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TISCHLER FIBRATIONS OF OPEN,
FOLIATED SETS

by J. CANTWELL (*) and L. CONLON (**)

Introduction.

Let M be a smooth, closed n-manifold, ^F a foliation of M of
codimension one. Unless otherwise specified, we will assume only that ^
has C00 leaves integral to a C° hyperplane field (^ is said to be of class
C0^. We will further require that M be orientable and that ^ be
transversely orientable.

If each leaf of ^ is everywhere dense without holonomy, then [10.,
Theorem 4] implies the existence of a transverse, holonomy invariant,
positive measure, finite on compact sets. As in the proof of [10., Theorem
6], it follows that M admits a possibly new C°° structure in which the
C00 structures of the leaves of ^ are unchanged and in which ^ is
defined by a closed, nonsingular 1-form CD. By a theorem of D. Tischler
[II], the manifold M, in this new structure, fibers smoothly over S1 and
such fibrations can be found arbitrarily C°°-close to ^. Also, as seems to
be well known to experts, these approximating fibrations can be chosen so
that the leaves of ^ are regular coverings of the fibers in a very natural
way, the covering group being a subgroup of co-rank 1 in the group
P(co) = Im((o : TCi(M)-^R) of periods of CD.

More generally, suppose that U c: M is an open, connected, ^r-
saturated subset, each leaf of ^|U being dense in U with trivial
holonomy. Such sets are prominent among the fundamental building
blocks of C2 foliations [I], [13]. For instance, such a set U is the
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necessary ambience for any leaf at finite level with an «exotic»
nonexponential growth type [1, (3.6) and (3.7)]. Let U be the completion
of U in the sense ofG. Hector [8] and P. Dippolito [5]. This is a manifold
with finitely many boundary components [5, Proposition 2] and, generally,
it is not compact. The foliation ^F induces a C0^ foliation ^ of U
having each component of 8\J as a leaf. The above method of finding a
new C°° structure generalizes to U, making HF a C°° foliation, C00-
trivial at 5U, such that ^' |U(=^|U) is defined by a closed,
nonsingular 1-form co on U.

Here we investigate the possibility of smoothly approximating ^ over
precompact regions by a C°° foliation J^* (called a Tischler foliation) of
U, C00-trivial at 3U, such that J^IU fibers U over S1. When that is
possible, we further investigate the possibility of choosing these fiberings of
U so that the leaves of ^F\\J are regular coverings of the fibers in a
suitably natural way. These questions are of interest, of course, only for
d i m ( M ) > 2 .

If dim (M) = 3, we find that Tischler foliations always exist (2.1), but
we give smooth counterexamples in all dimensions greater than three (4.5).
A condition guaranteeing the existence of Tischler foliations in arbitrary
dimensions is that the period group P(co) be free abelian (2.2). In
particular, this gives Tischler foliations if (1) U is compact, or (2) each leaf
of ^\\J has two dense ends, or (3) ^ is transversely analytic (cf. (3.10),
(3.11), and Remark (2) following (3.11)). This condition on P((o) also implies
the result about regular coverings (3.8), but even on 3-manifolds, where
Tischler foliations always exist, the regular covering property often fails
when P(o)) is not free abelian (3.9).

1. Technical preliminaries.

Fix M, J^, and U c= M as in the introduction. Fix a transverse,
smooth, 1-dimensional foliation J^f. As in [1, (1.6)], obtain the transverse,
invariant measure u for ^[U and the associated C° flow 0 :
R x M -> M, nonsingular precisely on U, having as flow lines in U the
leaves of ^ \ U, and preserving the foliation ^ . Let P(u) <= R be the
additive subgroup of periods of 4 [!,(!.7)]. That is, t e P(a) if and only if
<S>t carries some (hence every) leaf of ^\\J onto itself.

The following is proven by reasoning, familiar-to-specialists, entirely
similar to that in [10, Theorem 6].
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(1.1) LEMMA. — There is a possibly ne\v differentiable structure on U
under which

(1) ^ is of class C00 and is C^'trivial at 8\J;
(2) The differentiable structure on each leaf of ^ remains unchanged;
(3) y\\] is defined by a closed, nonsingular form co e A^U), and

P(H) = P((O).
Indeed, a new C°° structure is chosen in U so that the local leaves of

S (the 1-dimensional foliation of 0 induced by J^f) are the level sets of
the first n — 1 local coordinates, and the flow parameter of <1> provides
the n^ coordinate. Of course, at the boundary this n^ coordinate takes
values ± oo, where we use a smooth structure on [—00, oo] relative to
which the group of translations acts smoothly and is C°°-flat at ± oo. The
coordinate transformations are of the form x^ = x^x^,.. . ,x^_i),
1 ^ i ^ n — 1, x^ = ;€„ + c, c constant, so (1) and (2) follow. The form
co will be well defined on U by the local formulas co = dx^. The equality
of P(n) and P(co) is elementary.

We are going to express co in terms of a carefully chosen basis of
H^R).

Decomposition of 0). — Recall Dippolito's decomposition [5,
Theorem 1] of U into a compact, connected manifold K with corners,
called the nucleus, and noncompact «arms» Uy ^ Bj x [—1,1],
1 <7 ^ r , where Bj is a complete, non-compact, connected, (n—1)-
dimensional submanifold of a component of 8\J, 9Bj is compact and
connected, and each {x} x [—1,1] is a leaf of S. By attaching to K
successively larger chunks of the arms, we construct a sequence of nuclei

K = Ko <= KI c: • • • c K, c • • •

such that U = (J Kf and each K^ c: int(K^i) (interior relative to U).
i^O .

Remark that the number of arms attached to K^ may become unbounded
as i -> oo .

The inclusions K, c—^ U induce homomorphisms ^ :

Hi(K,;R) —— Hi(U;R),

and we set A, = Im(^), a subspace of Hi(U;R) of finite dimension n(i).
Remark that Hi(U;R) = (JA,.

i^O
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Choose integral cycles CTI, . . . , CT^O) in U which represent a basis of
Ac, integral cycles o^-n, .. . ,^,(D, n(l) ̂  n(0), in U which represent
a possibly trivial extension of this basis to a basis of A^ , etc. This gives rise
to a possibly infinite basis [oj, [02], . . . , [oj, . . . of Hi(U;R).

Choose closed forms co^, 0)2, . . . in A^U) such that co^o,) = 8,^. If
GJ does not represent an element of A,, then co,|K, = ̂  for some
smooth h : Ki ->R. One smoothly extends h to /i : U -> R by standard
techniques and replaces co^ by co, - ̂  so as to guarantee that
co,|K, ^ 0. Thus, each point of U has a neighborhood on which only
finitely many of the forms co, are not identically zero.

A further wrinkle is needed in the choice of these forms. Let W be a
neighborhood of ^U in U such that (see figure 1) :

(a) U - Ko W ;
(b) the components of W n K() are disjoint collar neighborhoods of

the respective components of 3U n K o , fibered by J^|(WnKo).

Thus, in each component of W n Ko, we have a canonical choice of
projection p into S\J along the leaves of S. In each component of
U — Ko, we have two such choices of p .

Fix o)^.. We will find a closed form T| e A^SU) and a smooth function
h : W -> R such that o)^|W = p*(r|) + dh unambigously. Damping h
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off to zero near the boundary of W in U and extending by 0 defines a
smooth function fi: U -> R such that co^ — dfi vanishes on the tangents
to S both near 5U and outside of (say) K ^ . We replace co, with
co, — dh. We have to take precautions to insure that the local fmiteness of
{coj^i is not destroyed. Here are more details.

(1) For each component Lj^ of 5U, choose r^eA^I^) that pulls
back via p to the appropriate part of W as a form cohomologous to co,.

(2) If Lfc and L^ are two components of 5U such that some arm
0,^ B, x [-1,1] has B, x {-1} c= 4, B, x {1} c L^, the forms ^
and r\q restrict to cohomologous forms on B^, so similar adjustments as
above allow us to assume that these restrictions are equal. This guarantees
the non-ambiguity of p*{r\).

(3) If (^j\Ki = 0, we can choose T| to vanish on K^ n 8\J and h to
vanish on W n K,. This guarantees the local fmiteness.

Let Cj = co(o,) and consider the sum cb == ^ c,c0j. This sum is locally
j

finite and each co^ is closed, so & is a closed 1-form on U. Also, &
vanishes on the tangents to the leaves of S both near 8V and in
U - K i .

Since H^UiR) is the dual vector space to Hi(U;R) and U <=-, U is
a homotopy equivalence, the following lemmas are easy consequences of
our constructions.

(1.2) LEMMA. — There is a smooth function g : U —> R such that
(0 = 0)|U + d g . ' Near 8\J and in U — K ^ , the restrictions of co to the
leaves of^\\J agree with those of d g . In particular, dg is nonsingular in
those regions and it is unbounded near 5U.

(1.3) LEMMA. — Let WQ c: U be an open, relatively compact set. Fix
i ^ 1 such that Wo <= K( . If numbers Cj e R are chosen, j ^ 1, so that
c^ • • "> ^nd) are sufficiently near 04, .. ., c^ respectively, then

6 = ^Cj(Wj\\J) + dg is a closed, nonsingular 1-form on U, defining a
j

foliation ^ transverse to J^|U, and 6|(WonU) is as C°°-close to
co I (Wo (^ U) as desired.

Practically as immediate is the following.
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(1.4) LEMMA. - The foliation ^ of (1.3) can be extended to a C°°
foliation^* of U, C00-trivial at ^U, by letting each component of 8V be
a leaf.

Indeed, the local flows on U produced by © and having flow lines
along J^|U agree with 0 outside a compact subset of U, hence they can
be assembled into a smooth global flow $ on U that preserves ^. Since
$ and 0 agree near 3U, any coordinate system x ^ . . . , x ^ in a
neighborhood of S\J, having as e^-plaques the level sets of x
0 ^ ̂  ^ oo (or - oo <x^0), is readily C°°-transformed to a coordinate
system

Xi = Xi, . . . , ^_ i = X^, ^ = X^ + T(Xi, . . . ,^_i)

having as ^-plaques the level sets of x^. On overlaps, the coordinate
transformations are of the form

^ = ̂ i,.. -J^n-i) , 1 ̂  f ^ n - 1, 5c^ = ̂  + c.

Of course, as usual, we stipulate that the level sets of the first n - 1
coordinates be plaques ofj^f.

Remarks. - (1) the foliation J^* extends over M to a C° foliation,
again denoted ^*, such that ^*|(M-U) = J^KM-U). One can then
show that, in a certain reasonable sense, ^r* is uniformly close to ^ .

(2) The group P(6) of periods is equal to the set of numbers t e R
such that $, carries each leaf of J^ onto itself. It is elementary that the
foliation ^ fibers U over S1 if and only if P((b) is infinite cyclic.

2. Existence of Tischler foliations.

We keep all of the same conventions and notations as in Section 1.

First, assume that dim(M) = 3 . Fix an open, relatively compact
subset Wo c U and fix ; > 0 such that Wo <= K,. Consider the
decomposition of U into the nucleus K, and arms U,^ B x [-1,1],
1 ^ j ^ r . Thus, each 8B, ^ S1, so K, n U, ^ S1 x [-'1,1]. Also,'
the homomorphism H^(K, nU, ;Z) -> H^(U,; Z) identifies with
H^(3B,;Z) -> H^(B,;Z) and this is one-one.

In this situation, the Mayer-Vietoris sequence yields a short exact
sequence

0 ̂  V -^ Hi(K,;Z) © Hi(Ui;Z) © • • • © Hi(U,;Z) -> Hi(U;Z) -^ 0.
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/ '• \
Here, TJ = Hi NJ (K. ̂ U/);^ is generated by the cycles SB. and each

\j=l /

Hi(U^; Z) = Hi(B^;Z) is free abelian on a basis that contains the cycle
8Bj. It follows that H i ( U ; Z ) = = A © B where A is the (finitely
generated) image of Hi(K,;Z) induced by the inclusion K, c_». U and B
is free abelian. In the choice of integral cycles c^, a^, . . . , as in Section 1,
we can arrange that { < 7 i , . . .,a^} gives a basis of A/(torsion) and that
{aj}j>n(^) g^ a basis of B- ^us, the forms co,, j ^ n(f), annihilate B.

Choose the numbers Ci , . . . ,c^ to be rational and as close to
c^ • ' • » cn(i)^ respectively, as desired. For j > n(i), set c^ = 0.

Since P(co) c: R is generated by 6 (a,) = c^ j ^ 1, the above choices
force P(co) to be infinite cyclic. By the final remark in Section 1, we obtain
the following.

(2.1) THEOREM. - // dim(M) = 3 and if Wo c: U is open and
relatively compact, then there exist Tischler filiations ^* of 0 that are
arbitrarily C^-close to ^ on Wo.

By similar, but slightly more delicate choices of the cycles c^ and the
rational numbers Cj, we will prove the following.

(2.2) THEOREM. - // dim(M) ^ 3 , if Wo c: U is open and relatively
compact, and if P(co) is free abelian, then there exist Tischler filiations c^*
of U that are arbitrarily C°°-close to ^ on Wo. Furthermore, ^ F * can
be chosen so that

Ker (co : Tti(U)-^R) c: Ker (o : Tii(U)-^R).

The final assertion in (2.2) will guarantee that the leaves of ^'|U are
regular coverings of the fibers of ^ = ^*[U in a natural way (3.8). The
corresponding assertion is absent from (2.1) due to a wealth of counter-
examples (3.9).

Proof of (2.2). - Since P(co) is free abelian, the exact sequence

0 ——^ Ker(co) ——^ Hi(U ;Z) -"-̂  P(co) ——. 0

can be split. Since Hi(U;Z) = Hi(U;Z) canonically, we obtain

Hi(U;Z) = Ker(o))©P
Hi(U;R) = (Ker(co)(g)R) © (P®R)

such that co carries P one-one onto P(co).
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Set (o^ = o)|(K,nU). The inclusions K, c: K^ <= U induce
commutative diagrams

Ker((o^) ——. Ker(co^))

Ker(co)

and Ker((o) = \Jlm(jj). Set m(/) = dim(Im(Y^)(8)R) and choose integral
j^O

cycles Pi, . . . , P ^ ( O ) in Ko n U and p^+i, . . . , P</+I) in K^i n U ,
j ^ 0, such that the classes [pj, [p^], . . . , [pj, . . . define a possibly
infinite basis of Ker(co) ® R. We can choose the cycles o^, . . . , o^o)
(respectively, o^.^, . . . , or .̂.̂ ) of Section 1 so that pi, . . . , p^o)
(respectively, P^+i, . . . , P^+I)) are among them. Let Ti, .. .,T^)-^(O)
(respectively, ^n(j)-m(j)+i^"^nu+i)-m(j+i)) be the remaining c^'s.
Finally, let a^, a^, . . . , a^, . . . be a possibly infinite basis of the free
abelian summand P. One then has a possibly infinite integer matrix
(M^^i, each row of which has only finitely many nonzero entries, such
that, in Hi(U;Z),

[T .̂] = ^ M^oCfc mod Ker (co), j ^ 1.
k^\

The rows of this matrix are linearly independent over R

Since {01,02,...} = {pi ,p2 , . . . } u {r^,...}, we can define p(/),
j ^ 1, so that o .̂) = T^. If Op = pfc, ^n Cp = 0 and we set Cp = 0.
Fix K, such that Wo c K^ and choose c^, 1 ^7 < M(Q - w(f),
rational and as close as desired to Cp^. There exists r ^ n(f) - w(f) such
that

r

[T,] = ^ M^modKer(co), 1 ̂ j ^ n(i) - m(f),
L- — 1

and there are (not necessarily unique) rational numbers ^, 1 ̂  k ^ r,
such that

^o-) = £ M^ ̂  1 ^ 7 ^ "(O - w(0.
k = l
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If k > r, set dk == 0 and define rational numbers

^(J) = Z ̂ ^ 7 ^ 1 -
k^i.

This defines Cp for all p ^ 1 and the corresponding 1-form

& == E 2p(®p|U) -h dg
p^i

as in (1.3). Then
6: Hi(U;Z) -> R

annihilates every [p^j, hence Ker((o) <= Ker(co). Furthermore,
Q)[T,] = Cp^y There is a unique cohomology class [y] eH^L^R) that
vanishes on Ker((o) and assigns to each o^ the rational number <4. By
the above, [y] assigns to each [r,] the number Cp^, so [y] = [(&].
Thus, P(6) = P(y) and this is generated by the finite set {d^,.. .,d,} of
rational numbers, so P(6) is infinite cyclic.

Finally, since Ker(co) <= Ker(co) at the level of homology, the
corresponding inclusion holds at the level of homotopy. D

3. The regular covering property.

Let L be a leaf of ^|U and let F be a fiber of ^ = ̂ *|U. Fix a
reference point X o e L and choose to61^ such that 0^(xo)eF. Consider

Condition (*). There exists a smooth function T : L -> R such that
^o) = ^o and <D^(x)eF, V x e L .

If Condition (*) is satisfied, we will define p : L -> F by p(x) = 0^)(x)
and prove that this is a regular covering space with covering group
G c= P(n) = P((O) such that P(n) ^ G © Z. Since one easily produces
countably generated, additive subgroups P c: R that do not admit Z as a
direct summand, and since P(\i) can be any such subgroup [1, (5.5)], we
cannot expect Condition (*) always to be satisfied.

(3.1) LEMMA. — Condition^) holds if and only if

Ker(co : Tti(U) -^ R) c: Ker(® : K^(\J) -. R).

Furthermore, T is uniquely determined by XQ and to.
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(3.2) COROLLARY. — Condition (*) holds for one choice of initial conditions
L, F, XQ, IQ if and only if it holds for all such choices.

By the final assertion in (2.2) we also have

(3.3) COROLLARY. — // P(co) is free abelian, then Tischler foliations can
be chosen, arbitrarily C°°- close to ^ on any preassigned precompact region,
such that Condition (*) holds.

Proof of (3.1). — Fix a leaf L of ^ andabasepoint XQ^L. Let or be
a piecewise smooth loop in U based at XQ . In standard fashion, using the
transverse flow Q(, we deform a to a loop at XQ of the form <7i -1- a^,
where CTI is a path in L and a\ lies along the flow line through XQ.

Thus, co(a) = (o and this is zero if and only if CT^ reduces to the single
J(T2

point XQ. Thus, the image of i^ : n^(L,Xo) -»• T^(U,X()), where i is the
inclusion, is exactly Ker(co). The condition that Ker(co) c Ker(6)
becomes the condition that 6(0) == 0 for every piecewise smooth loop CT
lying on L.

If Condition (*) holds, define p,: L -^ U by p,(x) = <S>^(x), 0 ̂  t < 1.
This homotopy can be used to deform any 1-cycle a on L to a 1-cycle CT
on F, all within U. Thus, 6(or) = (0(0) = 0.

Conversely, suppose co(cr) = 0 for each piecewise smooth loop a on
L. Fix IQ so that Q( (xo) e F. Given x e L, choose a piecewise smooth
path Y •' [04] -^ L, y(0) = XQ and y(l) = x. We want to project y
smoothly along the leaves of J^|U to y : [0,1] -^ F, y(0) = ^o^o)-
More precisely, we want to define a piecewise smooth function T^ :
[0,1] -^ R, \(0) = to, such that

<^)(Y(O)=Y(O^F, 0 ^ r < 1.

The mere fact that JSf|U is transverse to ^ = ^*|U does not guarantee
that this is possible, but the additional fact that ^ fibers U over S1

makes it a straightforward exercise to prove the existence and uniqueness of
Ty. If p : [0,1] -> L also satisfies p(0) = XQ and p(l) = x , then we
claim that Tp(l) = Ty(l). Indeed, let X : [0,1] -^ U be the curve (along a
leaf of ^|U)

^(0 = ^(iMl-Oxpd)^).

Either this curve is constant (i.e., T^(I) = Tp(l)) or it is nonsingular and
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[ & ^= 0. The cycle C T = = p 4 - X + Y ~ 1 is homologous in U to the cycle
Jx
<j = p 4- y ~1 . Since o is a cycle on L,

0 = &(a) = &(a) = 6,
J\

so ^ is constant. Consequently, we can define r(x) = Ty(l) unambiguously,
T is smooth, and <R^(x) = y(l)eF. Also, T is unique since each Ty is
unique. D

Assuming that Condition (*) holds, we fix the choices of L, F, and T
and we define p : L -> ¥ as above. Our candidate for the covering group
G <= P([i) is as follows.

DEFINITION. — G = {r(xi) — ^(x^)\p(x^) = p(x^)}.

(3.4) LEMMA. - G is a subgroup of P(n) and P(O(OO) = p00, V teG ,
V Z € L .

Proof. — If p(xi) = p(x^), then

^)-x(^l) = ^-t(x2)(P(^l)) = ^2-

In particular, O^^)_,^(L) = L, proving that G <= P(p).

Let t = t(^i) - T^eG. Define T : L -> R by

T(Z)=T(<D,(Z) )+( .

Then T<Xi) = T^) + r == r(xi) and

^)(^) = ^(.))(^(^))
=p(<D,(z))eF.

By the uniqueness assertion in (3.1), T = T and, in particular,

p(z) = p(<D,(z)), V r e G , VzeL.

Evidently OeG. Also, if r e G then - teG. Let p(xi) = p(xy) and
P(^i) = P(y^- We must show that

(T(x,)-T(x,))+(T(^)-T(^))eG.
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Let u = <^)-^)(x2). Then p(u) = p(x^). As above, for z e L ,

^(^-x^2)) + ̂ l) - ̂ 2) = ̂ ) = T(<D^_^(Z)) + T(X2) - T(M).

By letting z = x^, we obtain

^) + ^(yi) - ̂ 2) = ̂ ) + ̂ 2) - ^(M),
hence

l̂) - ̂ 2) = ̂ 2) - ^(M).

Consequently,

T(Xi) - T(X2) + T(^) - T(^) = T(Xi) - T(u)

and this is an element of G. Q

(3.5) LEMMA. — For each y e ¥ , the natural action G x L-^ L
induces a simply transitive action of G on p ~ l ( y ) .

Proof. — Let ( eG and x e L , and suppose that <I>,(x) = x. Then, as
in the proof of (3.4),

r(x) = T(<D,(X)) + t = r(x) -h t,

so t = 0. That is, G acts on L without fixed points. If y ^ , y^ € p ~ l ( y ) ,
then T(^)-T(^)eG and ^-x^i) = ^2. D

(3.6) PROPOSITION. — The map p : L -> F 15 a regular covering and
G c: P(\x) is the group of covering transformations.

Proof. — A finite biregular cover of M relative to («^,^f) (cf. [2,
Section I], [5]) defines a (generally infinite) biregular cover {Wj^eA °f
U relative to (^,^). Fix a biregular cover {Vp}^ of U for (^*^)
such that each Vp lies in some W,. Given y e ¥ , x e p ~ l ( y ) c= L, and a
plaque Pf around y coming from a suitable Vp, there is a neighborhood
P^ of x in L carried diffeomorphically by p onto P^. Indeed, by a
small deformation of Vp within a surrounding W,, holding y fixed, we
produce a compact biregular neighborhood for (^, J^) meeting exactly
the same local How lines as Vp. If P is an ^-plaque of this biregular
neighborhood, there is some t e R such that <I>((P) has interior P^ as
desired.
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Let P^ and P^ be as above. Let ( eG be such that

<Wc) nP ,^0 .

Let Zi ,Z2 e P^ such that z^ = O^). Then

p(Zi) = P(^(Z^) = ?(Z2), SO Zi = Z2.

By (3.5), r = 0. It follows that P^ is evenly covered by

P~1(^)=U^.)' D
t6G

(3.7) PROPOSITION. — // G <= P(|i) = P(co) is the group of covering
transformations as above, then P(co) = G © Z.

Proof. — Without loss of generality, we assume there is a basepoint
XQ e L nF such that p(xo) = XQ . Indeed, given arbitrary XQ e L, we can,
if necessary, replace (L.^o) with (O^)(L) , <X>^)(xo)) and T with
T o 0 _ ^ . — r(xo). This leaves the subgroup G <= P(co) unchanged.

Both y\\3 and ^ are transversely complete ^-foliations of U (cf. [4]).
Thus the leaf inclusions induce monomorphisms of fundamental groups and
we obtain exact sequences

0 —— 7ti(L,Xo) —— 7Ti(U,Xo) —^ P(co)——. 0

0 ^—— K, (F,Xo) —— K, (U,xo) —^ P(c&) —— 0.

By the first of these, we identify P(co) with 7Ci(U,Xo)/7Ci(L,Xo). Since p :
L -> F is a regular covering and p(xo) = XQ, we obtain a commutative
diagram of inclusions

7Ci(L,Xo) C-, 7li(U,Xo)

'1 <^
7ll(F,JCo)

and

G == 7Ci(F,Xo)/7Ci(L,Xo) <= 7Ci(0,Xo)/7Ci(L,Xo) = P((0).
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By (3.1), 6 vanishes on K^(L,XQ), so the second of the above sequences
yields an exact sequence

0 ——^ G ——^ P((O) —"-»• P(®) ——^ 0.

But P((o) ^ Z and this sequence splits. D

Combining (3.3), (3.6), and (3.7), we obtain

(3.8) THEOREM. — If P(co) is free abelian, then Tischler foliations SF^
can be chosen, arbitrarily C00-close to SF on any preassigned precompact
region, such that there is a natural regular covering map p : L -> F, L a
leaf of ^ILJ and F a fiber of S^ = ^*|U, with covering group G a
direct summand : P((o) ^ G © Z.

If P c R is a countably generated, additive subgroup, an element
a eP , a ^ 0, will be called infinitely divisible if, for suitable, arbitrarily
large integers m, one can find b^ e P such that mb^ = a. The group P
contains an infinitely divisible element if and only if P is not free abelian
(cf. [7], Theorem 19.1, page 93).

(3.9) PROPOSITION. - If dim(M) = 3 and P c: R is a countably
generated, additive subgroup that is not free abelian, then M admits a
transversely orientable C'0-foliation ^F with U c: M as usual such that
P(co) = P and such that no choice of Tischler foliation ^* satisfies
Condition (*).

Proof. - Exactly as* in [1,(5.5)], construct ^ such that y\\3 has
dense leaves without holonomy and such that P(co) = P. In choosing the
representation co = £ c/co, | U) + dg of Section 1, it is easy to arrange that
Ci be an infinitely divisible element of P((o). In fact, we can arrange that
Ci = mCj, for suitable arbitrarily large integers m and suitable ; > 1.
Furthermore, since c^ =^= 0, we can choose the integral cycle a^ (such
that co^.(ai) = 8^,j^l) to be a closed transversal to ^|U. By
performing the standard modification of ^ along CT^ , introducing a Reeb
component with CT^ as core transversal, we change U so that 8\J has one
new component, a torus. The new foliation y\V has the same properties,
including the same period group P(co), as before. Perturb c^ so that it
lies in U near the toral boundary component and is transverse to ^|U.
Let CTQ also lie in U near the toral boundary, a perturbed meridian circle
relative to the Reeb component and lying on a leaf of ^'|U. Thus,
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©((To) = 0. The new system of basic cycles is either unchanged or it is
obtained by adjoining CTQ to {cr^o^,. . .}, in which case CQ = 0.

Suppose there is a choice of ^* so that Condition (*) holds. By (3.1),
&(CTo) = 0. Since 9^ fibers U over S1, ^* cannot be a product
foliation near the new toral component of 5U. Thus, & is not exact near
this torus and it follows th^t c^ = &(a^) =/= 0. For suitable, arbitrarily
large integers m and J > 1 , we have co(CTi—w<7^)=0 , hence
6(<7 i—wa^)=0 by (3.1). That is, in P(o) there are elements
Ci = co((Ji) ^= 0 and Cj = ©(a,) such that mcj = c^ . This contradicts
the fact that P(6) is infinite cyclic. D

Returning to the positive result (3.8), we describe a fairly general
situation in which that result applies.

DEFINITION. — Let U <= M be as usual. If the nucleus K c: U can be
chosen so that, in each arm U, ^ Bj x [—1,1], IF restricts to the product
foliation by leaves Bj ><• [t], then ^ is said to be almost trivial.

(3.10) PROPOSITION. — The foliation ^ is almost trivial in each of the
following cases :

(a) \J is compact;
(b) ^ is of class at least C2 and each leaf of ^\\3 has two dense ends;

(c) y is transversely analytic.

Indeed, case (a) is vacuously true and, under the additional hypothesis
that U — U is a union of proper leaves, case (b) was proven in [1, (6.9)]
and, under the same hypothesis, case (c) was pointed out in that same
reference. The additional hypothesis can be avoided by using a result of G.
Duminy [6] on the structure of semi-proper, exceptional leaves.

(3.11) THEOREM. — If ^ is almost trivial, then Tischler foliations ^r*
can be chosen, arbitrarily C00-close to ^ on any preassigned, precompact
region, such that there is a natural regular covering p : L -> F with
covering group G ^ 7}, some integer k ^ 1.

Proof. — If <j is an integral 1-cycle contained in an arm U^, then
co(a) = 0. Thus, P(o)) is the finitely generated image of co :
Hi(K;Z) -^ R and (3.8) applies. D

Remarks. - (1) In case (a), of (3.10), if 9\J = 0 (i.e., U=M), then a
famous result of H. Hopf [9], together with (3.11), implies that each leaf of
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^(=^|U) has the same number of ends as does the covering group
G ^ 7^. This number is two if k = 1, and it is one if k > 1. The fact
that the number of ends is either one or two is also a consequence of [3,
Proposition I], in which it is shown that, generally (whether or not Tischler
foliations exist), each leaf of ^|U has either one dense end or two such
ends. The proof is similar to Hopfs proof, so one might expect to show that,
at least when G ^ Z\ the number of dense ends is the same as the
number of ends of G. This often fails, however, even when U is compact.
For instance, let U ^ S1 x S1 x [- 1,1], the leaves of ^'|U being
dense planes. These leaves have one dense end, the Tischler fibers are
cylinders S1 x R, and the covering p : R2 -> S1 x R has covering group
G ^ Z.

(2) In case (b) of (3.10), if we assume only that ^ is of class C^, we can
apply the argument in [1, Section 6] to show that P (u) ^ Z x Z. Thus,
(3.8) applies to the case of two dense ends without the smoothness
hypothesis. In this case, G ^ Z.

(3) It is natural to ask whether the covering map p : L -^ F, when it
exists, respects the growth types of L and F, at least when G ^ 7}.
That is, if g^, g^ : Z+ ->R+ are growth functions for L and F
respectively, and if G ^ Tf, do g^(m) and ntg^m) have the same growth
type ? If ^ is almost trivial, the answer is « yes », as is easily deduced from
[1,(2.8) and (6.10)]. In general, however, the answer is «no», as the
constructive proof of [1, (5.5)] clearly implies.

4. An example.

Without some condition on P(o), Tischler foliations do not generally
exist. Here we show how to construct an appropiate example in which
dim(M) can be an arbitrary integer greater than three. By (2.1), such
examples are impossible when dim (M) = 3. In our example, P(co) will be
the dyadic rationals Z[l/2]. The method of construction may be of some
independent interest.

(A) Generalized Reeb components. — Let L be an open, connected
manifold of dimension n — I , n ^ 3. Suppose that there is a
decomposition
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(1) A is a compact, connected, (M-l)-dimensional manifold with 8A
connected;

(2) Bf ^ B,^, i ^ l , and B; is a compact, connected, (n—1)-
dimensional manifold such that 3B, has two components, 8+B and
3-B,;

(3) A n BI = 5A = 5_Bi and A n B, = 0, i > 1;
(4) B, nB^i = 5+B. = a-B,+i , f ^ 1, and B, n B,+, == 0,

i ^ l , k^ 2 ;
(5) there is a diffeomorphism y of L onto itself such that

y ( A u B i ) = A and y(B,^) = B,, f ^ l .

Example. - Let L = R2 , let A = {yeR 2 : N|<2}, and let

B—^eR2^!!!;!!^1}, i ^ 1.

Finally, let y(v) = v/2.

Under these circumstances, we have a proper nest of compact sets
A =) y(A) =) y^A) = ) • • • = ) ^(A) =3 • • • .

The intersection of these sets is a compact, nonempty, y-invariant set K
and y is a contraction of L to K. In the above example, K = {0}. In
all cases, y generates a properly discontinuous action of Z on L — K
and (L—K)/Z is a closed, connected, (n-l)-dimensional manifold T.
Indeed, T is obtained from B^ by identifying 9+Bi to 5.B; via y.

Let I = [0,1] and let h : I -^ I be a diffeomorphism (into) such that
h(0) = 0 and h(t) < t, 0 < t < 1. Thus, h is a contraction to 0. We
also assume that h is C°°-tangent to the identity at t = 0.

Let q> : L x I -> L x I be the diffeomorphism (into) defined by

(p(x,0=(y(x),/i(r)).

Then <p contracts L x I to K x {0}. Let X = (L x I) - (K x {0}).
Then X is an n-manifold with boundary and (p: X -^ X has no fixed
points. Indeed, {(p*}^ = ^+ is a properly discontinuous semigroup of
diffeomorphisms of X into itself. The boundary component
8oX = (L x {0}) - (K x {0}) is invariant under this semigroup. The
quotient Y = X/Z4" is an n-manifold with one boundary component,

5Y = ^X^ ^ (L-K)/Z = T.
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The quotient mapX -> Y carries A x [/i(l),l] u B^ x [0,1] onto Y,
hence Y is compact. Finally, the foliation of X by leaves L x {t},
0 < t ^ 1, together with the leaf 8oK, is invariant under this semigroup
and passes to a C°° foliation of Y with 5Y ^ T as one leaf and all other
leaves diffeomorphic to L. The noncompact leaves wind in on <9Y in a
very regular way. Indeed, these leaves each have one end and that end is
periodic of period 5Y, in the sense of [2, (6.1)].

Since h is assumed to be C°°-tangent to the identity at t = 0, it
follows that the above foliation is C°°-trivial at 3Y. Thus, the double of Y
yields a closed, C°°-foliated n-manifold M having exactly one compact leaf,
all other leaves being diffeomorphic to L.

Example. — Applying our construction to L = R2 , y(u) = v/2, we
obtain the Reeb-foliated solid torus with double the standard Reeb foliation
of S' x S2.

We call Y, together with the above foliation, a generalized Reeb
component. The doubling construction shows that generalized Reeb
components do appear as components in C°° foliations of suitable closed
n-manifolds M.

(B) A special example. — Here, we require that n ^ 4. Let D denote
the closed unit disk in R""2 and let R = S1 x D = {(9,x)}, where 9 is
well defined mod 2n. Choose a smooth map i : S1 x D -> D such that,
for each 9, i'e : D -^ D is an imbedding into int (D) and
fe(D) n le-m(D) =0 - It is here that the condition n ^ 4 is needed
(Borsuk-Ulam). Finally, define

K|/ : R ——^ R
v|/(9,x)=(29,ie(x)).

Thus, ^ imbeds R into int (R) as indicated in figure 2.

Let 5 denote the successor function, s(i) = i 4- 1, and consider the
sequence of imbeddings

R x {0} -^ R x {1} -^ • • • ——. R x {i} —— • • • .

Let L be the (n — l)-manifold obtained by passing to the direct limit of this
sequence and consider the natural imbeddings R x {i} -» L. Let A be the
imbedded R x {0} and define B, inductively by letting
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Fig. 2.

A u BI u • • • u B, be the imbedded R x {1}. Finally, define the
diffeomorphism y : L -^ L via the commutative diagram

R x {0} ̂  R x {1} -^ R x {2} —— • • •

^x^ i r fxs- . / i -dxs-1 ^^^

R x {0} -^ R x {1} ——. • • •

It is elementary to check the hypotheses (1) through (5) of (A).

For use in (C), remark that the sequence of fundamental groups

n,(R x {0}) —— n,(R x {1} —— • • •
is exactly

z—z-^
hence Hi(L) = Hi(L) = Z[l/2].

(C) The promised example. — In the generalized Reeb component of
(B), we modify the foliation so that the compact leaf <5Y remains a leaf, as
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does the diffeomorphic image in Y of L x {1}, but the remainder of the
foliation consists of dense leaves without holonomy. Then U will be the
diffeomorphic image of L x (h(l\l) under the quotient map X -^ Y.
Since n^(V) = n^(L) = Z[l/2], there exists no fibration of U by
connected manifolds over S1. Doubling Y will complete our example.

Let d6 eAl(R) be the closed, nonsingular form pieced together out of
the exterior derivatives of the branches of 9. Evidently, v|/*(d6) = 2 ^ 9 , so
we obtain a closed, nonsingular form TieA^L) that « restricts » to 2~1 dQ
on R x {f} , i ^ O . The following is a direct computation.

(4.1) LEMMA. - The form rieA^L) satisfies y*^) = 2r| and
P(Ti)=Z[l/2].

Define the contraction h: I -> I so that it imbeds in a flow. More
precisely, let / : I -^ R be a smooth map, C°°-tangent to 0 at t = 0,
such that f(t) < 0, 0 < t ^ 1, let h^(t) be the local flow on I generated

by the vector field /(O— (always defined on all of I for u ^ 0), and set

h = h^. The following is standard.

(4.2) LEMMA. - h*(dt/f) = dt/f on (0,1].

Let J = [/i(l), 1] and let g^ : J -^ R be C°° and C°°-tangent to 0
at the endpoints, go\mi (J) strictly positive. Let ^ : ^(J) -^ R be given by

ffkW) = 2-W), keZ\ t e J .

Finally, define g : I -^ R by

^(J) = 9k
g(Q) = 0.

(4.3) LEMMA. - The function g is continuous, ^|(0,1] is C00 and C00-
tangentto 0 at ^(1), fe ^ 0, and /i*(^) = g / 2 . For an appropriate choice

d
of the vector field f(t)—. the function g is also C°° at t = 0 and C°°-

at
tangent to 0 t/i^r^.

Proo/ — Every assertion is trivial except those concerning the behavior
of g at t = 0. For each real number u ^ 0, define g^ : h^(J) -> R by
Qu^uW) = 2~^o(0- When u = fe € Z4', this definition agrees with that of
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0k. We want to assure that, for each integer n ^ 1,

lim ^u(O) = 0,
W->00

uniformly for (e J.

Inductively, on J x [0,oo) define

Qi(^) = go(t)f(t)
Qn+lM == QnW(t) - nf(hMQn(^u)

where Q;, denotes the derivative with respect to t. Since

h!(dt/f) = A//, Vu ^ 0,
we have

hW=f(hM/f(t), ^ e J .

With the aid of this formula, one verifies

C16) ^(^(0) = Qn(^^/2tt(/?,(0r

by induction on n ^ 1.

If Qi^M) denotes the fc111 derivative of Q^ with respect to r, then
an elementary induction on n shows that Q^^u) is uniformly bounded
on J x [0,oo) for each fixed integer k ^ 0. In particular, Q^(r,u) is so
bounded. Thus, by (*), we must choose / so that ^"(/(^(t)))"! becomes
arbitrarily large, uniformly for t e J, as u -> oo, for each integer n ^ 1.
This is easily arranged. For example,

^-lo,"""- '-T1'^f-r2^,
lo,

generates the flow

f(log(«+e1/'))-1, 0 < « 1
hu(t} = lo, t = 0

hence

^(/(^(On = 2M(M+el/()-n(log (u+e17'))-2". D

On L x I, consider the smooth, nonsingular 1-form a =fgr[ + dt.
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We also denote by a the restriction of this form to X. Let
U == L x (A(l).l).

(4.4) LEMMA. — The form a is completely integrable and the associated
foliation ^ of L x I is transverse to the intervals {x} x I. The foliation
Jf|X has the following properties:

(a) 8oX and L x {^(1)} are leaves, keZ^ and 3€\X is C00-trivial
at these leaves;

(b) q>*(^|X)==^|X;
(c) Jf|U is defined by a closed, transversely complete, nonsingular 1-form

© such that P((o) = Z[l/2].

Proof. — Since r\ is closed, da = a A (/^Vn, so a is completely
integrable. Also, ai(8/9t) = 1, so Jf is transverse to the interval fibers.
Since g is C°°-tangent to 0 at t = 0 and at t = ^(1), k e Z ^ , (a)
follows. On X - 8oX, Jf is also defined by a// = gj} + A//. By (4.1),
(4.2), and (4.3), (p*(a//) = a//. Since (p^oX) = ^X, (fc) follows. Finally,
^f|U is defined by the closed form o = T| -h dt/fg. To say that o is
transversely complete means that there is a complete vector field v on U
such that w(v) == 1 (equivalently, ^|U is a transversely complete e-
foliation in the sense of [4]). The vector field v = fg 8/8t satisfies this. For

any piecewise smooth 1-cycle a in U, T| == (o. Thus, P((o) = P(r|)
Ja Jo

and (c) follows from (4.1). D

By part (b) of (4.4), Jf|X passes to a C°° foliation y of Y. The
quotient map imbeds U as an open, ^-saturated subset of Y and
jqU = Jf|U. By parts (a) and (c) of (4.4), ^ has all of the properties
that we have been assuming in this paper. Also, a has contact of infinite
order with dt along 8oX, so ^ is C°°-trivial at S\ and we can pass to
the double M of Y, with the doubled foliation also being denoted by ^ .
As earlier remarked, U does not fiber over S1 with connected fibers, so
we have proven the following.

(4.5) THEOREM. — For each integer n ^ 4, there exists a closed,
orientable n-manifold M with a transversely orientable, C00 foliation 9^ of
codimension one and an open, connected, 3'-saturated set U of locally dense
leaves without holonomy, such that U admits no associated Tischler foliation.

Remarks. — (1) One can show that the leaves of ^|U are
diffeomorphic to R""1 and have exponential growth.
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(2) Although the product fbliation of U ^ L x [/i(l), 1] does fiber U
over (h(l), 1) ^ R, a simple foliated surgery along a closed transversal to
^\\J will alter the example so that the new manifold 0 admits no foliation,
tangent to 5U, that fibers U over a 1-manifold.
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