In the next section we show that a(t) £ C°°(R \0). Therefore,
dsthe asymptotics of — (X) as X——> 4- oo can be computed, evaluat-

ing p(r)7o(7). Here p (QeC^(R) with supp p suffiently close
to 0. This assertion follows immediately from (3.12) and the obser-
vation that

jf~6 p(jLi -X) i ( jLi )^= CXX-^, V N , X——> +00 .

Obviously, the same result holds for n odd.

4. Singularities of a(t).

In this section we prove that the non-trapping condition implies
a(r)GC0 0 for t ^ O . We preserve the notations of the previous
sections and denote by B^ the operator B^ or B^ , extended
on L^R"). Let n : L^R")—> L2^) be the orthogonal projec-
tion. Then we obtain

tr ^(^-^(cosB^ - cosBQt)dt

= t rJp^^-^IKcosBir - cosBo^) n dt

- t r f p ( t ) e-^a - n) cos B^(I - n) A

4- ir f p(t)e~ixt(l - n) (cosB^ - cosBor) n^

- tr f p ( t ) e-^U cosBord - n )d t . (4.1)

It is not hard to see, that the last two terms in (4.1) vanish. The second
term involves a distribution which is smooth for t =^ 0. To study
the first one, introduce the kernels UQ^I , x , y ) and u ^ ( t , x , y )
of the operators cosB^ and cosB^. Let p E C^(R") with
supp p C (-T, T). Hereafter, we fix T and choose <^(x) £ C^(R")
such that 0 < <^(x) < 1 , ^p(x) = 1 for |x| < T 4- A, ^p(x) = 0
for |^| > T + 2A. Then a domain dependence argument implies
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f p(r) ̂ ^11(0)8 B^ - cosBo^n dt

= ff p^e-^di^t.x^x) - U o ( t , x , x ) x^(x) ̂ (x)dtdx,

X^ being the characteristic function of ft . Since u^t, x , x) E C°°
for t ^ 0, it remains to study the distribution

C^(R) 3 ̂  —> ff y/(Q ̂  0, x , x) x^(x) ^p(x) dtdx

for k | < T . On the other hand, for M < T , | x | > 2 T 4 - 2 A
we have u ^ ( t , x , y)\^(y) ̂ (y) = 0, hence we can restrict our
attention to the distribution v ( t , x , y ) , determined as solution
to the mixed problem

(3? -A) v ( t , x , y ) = 0 ,

^Ipxan = ° < l ;ll.l=2T.2A :=o- (4.2)
v\^= 8(x -y)^p(y),D,v\^= 0.

Setting M = f t n { x ; | ; c | < 2 T + 2A}, we are going to study the
, singularities of the distribution / v ( t , x , x) dx for 1 1 \ < T . AM

similar problem has been studied by Melrose and Andersson [1] under
the assumption that 3ft is strictly convexe or concave. The analysis,
carried out in [ I ] , can be applied in our case, where some modifica-
tions concerning the more complicated propagation of singularities
are needed.

First, note that the reflection of singularities on \x\ == 2T 4- 2A
does not produce closed generalized geodesies with length less than
T. Therefore, the analogue of proposition (8.15) in [1] holds, since
its proof does not involve an analysis of the singularities near 3ft.

Next, a precise examination of the proof of proposition (8.20)
in [ 1 ] shows that the geometry of 3ft is essential only for the appli-
cation of the results concerning the regularity up to the boundary
of solution w ( x , z ) = E ' g ( x , z ) to the following mixed problem

(3,2 - A) w = 0

(siw ^xan = S ( x , z ) , (4.3)

^^o = ° -
Here Z , O < Z < ^ L I , is a parameter, WF(^) C FQ uniformly for
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0 < z < ^ and F^ is a conic neighborhood of p^ = (x , 0 , j , r).
((S, r) denote the variables dual to ( x , r)). The regularity up to
the boundary is described by the generalized wave front WF^(w),
introduced in [26]. We need the following.

PROPOSITION 4.1. - Let p = ( x , t , i, r), x G 3ft , 0 < r < T .
// FQ is sufficiently small there exists a conic neighborhood F of
p such that

W F ^ ( w ) n r = 0 (4.4)
uniformly for 0 < z < ^ .

Proof. — Let F be a small conic neighborhood of p . Consider
all generalized bicharact eristics issued from F. We claim that for
sufficiently small F^ and F these bicharacteristics do not intersect
FO . In order to prove the claim, we need to define the relation C^
for t < 0, which is completely analogous to that introduced for
t > 0 in [27, 28]. The obvious modifications are left to the reader.
We list three properties of C^ :

i) ? E C^77 if and only if there is a generalized bicharacteristics
7 connecting 77 and ?, i.e. 7: [ t , Q ] —> T*(M) with 7(0) = 77,
7 ( 0 = ? ,

ii) C ^ o C ^ =C^, t,<0, t^<0,

iii) Cy is a closed relation.

Remark 4.2. — In the case ^ = 0, the property iii) can be

strengthed, since C^T? coincedes with the generalized Hamiltonian
flow F( r ,7?) which is continuous with respect to t and 77 (see [26]).

Suppose there are sequences ?„ —?- p^ , 7^ —^ po , ^ so
that

^C^p,, r,<0. (4.5)

According to the outgoing condition, we can assume — T() < t^ < 0.
Passing to subsequences, let ^ —> t^ where ^ > to or ^ < ̂
for every n. In the first case, consider a sequence z^, £ C . 77 .

— O " ' ^ ! - '

Using the behavior of the generalized bicharacteristics, discussed
in [27, 28], we deduce from 77^ —> po that z^ —^ po . Therefore,
the properties i)-iii), mentioned above, imply
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^S)-,,0^"'^"-
Hence RQ G C^ p , which contradicts the non-trapping hypothesis.

In the case ^ < IQ we have C^ ^ o C^ = C^ . This leads
to the existence of a sequence z^ such that

^C^P,, r^GC^z,.

Now the remark (3.16) in [27] shows that z^ —> pg and we
obtain again ?o E C^ p , leading to a contradiction. Thus, the claim
is proved, and the neighborhoods Fg , F do not depend on z .

Now we are in position to apply the microlocal version of the
results of Melrose and Sjostrand [26, 27] uniformly with respect
to z . Assuming ;Co£WF^(w)n r and following the procedure
exposed in [28], we can construct a generalized bicharacteristics
7 issued from XQ and determined for t < 0. As we have proved,
7 hits the boundary at points y f. FQ . The wave front WF^(w)
propagates along 7, hence w is singular for t large negative,
which contradicts the outgoing condition. This completes the proof
.of proposition 4.1.

Repeating the arguments in [1] and using the proposition 4.1,
we deduce that the singularities of / v ( t , x , x ) d x are relatedv M
to the lengths of the periodic generalized geodesies. The non-trapping
hypothesis excludes the existence of such geodesies and we conclude
that a(r)£C°° for t + 0.

5. Asymptotic expansion of the scattering phase.

In this section we show that s(\) has an asymptotic expansion
with respect to X and we compute the first term in this expansion.
Moreover, using special coordinates near the boundary, we prepare
the calculation of the second and third term given in the next section.

Our analysis is based on the trace formula, proved in section 2.
Hereafter, we write B^ for Bp or By and denote by s(\) the
scattering phase related to S(X, A^ , AQ , P) or S(X, AN , A()) . We
have

2try tp(^)^ r (cosBlr^O-cosBo^=-(p* ^—)W + r(\)

where r(\) is rapidly decreasing.
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To handle the second term in (4.1), we shall find the Fourier
transform of u^t, x , x ) , working with the Fourier-Laplace
transform

^o(^S^) =(27r)-"-1 /°°/^ ^(rT+^)
R" Uo(t , x , y ) dtdx , Imr < 0 ,

Uo(r, S ; , y ) = (27T)-"-1 f^ f^ e-1^^
UQ(t , x , y ) dtdx, Imr>0.

The same tool will be used in the next section for some more com-
plicated calculations. It is a simple exercise to show that

U o ( . T ^ , y ) = ±iTWn-l(T2 - \^\2) e-^, ± I m r > 0 .

Hence the Fourier transform ^o(X , ̂ , y ) becomes

u^\^,y) =-i\W-n-l[(^-iO)2 - i^|2)-1

- ( (X+fO) 2 -^ ! 2 ) - 1 ]^ -^ = (270 " e-^ 5 ( |X | - |g|).

Therefore,

^•^--(^^-'^•-l--".&^-
On the other hand, u^t, x , x) has a singularity only for t = 0,
which implies

.. M (^Tr)""72

p^(X,x ,x)= ^ ^ ^ ^ IX j " - 1 +0 (1X1^ ) , VN.

Now we turn to the asymptotics of

3(\) = 2tr/p(06r^n(cosBor - cosB^) H d t .

Using the finite speed of the propagations and choosing the support
of p{t) sufficiently small, we see that the kernel of the operator
p ( t ) II(cosBor — cosBiDII vanishes for x and y outside a suffi-
ciently small neighborhood of 3ft. Applying a finite partition of
unity {(^(j^)}^ , we can reduce the calculation to the case where
3ft has a simple form. Consider a function ^(y)^•C'^(Rn) and
assume that in a neighborhood ^Ll C 3ft of 3ft H supp ̂  the bound-
ary 3ft is given by y^ = g ( y ' ) , y ' = (^ , . . . , >^). It is conve-
nient to work with the coordinates ( r , x ' ) connected with ( y ^ , y ' )
as follows

10
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( y ^ y 1 ) = < ! > ( r , x ' ) = i//(x') + rN(V/ (x ' ) ) .

Here V/(x') = (g(x'), x ' ) and N : Zl—> S"-1 is the Gauss map.
The next lemma follows from a simple geometrical argument and
we omit the proof.

LEMMA 5.1. - In the coordinates ( r , x ' ) the operator D^ 4- A
has the form

P = D,2 - a ( r , x ' ) D2, - R(r, x ' , D,,) - R,(r , x\ D,, D,.) (5.2)

where R is an elliptic operator with symbol R( / - , JC ' , ^ ) , homo-
geneous of order 2 in {\ while R^ is a first order differential
operator.

For the calculations, we need a sharper result concerning the
Taylor expansions of R and R ^ . For this purpose we shall prove
the following

LEMMA 5.2. - We have

(' s'̂
1 + rg,

• • 8^

-8: 'x^ • • • ^x^x^

+0(r2+|v^|2).(Wr, x'))-

rg^ .. . 1 + w.
"»"M X

Proof. - We start with the computation of det D0(r, x ' ) .
It follows easily that D0(r, x ' ) •= (I + rDN) (N, D^, i//) hence
detD0(/-,^c') i= det(I + rDN) det(N,D^,V/). On the other hand,

det(I + /-DN) = ^n (1 + rX,) = ^ c/.r/ where X, are the eigen-

values of the Gauss map. In particular, Cy = 1, c, = — H(x') where
H(.»c') is the mean curvature at (g(x ' ) , x ' ) . Remark that we have
H(x') = A g ( x ' ) if v g ( x ' ) = 0. Furthermore, a simple calculation
yields det(N,D,,V/) = (1 + | ^ g ( x ' ) \ 2 ) 1 ' 2 , and we conclude that

detD<t>(r,x') = (1 + I v^(x')|2)1/2 (1 - rH(g(x'), x') + ... + c,r").
(5.3)

Next we have
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-^z . . . - S ^

8^ 1-r^ ... -rg^
tD<|>(r,x')= +0(/•2+ |V^|2).

\^» -^n
Applying (5.3), we are going to

. . . 1 - rg /
"n-nj

/1-/-H ^

rD^jQr^d+rH)
-^ 1-'-(H-^)... rg^n

... l-KH-g^ ^ )-8x ''8:
"n^nf Ix^

+0(^+|v^|2

which proves the assertion.

Now lemma 5.2 enables us to write the operator P in the form

P = D,2 - D,2 - D^ - 2r S ̂ ,(^) D,
•^XyX^ ^j^ki,k

-WgW^x^D^ S a^ + ^ ^D^
|a|=2 la|=l

with a^ = 0(r2 4- | v^l2), b^ = 0(|r| 4- |vg|). Here it is important,
that the coefficients of P, which are essential for the calculations,
coincide with some geometrical invariants.

Following the techniques, developed by Ivrii [13], we shall study
the asymptotics of the expression 3(\). For brevity of the nota-
tions, we shall use below the coordinates x = ( jc^ , x ' ) , y = ( y ^ , y ' ) ,
where x^ stands for r . Consider the distributions u^^t, x , y ) ,
u(t, x , y ) , determined as solutions to the problems

P ^ o = 0 -

^oi,=o = s(x -y^ ^oi^o = °'
Pu=0, ^^ -0,

= 8 ( x - y ) , D^]^=O.|r=o

(5.5)

(5.6)
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•:"• •' ""»•'••
Setting u^ = UQ — u , we shall investigate

I(X)= 2 f ° ° f p u , ( \ , x , x ) D ( L ) ( x ) ^ x ) d x , d x t .
0 p/i — 1 '• X /

For every ^' G ^l consider the differential operator

P(^,D, ,D,)=PO(O,^,D, ,D,)

where P° is the principal symbol of P. Taking the Taylor expan-
sion of the coefficients of the operator K = F — P, we obtain

K = Z a^(x-y'rx{ ̂  + I aW (5.7)
7+|a|<m ^3 p

1 ^ 1 < 2

with ^ = 0((|x'-^' |-hxi)^1). In a similar way, we handle
the function ^(x) and get

7(^'),^') ^ Z ^a^'-^T + Odjc'-^T^). (5.8)
|a|<w

Following the approach of Ivrii [13], we shall build an appro-
ximation to UQ and u^, using the parametrices related to the
operator P. Denote by 'UQ the solution to the Cauchy problem

( P^o = 0 ,
} - - (5.9)
( ^ol^o = ̂ -V^ D^ol,=o = 0-

Let EQ, E', E be the parametrices to the following problems

( P E o ^ I ,
( E o ^ o = D r E o l ^ = o = = o '

( PE'= 0, <BDE'= I or (BNE'^ I,

( E ' | ^=D,E ' | ^=0 ,

( PE = I, d3^E = 0 or (B^E = 0,

i E | ^ = D , E | ^ = 0 .

Here (^^=^(0.^) . while (B^^ = " (0,;c'). These para-
^i

metrices depend on y ' but we omit this in our notations.
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It is easy to show that

UQ = MO 4- EoK^o = f (EoK)^ + (EoK)-^ , (5.10)
fc=0

m

u^ = E'tfS^o + EKU! = S (EK^Ete^o + (EKF^i , (5.1 Do
fc=0

where E' and E are determined with Dirichlet boundary conditions,

u, = E'((BN +7^0)^0 + (EK- E^D^I ^ n ,(5.11)N
= S (EK - E^TOJSN + T^D) ^o + (EK - E^^1 u^ ,

fc=0

where E' and E are determined with Neumann boundary condi-
tions. We associate to every term a^^Ax' — y')^ D^ in the develop-
ment of K a weight o ? = | a | + 7 — | j 3 | + 2 . Similarly, we asso-
ciate weight | a | + 2 to every term ^(x 7 —^') 0 ' in the develop-
ment (5.8). The weight of a product of terms of this kind by defini-
tion will be the sum of the weights of all terms. Thus, we obtain the
representations

UQ = u^ -h ... 4- u^ 4- ^w+l),

Mi = u^ 4- ... 4- u^ + ^w+l) ,
where u^ , k = 0, 1 , has weight / , 0 </ < m , while ^w+l) is
a sum of terms with weights co > m 4- 1 and the remainders in the
corresponding developments.

Performing a rather lengthly computation, it can be shown that

fpu^\\,x,x)^x) D^)dx= OdXr- 2^) , 0 < / < m .

The main steps of this calculation are sketched in [13]. The analysis
of the remainder term ^m+l) is the hardest part in the approach,
proposed by Ivrii. This analysis is based on the so called normal sin-
gularity at t = 0 of the distribution F = f p(r) u.(t, x , x ) d x

^M
where the integral is taken over a bounded set M as was discuss-
ed in section 4. More precisely, there exist two numbers e^ > 0,
SQ E R such that, provided supp p C (- e^ , 60) , we have
OD^FEH ^(-e^.eo) for every integer k > 0. The argument,
carried out in [13], can be applied without any change to the pro-
blem under consideration and we obtain
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/^^^(x^,^ ̂ ) D(^)^= odxr1-"72)
where ^ does not depend on m.

Finally, these observations show that
m /,

IW-2^ j ^ ^ ( \ + \^g(xt)\2)l/2L,(\,xf)dxf-^0(\\\51~m/2)
/=o RM

where
L,(X, x') = /°° pu</)(\, x , x) ^(x) (1 - ̂  H 4- ... + c^p ̂ i.

6. Computation of the second and third terms.

In this section we study the asymptotics of Ly(X, x ' ) , j = 0, 1 .
The calculations depend on the form of the operator P(^ ' ,D^,D^)
which can be essentially simplified, provided ^ g ( y ' ) = 0 . The general
case will be covered in the end of the section by an approximation
argument adapted to the developments (5.11),) and (5.11)^ .

Now, let us consider the terms with weight 0 and 1. We have

P - D ? - D ^ ,

K, (x,D)= 2x, S ̂ D,^ + i A g ( y ' ) D^ .
J i ^

Denote by p(r, $) = r2 - |$|2 the symbol of ~P and let X^( r , ^)
be the roots of the equation p(r, {) = 0, Imr < 0, with respect
to ^ . By convention, we put ± ImX+ ( r , ^') > 0 .

Let i5(r, ^) denotes the Fourier-Laplace transform of v ( t , x)
for Imr < 0 . From the previous section we know that

^o(^ ̂  = - mW-1 e-^^r, $))-1 .

The parametrix E^ has the form E^f = (p(r, g))-1 /(r, S). On
the other hand, the parametrix E' with Dirichlet boundary condi-
tion becomes

(E'f)(t,x)=f f e^^'^AT,^^'
^L. ^R"-1

where L_ == { r ; Imr = TQ < 0}. Similarly, the parametrix, asso-
ciated to the Neumann problem, is given by
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(E'f)(t,x)

-^^-^'^•^'^^(^r))-1^^^^'.

Finally, we obtain E = (I - E'^) EQ , / = D , N .
Next, in our exposition we restrict our attention to the Neumann

problem, since the analysis of the Dirichlet problem is similar and
simpler.

In the development (5.11)^ the terms with weights 0, 1 have
the form

u^\t,x,y) = E^N^O. (6.1)

u ^ ^ t . x . y ) = E^E^tio 4- EKiE'^^o
(6.2)

+7(^'),^) (E^i^o-E^E^N^o).
^First, we deal with (6.1). Taking into account the expressions

for I7o(r, ^ , y ) and EQ , we obtain

^UQ^T, ^ . y )
=-,W-'e-^^^ ̂ ;:̂ ^" .-"••• </(,,

where r^ = [-R , R] U {z ; \z\ = R, Imz < 0}. Computing the
integral, we are going to

^^r^',y)= ^ T(2n)-ne-'y'ye~iylK-.

Therefore,

U^T.X,, ^ ' , y ) = -W-e-^'e^^^- (2X_)-1 . (6.3)
Now we turn to the analysis of (6.2). It is convenient to set

KH = 2^i ^ g^(y')D K^ = iH(g(y'),y')D .
f,k ' ' l

As the form of K.n shows, we have

EoKn^o =-irW-n-l ^ S^^,Wy,p-2 + 4^p-3).
if"

Furthermore,
(f^Q.^T, ̂ , y) = -M2ff)-"-1 e-'y'y S g^ $,^

x 2 lim f (,, ^^-x^2 + 4^fc-^-^ .-^^^
R—^ V 1 01-X_) 2 (Si-X_)3 / e l -
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Performing some calculations, we get

^^u^^W-ne-^•e-i(x^^

x I 8.,^ ^, W -v^-- iyW ̂  •
] I ^

Repeating the same procedure, we obtain

E^On^o- \ (27^)-^-^^^^ l+>/l)'-Ha+^^_)X:2

and this completes the calculation of the first term in (6.2).

To handle the second one, we make use of the equality

EK^E^N^O = (! - Ete^EoKnEteN^o-
First, we get

EK^^o = - ̂  (2^)-"-1 e - ' v ' ^ e-'^- ̂  g^ ̂
] i "

. », -^I^CiA,_ ,. ^ ._i

- A" ̂  ('"••• ^ ̂ ——) Ir̂ r ^,
with r^ = [- R , R] U {z ; | z | = R , Im > 0} . Taking the integral,
we have
EK^E^ = \ ̂ yn,-iy^',-^y^-

x Z gx.x^i^1 - X i \ _ - ix^_) X:4 .
/ , f c

In a similar way, we find

EKi,E%N"o= - (2ff)-"(^'^Y'('l+J'l)^-HO•-;ClX_)?C2.

Finally, treating the last two terms in (6.2), we obtain

E'(BD^O — E'dSoE'^NMo = 0.
Summarizing the above calculations, we are going to

u w (T , y „ ! i ' , y )= -^ (27^)-"(r'^-2'yl'-X:2

x [ S 8^.(y') W^-2 + OiX:1 - y}) (6.4)L/, fc / 'c

+Wg(y'),y')+ 2^g(y'), y')] .



SCATTERING PHASE FOR NON-TRAPPING OBSTACLES 141

In order to prepare the calculation of L,(r ,^) , / = 0 , 1 ,
we shall take the integration over y ^ . It is clear, that without loss
of the generality, we may assume that ^p(x) == ^ p ^ ( x ^ ) ^ ( x ' ) where
^eC^(R) , ^EC°°(R"-1) and ^ = 1 in some neighborhood
to x^ = 0 . Therefore,

Lo(r,^,^)= ll (27r)-^-^^(^)?C2
/ . (6.5)

x ( l + . H(^(^'),^')X^1 + lower order terms) ,

L,(r,^')= L W-e^'^yW \\-,2^ g ^ ( y ) ^
L L j , k '

+ — H(^<y), ./) + 7(g(^'),./) + lower order terms .
(6.6) J

After this preparatory work, we obtain the Fourier transform
Ly (X , ^, y 1 ) , making use of the equality

L,(X, S', y ' ) = L,(X - iO, S', j.') - L,(X + z O , ^', ^').

Taking the inverse Fourier transform, it is important to note, that
the distributions L,(X, {', V ' ) , 7 = 0 , 1 have compact support.
We omit the easy proof of this fact.

Next, our aim is to find the inverse Fourier transform of

^(^S\^)
= e-^y ̂  [((T - i0)2 - iri2)-572 - ((T + i0)2 - iri2)-572],

where the branch 0 < Arg z < ITV for Arg z is taken. Before we
proceed with the analysis of v^ ^ , it is necessary to justify the choice
of this branch. For this purpose we go back and recall the form of
the parametrix E'. It is well-known [26, 13], that WF^(E^) does
not contain points which belong to the elliptic region, given by the
inequality |r| < |^|. Therefore, we need to arrange the equality
((r - /O)2 - IS'I2)172 = ((r + K))2 - IS'I2)1 7 2 and for this reason
we take 0 < Arg z < 27T.

It is convenient to introduce the distributions
T, = [((r - K))2 - p2)2 - ((T + z0)2 - p2)2] H(p)

^ |r2 -p^signr^27^- l)H(p), |r|>p,

~ ( 0 , |r|<p,
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where H(p) is the Heaviside function. Moreover, T^ is an analytic
function of z for Re z > -- 1 and meromorfic for z £ C with
poles at z = — 1 , - 2 , . . . . To simplify the notations, let us intro-
duce also the distributions Q^ = ((r — i0)2 — p2)2 — ((r + i0)2 — p2)2 .
Since for |r| > 0, ^ ^( r , ^ , y1) has no singularity at ^f == 0, we
may work with polar coordinates ^ = pa?, x ' — y1 = rO , a?£ S"~1,
6 E S""1. The inverse Fourier transform of v. ^(r , ̂ f , y1) is a smooth
function and the trace x9 == y ' can be evaluated, putting r = 0.
Consequently, we obtain
I^(T,^,^) = (p^c^T.s^, p"-2)

volS""2 volS"-2

=8,. ^——^-<T_s/2 ,P n > = -8 , , ——^—— <T_3/, ,p"-2 ) .

First, we treat the case n odd and set n = 2k + 1 , k > 2.
A simple calculation yields

T-3/, = ((- l)fc+l(2^ - 3)!!)- (^ ^Y ^,.3)^ ,

which implies

<T-3/2 9 P2k~l ) = ̂ I^| <H(P) ^ Q<2-3)/2 ? ! )

2^ - 2) (fc - 1)! signrr^^4

(2^-1)!!
^(w-l)/2

Therefore, taking the product with volS""2 = —————» we get
(k - 1)!

7(n — 1} ( ^ T r } " " / 2

<T-^ , P"-1 > vol S"-2 = (sign r)r"-4 ?(« 2 ) — — • (6J)

Now, let 2̂ > 4 be even. We have

< T- 3/2 -P""4 > = - ( " - 3) (T.^,?"-4)

= 2(signr)r"'4 (^-3) f1 ^-4(l - t2)-112 d t .^o
Computing the last integral, we are going to

(T_3/2 ,P r l - 2 >=2(s ignr )T n - 4 7^ /2( /^ -3 ) ! ! ((^-4)!!)-1,

which implies (6.7).
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From (6.5) and (6.6) we bring together the terms, involving
(X_)~'3 , and obtain the expression

r(27r)-"^^(^) (T.^,?"-2) vol S"-2

x g- (H(g(^),;/) + 47QK^'),^)).

The first term in (6.5) can be treated by an argument, similar to
that, used for ^o(X, ^ , y ) in section 5. Then summarizing all cal-
culations and applying (6.7), we have for r > 0 the following
asymptotics

(A^\-(n-\)12 f 1^
Lo(r,^)+L,(r,^)=- ^——_/ ) ^O^-2

8r(^--.l)

(47^)-/2(^-2) .H(^),^) .
~ —rw)—— (——12——-^^)^'))^(^)^-3

+ 0(T"-4).

The remainder of the section is devoted to the analysis of the
case ^ g ( y ' ) ¥= 0. Let z be new coordinates, given by z = Cy ,
where C is an orthogonal matrix. Following the argument in sec-
tion 5, introduce the functions

( y i , y f ) = ( t > ( r , x f ) = V/(^')+rN(^(^')),

(Z i ,z ' )=0(r ,z ' ) = ^(zQ +rN(^(z'))

with ^ ( x ' ) = ( g ( x ' ) , x'), ^(z') = (?(z'), z'). The wave operator
in these coordinates has the form
P = D^2 - a(r , x') D,2 - < R(r, x') D^, D^>

+60- ,x ' )D,+P^, ;c ' ,D, , ) ,
P = D2 - 3 ,̂ z') D,2 - < R(r, z') D,,, D,, >

+ 6 ( r , z ' ) D , + P i ( A - , z ' , D , , ) .

Here R, R are (n - 1) x (n - 1) matrices, P^ , P^ are differen-
tialjoperators of first order with homogeneous symbols and a, a\
b, b are smooth functions. Consider the Taylor expansion for P
and P respectively near (0, y ' ) and (0, ̂ ). We write down the
terms with weight 0 or 1:

W, D,, D^) = D? - a(0, y ' ) D,2 - < R(0 , y ' ) D^, D^ > ,

P (y ,D , ,D , )=D 2 -^ (0 ,7 )D, 2 -<R(0 ,? )D^ ,D^> ,
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/3R , \ ^
^'"^^'^^^^-^(O^^D^^O,^)^

»
+1 ^/•->'/)R/(D,)+P'i(D,,),

/•^

Kl=-7•(-|^(o '^')D,.,D,,)-/•-^-(0,7)D?+6(0,y')D,
M

+ Z (^ -7 / )Ry(D, )+P^(D, , ) .
~ /=2

Here R^., R .̂ are differential operators of second order with homo-
geneous symbols, while P\, P; are first order differential operators
with homogeneous symbols. Let ^ = h ( y ' ) where h(y') is given
by the equality^ (r^ h ( x ' ) ) = 0-' 0( r , x ' ) . Our purpose is to compare
the operators P , P as well as K, and K i . Writing P in coordinates
( r , x ' ) and applying the Taylor formula for CDh)-1 , we obtain

^0,^)=.(0, /) , -^(0,? ' )=^(0, /) ,6(0,?)=6(0,^) ,

(DA)-1 ( y ' ) R(0 , ?'') ('DA)-1 ( y ' ) = R(0 , y') ,

(DA)-1^') aR (0,^) ('DA)-1^') = aR (0^').u' or
These relations imply

W, D,, D,, D,,) = P(A(/), D,, D,, (^DA)-1^') D,,) (6.9)
and consequently

^O, '•, ̂ , '•, ̂ ) = ^°)(r, r, W), r , /z(^)) (6.10)

where ^(r , z , ̂ ), fc = 0 , 1 , are the distributions related to P .

In order to deduce a similar connection between ^(1) and
u^\ we need to study the terms given by (6.2). Introducing the
operator /•^

K°,(r, D,, D,,) = -/• (|̂  (0,?') D,,, D,,\

93'
-^(O^OD,2 +6(0,y ' )D, ,

we obtain the representations
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Ki(/, r , x ' , D,, D,, D^) = K?(r, D,, D,, (^A)-' (j/') , D^)
M

+S (x , -^ , )M,+Li (D^) ,
/=2

K,(A(^), r , z', D,, D,, D,,) = K?(r, D,, D,, D,,)

^t (x , -^ , )M,+Li(D, , )
7=2

/^^ <"̂ /
where M;, M,, L« , L, are differential operators with homogeneous

I I ~ /^ r>^

symbols and ord M^ = ord M .̂ = 2 , ord L^ = ord L^ = 1 . Using
the solutions ^ , ̂  , related to P, P, the associated parametrices
and comparing the terms corresponding to the operator K ^ , we
conclude that

u[ l Ht , r ,y f , r , / )= r u{ l \ t , r ,h (y f ) , r ,h (y f ) ) . (6.11)

Here the coefficients of K^ do not depend on z', which enables
us to find a simple relation between the form of K^ in the coordi-
nate systems under consideration. The other terms in K^ and K^
involve only the operators (^ — y ^ ) D^ ^ , (Xj — y ^ ) D2 , D^ ,
which do not contribute to the asymptotics of S^^X, y , y ) .

Now consider

^•(X , h^)) = f°° ^(X , r , h ( y ) , r , /!(/)) ^,(r)

xD^3^^)^,/?^'))^, 7 = 0 , 1 .v r , z /

Making use of (6.10), (6.11), it is easy to establish the equality

(1 + WyW2 L,(X,/) = (1 + IVgW))!2)172 L,(X,/z(^ ')) .
Therefore, the case ^ g ( y ' ) ^ 0 can be reduced to that with
V ^ ( ^ ' ) = 0 , and this completes the computation of the second
and third term. The result of theorem 1 follows immediately from

ds
the asymptotics of — (X).d\

The above reduction can be avoided if a stronger version of
the so called normal singularity at t = 0 is proved. Namely, it is
necessary to show, that the distribution
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F0,x') == f00 p(r)M(r ,Xi ,x\Xi ,x ' )^(x i ) ^(^)^-i

satisfies the property (5.12), uniformly for x * £ supp ̂  . This infor-
mation can be deduced from the arguments, exposed in [13], but
some complementary work is needed.
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