ANTONIO CORDOBA
B. LOPEZ-MELERO

Spherical summation: a problem of E.M. Stein

<http://www.numdam.org/item?id=AIF_1981__31_3_147_0>
SPHERICAL SUMMATION:
A PROBLEM OF E. M. STEIN

by A. CÓRDOBA and B. LÓPEZ-MELERO

In this paper we present a proof of a conjecture formulated by E.M. Stein [1], page 5, about the spherical summation operators. We obtain a stronger version of the Carleson-Sjölin theorem [2] and, as a corollary, we obtain a.e. convergence for lacunary Bochner-Riesz means.

With \(\lambda > 0 \) let \(T^\lambda_R \) denote the Fourier multiplier operator given by

\[
(T^\lambda_R f)(\xi) = (1 - |\xi|^2/R^2)^\lambda \hat{f}(\xi) \quad \text{for} \quad f \in \mathcal{S}(\mathbb{R}^2),
\]

and let \(\{R_j\} \) be any sequence of positive numbers.

Theorem 1. — Given \(\lambda > 0 \) and \(\frac{4}{3 + 2\lambda} < p < \frac{4}{1 - 2\lambda} \) there exists some positive constant \(C_{\lambda,p} \) such that

\[
\left\| \sum_j |T^\lambda_{R_j} f_j|^2 \right\|^{1/2}_p \leq C_{\lambda,p} \left\| \sum_j |f_j|^2 \right\|^{1/2}_p .
\]

Let \(T_* f = \sup_j |T^\lambda_{2^j} f| \). The methods developed to prove Theorem 1 yield, as an easy consequence, the following result.

Theorem 2. — For \(\lambda > 0 \) and \(\frac{4}{3 + 2\lambda} < p < \frac{4}{1 - 2\lambda} \) there exists some constant \(C'_{\lambda,p} \) such that

\[
\| T_* f \|_p \leq C'_{\lambda,p} \| f \|_p .
\]
As a result we have, for \(f \in L^p(\mathbb{R}^2) \)
\[
f(x) = \lim_{j \to \infty} T^{2j}_f(x) \quad \text{for a.e. } x \in \mathbb{R}^2.
\]

As part of the machinery in the proofs of Theorems 1 and 2 we shall make use of the two following results, whose proofs can be found in [3] and [4].

Given a real number \(N > 1 \) consider the family \(B \) of all rectangles with eccentricity \(N \) and arbitrary direction, and let \(M \) be the associated maximal operator
\[
Mf(x) = \sup_{x \in \mathbb{R} \in B} \frac{1}{|R|} \int_R |f(x)| \, dx.
\]

Theorem 3. — There exist constants \(C, \alpha \) independent of \(N \) such that
\[
\|Mf\|_2 \leq C |\log N|^{\alpha} \|f\|_2.
\]

Consider a disjoint covering of \(\mathbb{R}^n \) by a lattice of congruent parallelepipeds \(\{Q_{\nu}\}_{\nu \in \mathbb{Z}^n} \) and the associated multiplier operators
\[
(P_{\nu} f)^\wedge = \chi_{Q_{\nu}} \hat{f}.
\]

Theorem 4. — For each \(s > 1 \) there exists a constant \(C_s \) such that, for every non negative, locally integrable function \(\omega \) and every \(f \in \mathcal{S}(\mathbb{R}^n) \) we have
\[
\int_{\mathbb{R}^n} \sum_{\nu} |P_{\nu} f(x)|^2 \omega(x) \, dx \leq C_s \int_{\mathbb{R}^n} |f(x)|^2 A_s \omega(x) \, dx
\]
where \(A_s g = [M(g^s)]^{1/s} \) and \(M \) denotes the strong maximal function in \(\mathbb{R}^n \).

Proof of Theorem 1. — Suppose that \(\phi : \mathbb{R} \to \mathbb{R} \) is a smooth function supported in \([-1, +1]\), and consider the family of multipliers \(S^\delta_f \) defined by
\[
(S^\delta_f)^\wedge (\xi) = \phi(\delta^{-1}(R_f^{-1} |\xi| - 1)) \hat{f}(\xi)
\]
and also, for a fixed \(\delta > 0 \), consider the family
\[
(T^n_f)^\wedge (\xi) = \psi_n(\arg(\xi)) (S^\delta_f)^\wedge (\xi)
\]
where the \(\psi_n \) are a smooth partition of the unity on the circle,
\[1 = \sum_{n=1}^{N} \psi_n; \]

\(\psi_n \) is supported on \(\left| \frac{N}{2\pi} \theta - n \right| \leq 1 \) and \(N = [\delta^{-1/2}] \), so that the support of \((T_j^n f)^\sim\) is much like a rectangle with dimensions \(R_j \delta \times R_j \delta^{1/2} \).

There are three main steps in our proof.

a) The same argument of ref. [3] allows us to reduce theorem 1 to prove the following inequality

\[\left\| \left\| \sum_{j} \left| S_j f_j \right|^2 \right|^{1/2} \right\|_4 \leq C \left(\log \delta \right)^\beta \left\| \sum_{j} \left| f_j \right|^2 \right|^{1/2} \right\|_4. \] \hspace{1cm} (1)

b) With adequate decompositions of the multipliers and geometric arguments, we prove

\[\left\| \left\| \sum_{j} \left| S_j^\delta f_j \right|^2 \right|^{1/2} \right\|_4 \leq C' \left(\log \delta \right) \left\| \sum_{j,n} \left| T_j^n f_j \right|^2 \right|^{1/2} \right\|_4. \] \hspace{1cm} (2)

c) An estimate of the kernels of \(T_j^n \), together with theorems 3 and 4 yields,

\[\left\| \left\| \sum_{j,n} \left| T_j^n f_j \right|^2 \right|^{1/2} \right\|_4 \leq C'' \left(\log \delta \right)^\alpha \left\| \sum_{j} \left| f_j \right|^2 \right|^{1/2} \right\|_4. \] \hspace{1cm} (3)

We refer to [3] for a) and begin with part b).

Fixed \(\delta > 0 \), we select just one dyadic interval \(2^k < R \leq 2^{k+1} \) out of each \(\log_2 \delta \) correlative intervals, and we allow in the left hand side of (2) only those indices \(j \) for which \(R_j \) lays in a selected interval. Also we only take one \(T_j^n \) for each 4 correlative indices \(n \), and only those supported in the angular sector \(|\sin \theta| \leq 1/2 \). All these operations will contribute with the factor \(24 \left(\log_2 \delta \right) \) to the inequality (2).

The left hand side of (2) is less than the 4th rooth of twice

\[\sum_{R_j < R_k} \int \left| \left(\sum_n T_j^n f_j \right) \left(\sum_m T_k^m f_k \right) \right|^2 \] \hspace{1cm} (4)

and now we only have two kinds of pairs \((j,k)\) : either \(R_j < R_k \leq 2R_j \) or \(R_j \leq \delta R_k \). Let's denote \(\Sigma^I \) and \(\Sigma^II \) the two corresponding halves of (4). We have
\[\Sigma^1 = \int \left| \sum_{n,m} \left(T^n_j f_j \right)^* (T_k^m f_k)^* \right|^2 \leq 4 \Sigma^1 \int \left| \sum_{n \leq m} \left(T^n_j f_j \right)^* (T_k^m f_k)^* \right|^2. \]

Now an easy geometric argument shows that, for fixed \(j, k \), the supports of \(\left(T^n_j f_j \right)^* (T_k^m f_k)^* \) are disjoint for different pairs \(n \leq m \), so that we have

\[\Sigma^1 \leq 4 \int \Sigma^1 \sum_{n \leq m} |(T^n_j f_j)^* (T_k^m f_k)^*|^2 \leq 4 A \quad (5) \]

with

\[A = \left\| \sum_{j} \left| T^n_j f_j \right|^2 \right\|^{1/2} \left\| T^n_j f_j \right\|^{4}. \]

For the pairs \((j, k) \) in \(\Sigma^{11} \) we have

\[\Phi = \text{supp} \left| (T^n_j f_j)^* (T_k^m f_k)^* \right| \cap \text{supp} \left| (T^n_j f_j)^* (T_k^m f_k)^* \right| \]

if \(m_1 \neq m_2 \), because \(R_j \leq \delta R_k \), so that

\[\Sigma^{11} = \int \sum_{n} \left| \left(\sum_{j} T^n_j f_j \right) T_k^m f_k \right|^2 \leq \left(\int \left(\sum_{j} \left| T^n_j f_j \right|^2 \right)^2 \right)^{1/2} \left(\int \left(\sum_{j} \left| T_k^m f_k \right|^2 \right)^2 \right)^{1/2} \leq \sqrt{2} |\Sigma^1| + |\Sigma^{11}|^{1/2} A^{1/2}. \quad (6) \]

From (5) and (6) we obtain (2).

Now we come into part c). First we observe that for each fixed \(j \) it is possible to choose two grids of parallelepipeds as the one in theorem 3 and such that each of the multipliers \(T^n_j \) is supported within one of the parallelepipeds, let's call it \(Q^n_j \). If \((P_j^n f)^* = \chi_{Q^n_j} \hat{f} \) is the corresponding multiplier operator, we have

\[T^n_j f_j = T^n_j P^n_j f_j. \]

Furthermore, an integration by parts arguments shows that each of the kernels of the \(T^n_j \) is majorized by a sum

\[C \sum_{\nu=0}^{\infty} 2^{-\nu} \frac{1}{|R^n_{\nu,j}|} \chi_{R^n_{\nu,j}} \]

where the \(R^n_{\nu,j} \) are rectangles with dimensions \(2^\nu \delta^{-1} \times 2^\nu \delta^{-1/2} \) and \(C \) is independent of \(n, j \) or \(\delta > 0 \). Therefore in order to
estimate A we only have to estimate uniformly in \(\nu \) the \(L^4 \)-norm of
\[
\left| \sum_{j,n} \frac{1}{|R^n_{\nu,j}|} \chi_{R^n_{\nu,j}} * (P^n_j f_j) \right|^2 \overset{1/2}.
\]

Or, what amounts to the same, the \(L^2 \)-norm of its square. If \(\omega > 0 \) is in \(L^2(\mathbb{R}^2) \) we have
\[
\sum_{j,n} \int \frac{1}{|R^n_{\nu,j}|} \chi_{R^n_{\nu,j}} * (P^n_j f_j) (x) \, d\omega(x) \, dx
\leq \sum_{j,n} \int |P^n_j f_j(\nu)|^2 \left[\frac{1}{|R^n_{\nu,j}|} \chi_{R^n_{\nu,j}} * \omega \right] (\nu) \, d\nu
\leq \sum_{j,n} \int |P^n_j f_j(\nu)|^2 M \omega(\nu) \, d\nu
\leq 2 C_s \sum_j \int |f_j(\nu)|^2 A_4 (M \omega)(\nu) \, d\nu
\leq C_s \left\| \sum_j |f_j|^2 \right\|_{L^4}^2 \left\| M \omega \right\|_2
\leq C |\log \delta|^\alpha \left\| \sum_j |f_j|^2 \right\|_{L^4}^{1/2} \left\| \omega \right\|_2,
\]
by successive applications of theorems 4 and 3. This estimate proves (3).

Proof of Theorem 2. — With the same notations of the preceding proof, let now \(R_j = 2^j \). We have
\[
T^\ast_k f(x) \leq \sup_j |\overline{T^\ast_k f(x)}| + \sup_j |(T^\ast_k - \overline{T^\ast_k}) f(x)|
\leq \left| \sum_j |\overline{T^\ast_k f(x)}|^2 \right|^{1/2} + Cf^\ast (x)
\]
where \(T^\ast_j - \overline{T^\ast_j} \) stands for a \(C^\infty \) central core of the multiplier \(T^\ast_j \) and \(f^\ast \) is the Hardy-Littlewood maximal function.

By the same arguments of part a) in the preceding proof we may reduce ourselves to prove
\[
\left\| \sum_j |S_j |f|^2 \right\|_{L^4}^{1/2} \leq C |\log \delta|^\alpha \|f\|_4
\]
for some constants \(C, \alpha \), independent of \(\delta > 0 \).
We define the operators U_j by

$$U_j f(x, y) = x^{j-1} \hat{f}(x, y),$$

and apply the methods in parts b) and c) above to obtain the inequality

$$\left\| \sum_j S_n^5 f \right\|_4^{1/2} \leq C |\log \delta|^{1/2} \left\| \sum_j |U_j f|^2 \right\|_4^{1/2},$$

which yields (7) by the classical Littlewood-Paley theory.

BIBLIOGRAPHY

Manuscrit reçu le 1er décembre 1980.