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I^-INEQUALITIES FOR THE LAPLACIAN
AND UNIQUE CONTINUATION

by W.O.AMREIN, A.M. BERTHIER(*) and V. GEORGESCU (*)

1. Introduction.

Unique continuation properties for solutions of partial differential
equations or inequalities have been studied by various authors (see
Hormander [7], Chapter 8 for references). Let P, Q i , . . . Qy be
partial differential operators in R" with constant coefficients,
each of order less than or equal to m, and Sl an open connected
subset of R" . We say that the differential inequality

IP/MI < f \v,(x)\ | Q,/0c)| (1)
/ - i

has (i) the unique continuation property in the class H^f (Sl)
if, whenever /GH^W satisfies (1) (in the sense of distribu-
tions) and f(x) == 0 in some open, non-empty subset of ^l, one
has / = 0 on S2, (ii) the weak unique continuation property if,
whenever /GIf"^^) satisfies (1) and f(x) = 0 in the comple-
ment of some compact subset of n, one has /= 0. An important
application of the weak unique continuation property concerns the
proof of the non-existence of positive eigenvalues of self-adjoint
Schrodinger operators, i.e. of partial differential operators of the
form - A + v(x) in L^R"), n > 2. We refer to [2,4] for details
on this application.

Until very recently the coefficients .̂ appearing in the differen-
tial inequalities under investigation were required to be locally in
L°° . For second order operators this restriction has been relaxed
in three recent papers by Berthier [2], Georgescu [4] and Schechter

(*) Partially supported by the Swiss National Science Foundation.
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and Simon [8] to a condition of the type Uy € L^(R") for suitable
w < °°. Berthier [2] uses analytic Fredholm theory in Hilbert space
to obtain weak unique continuation for solutions of the Schrodinger
equation with t;GL^(R") for w > max(n — 2, n/2). Georgescu
[4] proves generalizations of Hormander inequalities between weighted
Sobolev spaces; these imply unique continuation if the coefficients
Vj of the first order derivatives are in L^"1^") ^d the coefficient
v of the zero order term is in L^(^) wlt^ w ^ max(2, (2n — 1)/3)
(the second order term is — A); the method is applicable to higher
order operators. Schechter and Simon [8] use an inequality of the type

II 1^/llp < c || 1̂  A/l|^ (k == 0, ± 1, ± 2 , . . .). (2)

This is obtained by reduction to a corresponding one-dimensional
inequality by expanding / in surface spherical harmonics, as was
done in earlier publications where, however, only the case p = q = 2
was considered (e.g. Heinz [6]). The inequality (2) obtained in [8]
implies unique continuation for Schrodinger operators if v E L^(R")
with w > l for ^ = 1 , 2 , w>(2n-l)/3 for / 2 = 3 , 4 , 5 and
w>n-2forn>6.

In the present paper we adopt the method of Schechter and
Simon. Our principal result is a generalization of their basic inequa-
lity indicated above (Theorem 1.1 of [8], Theorem 1 and its Corollary
in this paper). When applied to the problem of unique continuation
for Schrodinger operators, our result improves those of [4] and [8]
in 3 and 4 dimensions, in which we obtain the condition that is
expected to be optimal; our condition for unique continuation is
t;eL^(R") with w>max(n - 2,n/2) (w == n - 2 if n>5).

The following lemma illustrates the relation between an inequality
of the type (2) and unique continuation. Its proof will be indicated
in Section 4. We denote by B(R, x) the ball

B(R,x ) = { ^ C R " ! \y -x\ <R} .

LEMMA 1. — Let P, Qi , . .. , Qy be partial differential oper-
ators with constant coefficients in R", each of order less than or
equal to m, and such that: if G C R" is any open connected set,
feC°°(G), Qi/= • • • = Qy/== 0 on G and f vanishes on an
open, non-empty subset of G, then / ^ O . Suppose that there
exist
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i) a constant c < oo, a number R E (0, oo) a^d ^ subset V
of R having + OQ asan accumulation point,

ii) numbers q, p ^ , . . . , py E [1 , oo] w/rt ^ < p .̂ /or all / ,
iii) a continuous, radial, strictly decreasing function

<^:B(R,0) \ {0}—>R such that, for all /GC^FT)
having compact support in B(R,0)\{0} and all K € F ,

,£,"e"'Q'/'^'•w)<<•"e""'p/^w>- <3'
Let ft be an open connected subset of R" and assume that
Vj ^ L^c(ft) ( / = 1 , . . . , ^ ) , where 1/Wy == \lq - l/^.. Then
the differential inequality ( 1 ) has the unique continuation property
in the class H^(ft).

The organization of our paper is as follows. In Section 2 we
deduce our basic inequality (Theorem 1) by reduction to a one-
dimensional inequality. The latter will be proven in Section 3, and
applications to unique continuation are given in Section 4. The
following notations will be used : R+ = (0, oo) is the positive real
half line, A the Laplacian in ^(n > 2) and D = — id/dr (acting
on functions of a real variable rE R^.). For q E [1 , oo] ^ yve denote
by q ' = ql(q - 1) the conjugate exponent. L^S^tiS ,dfi) denotes
the If -space of functions from ft to the Banach space (B. If
63 = C, we write L^ft ;d^i), and if d^ is just Lebesgue measure,
we write L^ft,^). H^ft) are the Sobolev spaces (in the termi-
nology of Adams [1]), and H^(i2) is the subspace of H^ft)
of functions having compact support in ft .

2. Some inequalities in If -spaces.

In this section we derive inequalities of the type (3) for the
case where P is the Laplacian and Q .̂ the identity operator. As
pointed out, the problem will be reduced to obtaining a similar
inequality in one variable by expanding functions defined on
R"(^z > 2) in a series of surface spherical harmonics.

2.1. We first recall some facts about spherical coordinates in R" .
Let S" ~1 be the unit sphere in R", o^ _ ^ its surface and Ag the
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spherical Laplacian. We denote by the letter a? the points on S" ~ l

and by do; the usual invariant measure on S" ~1 induced by Lebesgue
measure on FT ; the spaces I/^S"-1) are constructed with this
measure. The restriction of - Ag to CTCS"-1) is essentially self-
adjoint in L^S""1), and its closure - Ag is a positive operator
with purely discrete spectrum equal to {C(£ + ^ - 2) | C = 0 ,1 ,2 , . . .}.
The dimension a^ of the eigenprojection Pg associated with the
C-th eigenvalue satisfies

c^(K + I)"-2 <^ <^(£ + I)"-2 (4)

for some constant ^. The elements of PgL^S""1) coincide with
the spherical harmonics of degree S. [9; p. 138 ff.]. For each
C = 0 , l , 2 , . . . , we fix an orthonormal basis {Yn^ , of the
space PgL^-1).

Let / : R" ——> C. We denote by U/ the function defined
on R+ x S" -1 by

(U/Kr,^)^1/2^-1)/^). (5)
For sufficiently regular / one has

[U(-A/)](r^)=[-^+^-2(^^-l)^-3)-As)^ (U/)(r,^) .
J (6)

For/eC^(R"\{0}), we set

f^r)=rl^n-^ f ^^V^)f(r^), rGR, . (7)
0

For fixed r and £ , we view the sequence
W == {/^(r), f^(r\. . . ,/^(r), 0, 0,.. .}

as a vector in the infinite-dimensional Hilbert space f i 2 = E j ^ 2 ( Z . ^ ) ,
and similarly for Y,(o;) = {Y^(o;),. .. , Y^), 0, 0,. . .} . The
norm in ^ will be denoted by | • | and the scalar product between
two vectors ^ and ^ in fi2 by ^ . ̂ . In this notation we then
have

(U/) ( r ,^)= ^ /,(r).Y,(o,) (8)
c = = o

and

[U(-A/)] (r, c^) = ^ [D'+P^+Dr-2]/ ,^)^,^), (9)
c=o
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where fi = 9. + ^- (n - 3) and the series are convergent at least
in the L2(Sn~l) sense for each r E R ^ . The norm of Yg(cj) in
C^ is independent of G} and given by (see [9 ; Cor. IV.2.9])

|Y^)I=^2^2. (10)

2.2. Next we recall some inequalities proved by Schechter and
Simon [8]. To each geL2(Sn~l) we may associate as above a
sequence {g^^o of vectors in ^ such that g^ = 0 for
m > a^ and

g&m = . f(n-i) ^^m^)^). ( K m < ^ ) . (11)
Clearly

ii^s-i)- i i^i2- i i^-172^!2^. (12)
fi=0 £==0

Also, (10) implies that

^^-^I^Ka^ll^^.^. (13)

By using a vector-valued form of the Stein-Weiss interpolation theorem
(e.g. [10 ; Ch. 1.18]) one obtains from (12) and (13) by interpolation
that[8]

(S^ K-172^!^)^ ̂ o^-^ 11̂ ^ (14)

for any q € [ l , 2 ] and each ^GL^S"-1), and that

^^p^-.^o^112 ( 1 la^-^h^)^ (15)
\ c = o /

for any ^ € [ 2 , 00] and each A e L P ( S M ~ l ) .

2.3. We now show how an inequality of the type (3) in n dimensions
can be obtained from a corresponding one-dimensional inequality.
We set S(a, b) = {x E FT 10 < a < \x \ < b < 00} and notice that

11/11 == I I r^-^IP f\\ c\^\
lu "lAs^)) " f J\P((a^),LP(Sn-l)) • (16)

LEMMA 2. - Let 0 < a < 6 < o o , ! < ^ < 2 < p < o o ,
w == ( l / q - l / p ) - 1 and ^, ^ : (a, &) —> R continuous. Assume
there is a sequence {9^=^ of non-negative numbers such that
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- / 00. w ̂<5) == ( S ^e^ } <OQ and such that, for each g : (a, b) —> C^
vfi=0 /

of class C^ and each K :
| |,(.-1)(1/P-1/2)^ (I

^((a.^C fi)

<0J|^-l)(l/<7-l/2)^[D2^^^j^-2^||
LtI((a,&),C x)'

(17)
wA^e ? = £ + ^- (n - 3). 77^ o^ Aosf/or ^cA /G ^'^(8(0, 6)) :

"^ / I IL^)<a^w011^A/"L.(R")• (1 8)

A-oo/ - We set 4 = D2 + s(s + 1) r~2 and first assume that
/e C^(S(a, &)), Then (18) is obtained by the following sequence of
six inequalities, where we use successively: (1) the inequality (15), (2)
Jessen's inequality ([3 ; VI. 11.14]; notice that p < p ) , (3) the hypo-
thesis (17), (4) the Holder inequality (notice that 1/p' = 1/w + \lq9),
(5) Jessen's inequality (q' > q) and (6) the inequality (14):

,,^,,^,,^-.o,.-^,.^^.^^^^^^_^

i/p'
< ̂ r17211 (v lag17"'-172 r^-1^1^-1^ ^/n r' \ 1 1 . ,

Vfi '̂0 / L (alb)

i/p'
^oy-^ ( I ll^-1'2^-1)^-1^^!^^ ̂  ̂ )

^^r^2 (I ii^a^'-v2^ '^^-^^^^"^((^^r'

^^r17^! ^^r(S H^'-^-^^-^^-^^L /ji, ,r'\g^Q ' \ g ^ ; o x i - \\a.o) ,v.^.) /

- 1/4'
<^-i/2-i/wQ||/^ la^'-^^-Dd/^-W^L./gl^) || ,

\g=;0 ® / L (a , f t )

< o"1^ Q || ..("-»)(»/<»-1/2) ^ y j f . Y II
an-1 y"r e ^o f i f i ""^((-.^.^(s"-1))

-o^^eii^A/n,.

The inequality (18) can now be extended from C^(S(a, b))
to H^(S(a, 6)) by a density argument, which is given in a more
general context in part (i) of the proof of Lemma 1 (Section 4). a
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2.4. The one-dimensional inequality (17) in Lemma 2 becomes par-
ticularly simple if one chooses ^ of the form ^p(r) == alogr, since
then exp ^?(r) = r ^ . We therefore consider inequalities of the type

"^(R^) < c(5> t> e)" rr+£ [D2 + s(s + l)r~2]^^^ '

where / is a (^-valued function of class C^. Our result on this
is contained in the following proposition, the proof of which will
be given in Section 3.

PROPOSITION 1. - Let 1 < q < p < oo^ i/w = \lq - \fp and
e = 2 — 1/vv. Let 9€ be a separable Hilbert space. Then for any
s , t C R , /: R^ ——> 9€ of class C^(R+ , 96) we have

1 1 ^ / 1 1 n <(w')- l /w ' |25+l|- l /w l r -5+l /p l -1 7^
LP(R+,5e)

. \ t + s + l + l /p(- l /w ' | | r r + e [D 2 +^5+l)r - 2 ] / | | . . (19)
L^R+.ae)

For s = — 1/2 one alternatively has

1 1 ^ / 1 1 . ^ <2^- l(wr l /w ' l^+l/2+l/p^e

. || ̂ [D2 + 5 ( 5 + 1 ) r-2]/!! . (20)
L^R.^)

We now give the principal result of our paper.

THEOREM 1. - Let ! < < 7 < 2 < p < o o , 1/vv = l / q - 1/p,
^ = 2 — A2/w a/id assume that w > ^/2 (f.e. ^ > 0). Then one
hasforany r E R ^da// /G H^(R"\{0}) :

11 f1^1^) <C(T)" fl'^^llL^R") • (21)

The constant c(r) is finite provided that

(T - S. + 2 - ̂ /p'). (r + £ + 72/p) ̂  0

/or ^acA S. = 0 ,1,2, . . . , and it is given by
cO^a^^Oi/)-1^'

[^ 2£4^-2 1(T-£+2-^)(T+(!+^)|——^ l /w. (22)

(For n = 2, the first term in the series (22) (i.e. £ = 0 is infinite
and must be replaced by 22W~1^1 |r + 2/p^2 w + l . If w = oo
(i.e. p = q = 2), one has instead of (22)

c(r) = sup |(r - S. + 2 - w/2) (r + £ + n/2)\'~1) .
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Proof. — This follows immediately from Lemma 2 and Propo-
sition 1 by taking </?(r) = r log r , V/(r) = (r + ^i) log r,

r = r + 0 i - l ) ( l / p - l / 2 ) , € = 2 - l / w , 5 = j T = £ +1/2(^2 - 3)
and noticing that w/w' = w - 1 . The convergence of the series
defining c(r) follows from the estimate (4) for ^ and the condition
w > n/2 which implies that w - 1 > 1/2 (n - 2). D

COROLLARY. - Let 1 < q < 2 < p < oo, l/w == l/^ - l/p^
^d a^m6? w > n / 2 . £^r R < oo a^d fcr B(R,0) 6e rA^ ball
{xe^ \\x\<R}. Then one has for any r E R and all
/EH^(B(R,0)\{0}):

«l)tr/BL'<,<«..»<c<r'R^-""•"IJtl^A/^.„„,.»- (">

3. Proof of proposition 1.

In this section we prove Proposition 1. We begin with a preli-
minary result which is a slight extension of a lemma given in Hardy,
Littlewood and Polya [5 ; No 319].

LEMMA 3. - Let K : R+ x R+ ——> C be a homogeneous function
of degree - l/w\ where 1 < w < oo and w' = w/(w - 1). Let 9€
be a Hilbert space and denote also by K the integral operator from
L^R^ge) to L^,^) defined by

(K/)(r)= f\(r,u)f(u)du (rGR^). (24)

// 1 < q < p < oo and q~1 - p-1 = w"1, rA^ r/ze norm of the
operator K satisfies the inequality

II K||̂  < (^00'-1+W7P IK(r, DF' dr)1^ . (25)

Proof. — If G is a locally compact abelian group, d^ the Haar
measure on G, then Young's inequality states that, if 1 <p, q, m <oo
and p~1 == q~1 + m~1 - 1 ,

"^^^.^^"^^(c^'l^cc,.^' <26)
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where

(k*g)W= f^ k^y-^g^dj' (7,7'SEG). (27)

We apply this for the multiplicative group R + , with Haar measure
r-1 dr (dr = Lebesgue measure) and k(r) = /-l/p K(r , 1). We obtain
from(27)that

^(K/) (r) = r1/" f K(r. u) f(u) du

=/•l/p ^"""^'K^l) f(u)du

=^1^"^^^

=[k*( t l l '< ' f ) ] ( r ) . (28)

Since \\g\\p,_ . = Hr^H - , (28) and (26)
L^(R^,x•,dr) Lp(f^^.,x•,dr/r)

imply that

^^..^^^'^.^f^.^-
with m-1 = p-1 - q~1 + 1 = w'-1, i.e. m = w\ Inserting the
definition of A:(r), we obtain (25). a

Proof of Proposition 7. - Let /EC^(R+,ge). We define /
by f(r) = L,/(r) = [D2 +5(5 + Dr-^Ar). Integrating by parts,
one finds that

-(2s + l)/(r) == ^+1 f u-5/^) du + r-5 /00^+1 f(u)du.(29)

Also, since [D2 +5(5 + l)/--2]^ = [D2 +5(5 + l)/-2]^4-1 = 0 ,
one has

f00 u-'fWdu = f00 u^1 f(u)du = 0. (30)

We denote by x^ the characteristic function of the set
A C R^ and introduce the following notations: K+ = + 1 , K_ = — 1 ,
^+ = X( i ,oo) , X- = X(o,i) and

y - . r + ^ + l r . y . . -2s-l / . . v t

W..")-^) •'-^x.(?)-^) ^(^
(31)
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for a , p = + or —. In this notation, we find from (29) and (30)
that ^/(r) may be expressed in either of the four following ways
( a , P = + or -, s ^=-1/2).

^/O-) = - (2^ + I)-1 ^°° K^(r, tD^^fWdu. (32)
Hence

"^(R^) < I25 + lrl "^"-P'l^'A^R^) • (33)

In order to prove (19), it suffices to choose one of the four repre-
sentations for ^f given in (32) (the choice will depend on the
values of s , t and p ) and to estimate the corresponding norm
IIK^II^.

Each K^ is homogeneous of degree 1 - e = - 1 + 1/w = — 1/w'.
One therefore gets from Lemma 3 that

IIK ÎI,̂

^ (^0>^+-+1+1^-1! K^(r) - K,r-^ x,(r)r' dr)1^ . (34)

A slightly weaker but more convenient inequality is obtained by using
the fact that

KXa^) - K^r-25-1 x/r)r' < \^(r) - r-^^^^r^ (35)

(if a ̂  ̂  then x^(r) ̂  0 ̂  ^(r) = 0, so that (35) is evident;
if a = ft, (35) follows from the inequality ) 1 - 7^ < |1 - yP \
valid for 7 > 0, p > 1). We then get
IIK ÎI,,,

^(.^l^^^'^-'X.M-r^-5^^-^ x^dr)^. (36)

We now indicate how a and P must be chosen for given s , t
and p in the order for the integral in (36) to be finite :

i) if t + \lp < s and t + l / p < — s — 1 : a = j3 = +
ii) if t + \lp < s and t + l / p > - s - 1 : a = -, j3 = +,

iii) if r + \lp > s and t + l/p < - s - 1 : a = +, ^3 = -,
iv) if t 4- l / p > s and r + l / p > - 5 - 1 : a = j3 = - .

The integral on the r.A.5. of (36) is easy to calculate. In all four
cases (i)- (iv) one finds that it is equal to
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(w ' ) - l / w ' | 25+ l | l / w ' j / -5+ l /p | - l / w ' \ t + s + l + l / p \ - l ' w ' .
(37)

Inserting the estimate thus obtained for || K<^ ||,.,p into (33) and
noticing that — 1 + l / w ' = — l / w , one obtains (19).

The proof of (20) follows the same lines. Here one uses

- f(r) = r1'2 log r [r u1!1 f(u) du + r1!2 F u1'2 log u f(u) du
0 u y

and (D2 - r^/4) r1/2 = (D2 - r-2^) r^ log r = 0. Since
s == ~ s - * > °"ly the cases (i) and (iv), i.e. a = j3, are possible.
The expression for K^ is now

K..(..«)-^r\-,,̂ )^).
By using the inequality |logz| < (e8)~1 z^ for z ^ 1 respectively
and any 8 > 0 and taking 5 = 1/2 \t + 1/2 + l / p \ in the estimate
of I IK^H^p, one arrives at (20). D

Remark. - One may ask if the determination of the constants
appearing in front of the norms on the r.h.s. of (19) and (21) is
optimal. We have the following results about this: (a) if 1 <p = q < oo
(i.e. w = oo and e == 2), s ̂  — 1/2 and

0 - 5 + l / p ) ( t + s + l + l /p )^0 ,
then the constant in (19) is optimal. This can be shown by using
a result given in [9; § 1.4.2]. (b) if p = q = 2, then the constant
c(r) in (21) is also optimal.

4. The unique continuation property.

We first give the proof of Lemma 1 and then a result about
unique continuation for Schrodinger operators.

Proof of Lemma 7.—(i)We first show that the inequality (3)
holds for each / in H^(B(R, 0)\{0}). By [1; Lemma 3.15],
there is a ae (0 ,R) and a sequence {^} in C^(S (a, R)) converg-
ing to / in IT'^R"). Then, by (3),
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I: IIQyO;. -4)11 p. ^-^ t II^Q/.O, -/,)1| ,.
/•=1 L^R") ,=l L ' ( R " )

^-^We^llPa,-/,)!!
Ll I— /

^ ^(a)-^(R) ||/. _ f ||
1 1 / 1 •^'H^CRV

Hence, for each / , {Q./^}^ is a Cauchy sequence in I/^R^). Its
limit is Q,/ (since .4 —> f also in S\R"), hence Qy/^ —> Qy/
in S'(R)). If one now writes the inequality (3) for f^ and lets k
tend to infinity, one obtains (3) for the limit function /, since e^
is bounded on S (a ,&) .

(ii) Assume that / G H"^ (12) vanishes in an open neigh-
bourhood U of some point XQ G ft . Denote by B^ the ball
B^ = B(a, XQ) . Choose p such that 0 < p < R , B^C?2 and
^11^/11 w < 1 ? where c is the constant appearing in (3). Let

L ^Bp)

5 E (0,1/2 p) be such that B^ c U. We claim that the hypotheses
of the lemma imply that / = 0 on B 5 . By connecting an arbitrary
point x E S2 with jc^ by a smooth curve in ft , one can then deduce
by a simple argument that f(x) == 0 at each x G ft.

To verify our claim, let 17 E C^(ft H B^) be such that r)(x) = 1
for x G B ^ , and set ^ = T?/. We have g€ H^'^BRVjCo}). Define
^o ^y ^oW = ^(Jc ~ ^o)- ®y a change of variables, one deduces
from the hypothesis (3) and (i) above that

i ii^Q/Aiip, „ ^i'^01^^ (38)
/==! L '(R") L ^R )

for all h G H^'^ (BR\ [x^ }), in particular for h = g .
From (38), (1) and the Holder inequality we now obtain that

^"'^s..,^11^11^,=1 L ^Bp) /=!

•"•"'•""'WL.C,)
<c|k"'.P/ll̂ +^"'«P.IÎ >
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<c^ ll.,̂ Q,/ll̂

+c\\eK{POPg\\ ^
L^nVBp)

<^ S 1 1 ^ 1 1 .. 11^°Q,/11 ,.— / w, I I 1 - ^/./ I I p,
,=1 L ^B^,) L ^B^,)7=1 L ^B^) L^

+c|l^°Pg||
0 L^OABp)

(39)

Let a- = 1 - c || v, || ^ . Since ^ is strictly decreasing, we
L ^)

obtain from (39) that

i ^n( ^^y Q,/|| ,. <c\\pg\\ <oo'^ 1 ^exp^(p)/ / L^CB^) ^(n^)

Since Oy > 0 and [exp <p(x)/exp ^(p)}" ——> + 00 for each x E B^,
as K —^ °° in r, we must have Qy/= 0 on B^, for each
7 = 1 , . . . ^ .

Now choose (^EC^(B(I ,O)) such that f i p ( x ) d x = = l and
put <^(^c) = 6 -"^(e~ lJc). For 0 < e < 5 , consider the distri-
bution /^ on B^, ^5 given by /^ == ̂  * /. Clearly /^ E C°° (B^, ,5),
^—— > / in ®'(Bp_5) as e — > 0 and /ciBg = °- Also
Q/^e :== ^e * Q/ / = 0 on B? -6 for each 7 = 1, • . . , ^ . It follOWS
that /g = 0 on B . ^ by one of the hypotheses of the lemma,
whence / = 0 on B^, ^5 . D

THEOREM 2. — Let Sl be an open connected subset of R" and
ve^(n) mfh w>n/2 if n = 2,3,4 and w>n - 2 if n>S.
Then the differential inequality \Af(x)\ < \v(x)\ \f(x)\ has the
unique continuation property in H^(ft), where q = 1 z/ w < 2
flAzd q = 2w/(w + 2 ) if w>2.

Proof. - We use Lemma 1 with ^p(r) = — logr, <y = 1 if
w < 2, <? = 2w/(w + 2 ) if w > 2 and p == (l/^ - 1/w)"1.
We take /< of the form K = ̂  = nip + 1/2 + w , m = 1 ,2 ,3 , . . . .
The inequality (3) can be verified by using (23), with r = — K^ .
(23) requires that w > ^2/2. Furthermore, the constant c in (3) must

12
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be independent of K . Thus w must be such that c(- K )<c <oo
for all m , where c(K) is given by (22). A necessary condition for
this to hold is that w > n - 2, since terms with ft. close to /<„, -nip
in (22) are of the order O^^-2-^^) as m —?- oo.

That the conditions \^ > n - 2 and w > n/2 are also sufficient
may be seen by comparing the series in (22) to an integral. Indeed,
using the inequality (4), one finds that

00

S 2c-^i~^K-^-£+2-'2^ (-^+£+^)rw+l

<^.^ . ^~3 Kw+M+^- lHw-^) ! -^1^A! '-'^2

^m"-2^ / ^"'Kl+^+^-O/^O-^r^^^O)
A! '-'^2

where A: is a constant which is independent of m,
AI = [1/2,m -1/2], A^ == [m +1/2,oo),

A'i == [l/(2w), 1-l/(2w)] and A^ = [1 + l/(2w), oo).
For w ^ 2 , the term on the r.h.s. of (40) is bounded by

km--^ c^(l + m--2 + 5^ logm),

which is 0(1) as m—> oo provided that w > n/2 and
w - w - 2 < 0. The terms with £ = 0 and C = 1 in the series
(22) are 0(1) or o(l) for each w > l . n

Remark. - In the case n = 3, Theorem 2 says that the ine-
quality | A/1 < | v [ | /1 has the unique continuation property in
the class H^(n) if vCL^W for some w > 3 / 2 . It is impor-
tant that we succeeded to prove this in the class H2^ and not only
in H2^2 for example. In fact, suppose v is in L^(R3) with
w > 3/2 and satisfies suitable conditions at infinity. Then one can
define the self-adjoint operator - A + v in L^R3) as a sum of
quadratic forms. If /GL^R3) is an eigenvector of this self-adjoint
operator, then one will have /GH^^R3) , and nothing more in
general (H1'2 is identical with the form domain of -A + u). By
Sobolev inequalities, H^^R3) C L^R3), so that /GL^R3).
Then, by the Holder inequality, i;/GL^(R3) for some q > 6/5,
and q —> 6/5 when w—> 3/2. It follows that A/GL^(R3)
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(because (- A + v) /== X/, X G R , implies that [A/| = |(t;-X)/|).
Hence /EH^(R3) for some q > 6/5, and, if w—> 3/2, then
<7 —>t 6/5. This shows that one cannot suppose more than
/GH^^CR3) . In conclusion, if one wants to apply a unique conti-
nuation property to the problem of non-existence of positive eigen-
values of — A + i; in n = 3 dimensions, one must have this property
at least in the class H^675 (R3).
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