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CHARACTERISTIC CLASSES OF SUBFOLIATIONS

L. A. CORDERO and X. MASA

1. Introduction.

A flag of foliations of codimensions q^ q^, . . . , q^ (q^ ^ q ^ ^ ' ' ' ^qk)
on a manifold M is defined by Feigin [4] as a chain of foliations F^,
F^, • . . , Ffc on M, codim F, = ^, such that for i < j the leaves of F^
contain those of F^. In his paper, Feigin proposes two constructions for
the characteristic classes of flags of foliations, in an attempt to answer the
following

FEIGIN'S QUESTION. - Let F be a ^-codimensional foliation on a
manifold M, and let 0 < p < q. Do there exist foliations F', G on M
of codimensions q, p respectively such that F' is integrably homotopic to
F and its leaves are contained in those of G ?

In the present paper, we consider those flags of foliations with only two
foliations F^, F^ and call the couple (F^F^) a (q^q^-codimensionol
subfoliation. Then, the main aim of this work is to give a characteristic
homomorphism for subfoliations through a differential-geometric
construction, generalizing Botfs construction [1] of the characteristic
homomorphism of a foliation.

Previous to a detailed discussion of the contents of this paper, it must be
pointed out that Cordero-Gadea [3], Moussu [12] and Suzuki [13] also
give some partial answers to Feigin's Question.

The paper is structured as follows. First, § 2 is devoted to describe the
subfoliation categories; for a subfoliation (F^F^), its normal bundle is
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defined as v(¥^F^) = vF^ © vFi, where vF^^ is the quotient bundle
FI/F^ and vF^ is the usual normal bundle of F^. So, a meaningful exact
sequence of vector bundles

(1) 0 ——. vF^ —— vF^ —— vF, ——. 0

appears in a canonical way. This section ends with the study of subfoliation
maps and homotopic subfoliations.

§ 3 is devoted to define basic connections on the normal bundle
v(Fi,F2); the existence of such basic connections is shown, and Theorem
3.3 states the existence of triples (V1, V, V2) of basic connections adapted to
the subfoliation, that is, V1, V, V2 are basic connections on vF^i, vF^
and vFi respectively and compatible with the homomorphisms i and n
in (1). The partial flatness of any basic connection on v(Fi,F2) with respect
to F^ leads directly to the Botfs Obstruction Theorem for Subfoliations
(Theorem 3.9), firstly stated by Feigin [4]. At the same time, it is deduced
that (1) is, in fact, an exact sequence of vector bundles all of them foliated
with respect to F^ and the homomorphisms i and n are compatible with
these structures. Nevertheless, this exact sequence does not generally admit
a foliated splitting and, therefore, vF2 and v(¥^¥^) are not, in general,
isomorphic as foliated bundles.

In § 4, the characteristic homomorphism of a subfoliation (F^F^) is
introducted

\w "w^ - "^
(W0i,ri) being an appropiate graded differential algebra and H*(WOi) the
associated cohomology groups. The construction of X* p is done
following Bott's technique of comparison between a basic and a metric
connection on v(Fi,F2). Of course, X* is natural with respect to
subfoliation maps and homotopy invariant.

In § 5, it is first shown that (W0i, d) is a graded differential subalgebra
of a convenable truncated Weil algebra Wi(^(N)) of a Lie group and
Theorem 5.1 states that H*(WOi) and H*(Wi(^(N))) are isomorphic,
which generalizes the well known fact of foliation theory ([5], [6]).
Secondly, Theorem 5.2 shows the relation between the characteristic
homomorphism of a subfoliation (F^F^) and those of each foliation F,,
f = 1,2.
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Finally, in § 6, two applications of the results obtained in § 5 are
developped; the first one is the following : Theorem 5.2 gives a necessary
condition so that Feigin's Question can have an affirmative answer
(Theorem 6.1), and this is used to show that any 2-codimensional foliation
in the Yamato's examples [15] cannot be homotopic to F^ in a (1,2)-
codimensional subfoliation (F^¥^). The second application is obtained
from the techniques used to prove Theorem 5.2, and it is stated as follows :
let F be a ^-codimensional foliation admitting d everywhere independent
transverse infinitesimal transformations Y^, . . . , Y^ and such that F and
Y i , . . . , Y ^ generate a new (^-d)-codimensional foliation, then the
characteristic homomorphism ^ of F vanishes on the kernel of the
canonical homomorphism [i* : H*(WO^) -> H*(WO^-^). This result
gives a generalization of Lazarov-Shulman's results ([9], [10]).

Through this paper all manifolds are differentiable C°°-manifolds and
all maps are smooth C°°-maps.

2. Subfoliation categories.

To begin with, some basic concepts associated with subfoliations are
introduced.

Let M be an n-dimensional manifold, TM its tangent bundle. A
(q^q^codimensional subfoliation on M is a couple (F^F^) of integrable
subbundles F^ of TM of dimension n — ^, k = 1,2, and F^ being at
the same time a subbundle of F^.

Therefore, for each k = 1, 2, Fj^ defines a ^-codimensional foliation
on M, d = q^ — q^ ^ 0, and, moreover, the leaves of F^ contain those
of F^.

Let us remark that a ^-codimensional foliation F on M can be
considered as a subfoliation on M in three different ways :

(C,) : F, = F, = F; (C,) : F, = TM, ¥ , = F;
(€3); Pi = F , F ,=0 .

Let (Fi,F^) be a (q^q^)-codimension^l subfoliation on M,
vFfc = TM/Ffc the normal bundle of Fj^, and let us consider the quotient
bundle vF^i = ¥ ^ / ¥ ^ . Then, the following commutative diagram of short
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exact sequences of vector bundles is canonically obtained :

where the i's are the canonical inclusions and the n's are the canonical
projections.

DEFINITION 2.1. — The vector bundle

v(Fi ,F2)=vF2i ®vFi

\vill be called the normal bundle of (F^F^).

Let be /: N -> M a differentiable map, (F^^) a (q^q^)-
codimensional subfoliation on M; i f / i s transverse to F^, the couple
/^(F^F^) = (/~l(Fl),/~l(F2)) defines a (^^-codimensional subfolia-
tion on N which will be called the inverse image of (F^F^) and, then,
/ is said to be transverse to (F^F^). Moreover, we have
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vCy-^F^F^)) = f*(v(F^F^)), where /*( ) denotes the pull-back of the
corresponding vector bundle.

DEFINITION 2.2. — Let (G^G^) and ( F ^ ¥ ^ ) be (q^q^-codimensional
subfoliations on N and M, respectively. A subfoliation map from (G^G^)
to (FI.F^) is a differentiable map f : N -^ M transverse to (F^F^) and
such that (G^G^/-^^).

Now, the notion of homotopy between subfoliations can be defined as
follows : let (Fi,F2), (F^Fy be (^^-codimensional subfoliations on
M; they are said to be homotopic subfoliations if there exists a \q^q^-
codimensional subfoliation (F^F^) on M x R such that :

1) the face maps J o J i '' M -> M x R both are transverse to
(Fi,F2).

2) Jo^F^F,) = (F,^), h1 (¥„¥,) = (F^).

Of course,, the normal bundles of homotopic subfoliations are
isomorphic.

A subfoliation (F^F^) will be said with trivialized normal bundle if the
vector bundles vF^, vF^ and v(Fi,F2) are all trivial vector bundles and
if there have been chosen trivializations compatible with the projection map
7i : vF^ -^ vFi and with the Whitney sum structure of vtF^F^).

3. Basic connections and Botfs theorem
for subfoliations.

We refer to Bott [1] for the well known definitions and properties of the
usual theory of foliations.

Let (Fi,F2) be a (^.^-codimensional subfoliation on M,
d = q^ — q^. Let us consider the exa^t sequence

'o "o
0 —— F, —— Pi —— vF,i —— 0.

DEFINITION 3.1. — A connection V on vF^i is said to be basic if

VxZ = 7to[X,Z]

for any vector field XeI^F^), Z being a vector field in Fi such that
ito(Z) = Z.
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A device similar to that of Bott in [1] permits to show the existence of
basic connections in vF^.

Now, consider the exact sequence

0 ——*• vF2i ——. vFa —^ vFi ——»- 0.

Then, the following proposition is easily verified.

PROPOSITION 3.2. -For any V1, V and V2 basic connections on v¥^,
vF^ and vF^ respectively, and for any XeI^F^), we have

i(V^Z) =Vxf(Z), for any Z eF(v¥^)
7t(VxZ2) = V2^), for any Z^ 6 r(v¥^).

In fact, we can state the following.

THEOREM 3.3. — There exist V1, V and V2 basic connections on vF^i,
vF2 and vF^ such that, for any vector field X e F(TM),

i(V^Z) =Vxf(Z), /oran^ Z e F^F^i)
7i(VxZ2> = V2^), /or fln^ Z^ e (vF^).

5uc/i a triple (V^V^V2) of basic connections will be said adapted to the
subfoliation.

Proof. — Let us begin by considering a Riemannian metric on M which
is compatible with the subfoliated structure, that is (see [14]): with respect
to this metric, vF^ (respect. vF^) is isomorphic to the orthogonal
complement bundle to F2 (respect, to F^) in TM, and vF^i is
isomorphic to the orthogonal complement bundle to F^ in F^; that is, by
the choice of such Riemannian metric we obtain isomorphisms

T M ^ F f c © v F k , f e = = l , 2
F, ^ vF^ © ¥ ,

vF^ ^vF^i ®vFi.

Now, we construct V1 and V2 basic connections on vF^i and vFi,
respectively, as follows : for any

X e F(TM) = r(F^) © nvF^) = F(¥,) © r(vFO,
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we write X = X^ + X^ = X^ + X^, and if V1 (respect. V2) is an
arbitrary connection on vF^i (respect, on vF^), we define

V^Z =7Co[X2,2]-h V^Z, for any Z eF^i)

V^Zi = Tti [Xi, 2j + V^ Zi, for any Z^ e F(vFi)

where 2 e F(Fi) and 2^ € F(TM) are such that 7io(2) = Z,
7i,(2,)=Z,.

The basic connection V on vF^ is constructed as follows : for any
Z^ e r^F^) = HvF^i) © r(vFi), we write Z^ = Z'2 + Z^, and* define a
connection ^ on vF^ by

VxZ^ = V^Z'2 + V^Z^

for any X e F(TM); then, V is given by

VxZ2 =7r2[X2,2j 4- Vx^

where 22er(TM) verifies n^(i^)=Z^.

Now, for any X e r(TM) and ZeF^F^i), we have

<(V^Z) = f(7Co[^,Z] + V^Z) = Ti^X^Z] + i(^Z)

2€r(F^) being such that 7Co(2) = Z. On the other hand,

Vx<(Z) = ̂ [x,,2] + ̂ '(Z)
but i(Z)eKer7t, then Vx'i'(Z) = Vx'i(Z), and, since X^ e I^vF^), the
result follows immediately.

Analogously, for any X e F(TM) and Z^ e r^vF^) we have

7t(VxZ2) = ̂ l^l] + ̂ Z^) = 7ti[X2,22] + K^x^l)

22 € r(TM) being such that 712(^2) = Z2. Since Z2 = Z'2 + Z^ and
X2€r(vF2), and then X^Xy'^Xy'er^^envF^), we have

n(^Z,) = V^ZS = V2^Z2) = ̂ ,[<X2)',2,] + V^n(Z,)

and, since X^ + (Xy = X^ and (Xy" = X'i, the second part of the
theorem is proved.

Q.E.D.
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For the later use, we shall explain the relation between the local
connection forms of an adapted triple (V^V.V2 )of basic connections.

Let U c M be an open set of local triviality for vF;^, vF^ and vF^.
A local basis {Zp i = 1,2,... ,^2} of sections for vF^ will be said adapted if
{7i(Zy),u=rf-|-l,.. .,^2} is a local basis of sections of vF^ and
{Z^, 0=1,2,.. .,d} is a local basis of sections of vF^.

Now, given an adapted local basis {Zj of sections, let
;f, i=l,2,.. .,^2} be local vector fields on M such that 712(2.) = Zf ,

1 ^ i ^ ^2» and let {^p ^'=U,. • -^2} be the local 1-forms on M dual
to the local vector fields {Zj. Then, the 1-forms {o^.l^i^^} are

annihilated by F2 and the 1-forms {co^,d+Ku^^2} are annihilated by
FI. Therefore, by the integrability conditions, there exist local 1-forms
T^ \a. ^vu. 1 ̂  a^ b ^ d , d 4- 1 ̂  M , v ^ ^» on M such that

[2

d 92

d^ = ^ COfc A T^ + ^ 0)̂  A T^
b=l u=d+l

92

d^ = ^ COy A T^.
v=d+l

Let (V^V.V2) be an adapted triple of basic connections, and suppose
that (6^), (6^), (O2,,) are respectively their local connection forms with
respect to an adapted local basis of sections over an open set U c: M.
Then, for any local vector field X on M

V^, = f 9^(X)Z,
b=l

VxZ. = I 9,,(X)Z,
j=i

V;7t(Z,)= ^ 9^(X)7t(Z^).
i>=«i+i

Then, a direct computation leads to

^» = 8«t> 1 < a,b < d
9^ = 0, 1 < a < d, d + 1 ̂  u < ̂
9^=9^, d + l < u , r ^ ^ ,
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and we can state the following :

LEMMA 3.4. — With respect to an adapted local basis of sections, the local
connection forms of an adapted triple (V^V.V2) of basic connections are,
respectively

v^O^ v:?^ °1, v^ej,
L^ub ^uvJ

I ^ a, b ^ d, d + 1 < u, v ^ q^.

Moreover, by a similar device to that used in the foliation theory, we get

LEMMA 3.5. — Let V1, V and V2 be any basic connections on vF^i,
vF^ and vFi, respectively. Let us consider an adapted local basis of
sections over an open set U <= M, and suppose that (Q^), (6^) and (92,,)
are the respective local connection forms. Then, we have :

1. 9^(X) = T^(X), for any local vector field X e r(¥^), 1 ̂  a, b < d .

2. e ,̂(X) = T^(X), ejx) = o, GJX) = T^(X) ^ e (̂X) = T^(X) for
any local vector field Xel"^), 1 < a, b < d, d + 1 ̂  u, v ^ q^.

3. 6^(X) = T^(X), /or an^ /oc^ vector field Xer(Fi), d + 1 ^ M,
y ^ ^2-

Now, let us remark once more what happens for the particular case of a
foliation considered as a subfoliation :

(C\) : vF2i is the zero vector bundle and the only pos.sible connection
is the zero one, and that is trivialy a basic connection.

(C^) : vF2i = vF, the normal bundle of F, and Definition 3.1 is the
usual definition of basic connections.

(€3) : vF^i == F and, since F2 = 0, any connection on vF^i is basic.

From Definition 3.1, we get through a straightforward computation

LEMMA 3.6. — Let V1 be a basic connection on vF2i, K1 the curvature
of V1. Then K^Y) = 0 for any vector fields X, Y in ¥ ^ .

Now, we shall adopt the following

DEFINITION 3.7. — A connection V = V1 © V2 on
v(Fi,F2) = vF2i © vFi 15 said to be basic if and only if V1 15 a basic
connection on vP^i an(^ ^2 ls a basic connection on vF^.
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It is a well known fact that the curvature K2 of a basic connection V2

on vFi verifies K^Y) = 0 for any X, Y vector fields in F^.
Therefore, the following is immediate :

COROLLARY 3.8. — Let V be a basic connection on v^F^F^), K the
curvature of V. Then K(X,Y) = 0 for any X ,Y vector fields in ¥^.

Remarks. — 1) Lemma 3.6 implies that vF^i has a foliated vector
bundle structure with respect to F^ defined by considering the horizontal
lift of F^ with respect to a basic connection V1 on vF^i. Lemma 3.5
points out that the foliated structure does not depend on the choice of V1.

2) Corollary 3.8 implies that v(Fi,F2) has also a well-defined foliated
bundle structure with respect to F2 adapted to the Whitney sum structure.
Nevertheless, although both vF^ and v(F^,F2) have foliated structures
with respect to F^ and are isomorphic as vector bundles, they are not, in
general, isomorphic as foliated vector bundles.

3) The result in Proposition 3.2 implies that homomorphisms i and K
in the exact sequence of vector bundles

0 ——^ vFal -—»• vF2 —L-^ vFi ——^ 0

are, in fact, foliated homomorphisms (i.e. compatible with the respective
foliated structures with respect to F^).

Now, let U c: M be a simultaneously trivializing neighborhood for
vF^, vF2 and vF^i; over U, F^ can be described as the set of tangent
vectors on which certain local 1-forms (Od+i» • • • » ^q vanish, these 1-forms
being linearly independent at each point of U. Analogously, F^ can be
described over U, and, since F2 <= F^ we can suppose that the family of
local 1-forms which annihilate P^ is obtained by adding local 1-forms
€DI, . . . , <o^ to the family above, being also linearly independent at each
point of U. Let be

1̂  = ideal in A*(U) generated by o)j+i, . . . , (o^
1̂  = ideal in A*(U) generated by <0i, ..., <o ,̂ ©^ +1, ..., <o^.

Obviously,

I^c:^, (i^=o, (I^^O.
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Now, if V = V1 © V2 is a basic connection on v(¥^¥^), then the
curvature matrix Ky of V over U will be

_ ^ab_[-(iq,L 0 -]
u ~ L 0 (K^J

ku ~" t n /K2^
^U/IW-

with respect to a local basis of sections of v(¥^F^), dual to the local 1-
forms co,, l ^ i ^ q ^ . Here, ((K^) (respect. ((K^)) denotes the
curvature matrix of V1 (respect, of V2) over U. Taking into account
earlier results, we get

(K^el^, 1 ̂ a . b ^ d
(K^el^, d+ 1 ̂ u , v ^ q ^

Hence, the following Botfs Obstruction Theorem for Subfoliations is
obtained

THEOREM 3.9. — Let Pi and P^ be homogeneous polynomials in the real
Pontryagin classes of vF^i and vF^ respectively, of degree l^, k = 1,2. //
at /^5t on^ of the inequalities l^ > 2q^, l^ -h ^ > 2^2 l5 satisfied, then
PlP2 = 0.

4. The characteristic homomorphism
for subfoliations.

In this section we define a characteristic homomorphism for
subfoliations, which generalizes the usual characteristic homomorphism for
foliations. For this purpose, the technique used by Bott in [1] shall be
adopted here.

Let gl^ denote the Lie algebra of G^ = G((n,R),

I(^)==R[CI,. . .,cJ the ring of symmetric invariant polynomials
on gl^, c^ . . . , € „ being the Chern polynomials given by

d e t f I + t A ) = ^ c,(A) '̂
\ 271 / y=o

/1 y
where c .(A) = (— ) trace A^, for any A e gl^.

\lnj

In addition, if E -> M is a vector bundle of dimension n over M and
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V is a connection on E of curvature K, denote

)i(V) : l(gQ -^ A*(M)

the ring homomorphism defined by

^(V)(c,)=c,(K).

Moreover, if V°, V1, . .^V"* are connections on E, define

MV°,V1,.. ..V-HC,) = nJc/K^-^lM.^]

where A" is the standard w-simplex, K°'1' • • 'w is the curvature of the
connection

V0'1' ^=(1-^- • • • -(JV0 -h t^1 4- • • • + t^

on the vector bundle E x R"* -̂  M x R"1 and

T^: A^MxA^ -. AP-m(M)

denotes the integration along A"*.

The following useful properties are verified :

1. rf(?i(V°,V1,.. ..V-HC,)) = I; (-1W0,.. .,̂ ,.. .̂ (c,).
»=o

2. If / : N -^ M is a differentiable map, then

/*()i(V°,V1,.. .̂ (c,)) = ̂ (/^V0),/316^1),.. .,/*(Vm))(c,).

Now, in order to construct an appropiate cochain complex (W0i,ri),
let us consider q^, q^ e N, with ^2 ^ 4i and d = q^ — q^\ denote by

l(gl,) = R[c,,.. .,€,], I(^^^) = R[^,.. .,c^]

the rings of symmetric invariant polynomials, c\ and c'[ being the
corresponding Chern polynomials. Let l(gla) ® I(^L) be the tensor
product and denote by I the homogeneous ideal generated by binomials
q/ ® <p" e r'^y ® I^te^.) whose dimensions verify at least one of
the inequalities s" > q^, s' + s" > ^2 -

On the other hand, consider the exterior algebras over R

A(/ii,/i3,...,h9, A(^,/i'3,...,/i?)
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generated by the elements h\, V[ respectively and where

^^-1, r-2^1-1.i^]-1- "-m
Now we build a graded differential algebra W0i as follows :

I(^d) ® I(^J
W0i = AW,/^,.. 'W ® AW,^,.. .,W) ® ———^——±-

where
degree (fc;) = degree (^/) = 2i - 1
degree (c;) = degree (c;') = 2f,

•+ i
and the unique antiderivation of degree 1, d : W0i -> W0i , is defined
by

d(h^ = c;, rf(/i;') = c;', ^(c;) = rf^) = 0.

We shall denote H*(WOi) the cohomology of the cochain complex
(W0i,ri).

Let (F^F^) be a (^i, ̂ -^dimensional subfoliation on the manifold
M, v(Fi,F2) = vF2i ® vFi its normal bundle. Let V° = 1VO © ̂ ,
V1 = 1V1 © ̂  be connections on v(Fi,F2), where 1VO (respect. 2^0)
is a Riemannian connection on vF^i (respect, on vF^) and V1 is a basic
connection. Then, a graded algebra homomorphism

^(F,F2) '' W0i ^ A*(M)

is defined by

(̂F,F,)(C;) = ^V^C;.), (̂F,F )̂ = ^('V1)^;')

^(F,F2)(^;) = ^V0, ̂ ^ (C;.) , \^W) = W0, ̂ W) .

The Obstruction Theorem 3.9 implies that ^p p ^ is well defined and, in
fact, it is a cochain complex homomorphism; therefore, it induces a
homomorphism of graded algebras on cohomology :

^.F^H^^I)- H^)-

While the cochain homomorphism ^p p . depends on the choice of V°
and V1, the induced homomorphism ^ ^^ "A

show by means of standard techniques.
and V1, the induced homomorphism ^ p does not, as one can easily
cit/tii/ 1"»\/ m^»a'nc r»r ot«ar»/1arrl t<»r»1^r»i/Tin^»c?
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DEFINITION 4.1. — ^-* p . is called the characteristic homomorphism
of (F^F^) and the classes in the image of X* are said the secondary
subfoliation classes of (F^F^).

The characteristic homomorphism ^* p has a certain naturality
property which can be expressed as follows :

PROPOSITION 4.2. — Let {G^G^) and (F^F^) be subfoliations on N
and M respectively, f : N ->• M a subfoliation map from (G^Gy) to
(F^F^). Then, the diagram

*
H*(WOi) -W2)- H^(M)

cowmM^5.

Proof. — This result is an immediate consequence of the following fact :
if V° and V1 are, respectively, a Riemannian and a basic connection on
v(Fi,F2), then /*(V°) and /*(V1) are connections of the same type on
v(Gi,G2) = /*(v(Fi,F2)); therefore, from the definition of \F.^), the
commutativity of the above diagram follows immediately at the cochain
complex level. Q.E.D.

Then, from the naturality and through purely homotopy theoretic
reasons, we obtain

COROLLARY 4.3. — ^F F ) on^ depends on the homotopy class of
(Fi,F,).

To construct the secondary subfoliation classes of a subfoliation
(FI, F^) with a trivialized normal bundle, one proceeds exactly as before
except that Riemannian connections V° = 1VO © 2VO are replaced by flat
connections (Whitney sum of flat connections) and the cochain complex
(W0i,rf) is replaced by the cochain complex (Wi,^), where

W ® I(<)
Wi = A(^,^,.. .,^) <g) A(^,^,.. .,^) ® ———,——^

and with gradation and differential d defined in the same form.
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5. Relation between the characteristic homomorphisms
of(F,,F2) and F, ,fe= 1,2.

In order to justify our later constructions, let us recall some well known
facts of the theory of characteristic classes of foliations and their relation
with the cohomology of truncated relative Weil algebras.

Let W(^) denote the Weil algebra of gl^\ W(^) is

a differential graded algebra W(^) = @ W^J, where
r^O

WW= @ {A'(^)®S^,)}.
i+2j=r

In fact, W(^y is a ^-algebra and, if l(gln) denotes the subalgebra of
^-basic elements of W(^), then I(gln) admits the Chern polynomials
Ci , €2, . . . , € „ AS a system of generators, which are cocycles of degree 2i.
Moreover, since the complex (W(^(J;ti?) is acyclic, there exist
^eW21-1^), l ^ K n , such that dh, = c,. Also, if W(^,0^)
denotes the differential subalgebra of the 0^-basic elements of W(^)
(0^ = 0(n,R) being the orthogonal group), the generators c; of i(gln) can
be chosen in such way that the h^ be 0^-basic for each odd i.

Now, let !„ be the homogeneous ideal of W(^) generated by the
elements of S(gQ of degree greater than In; denote V^nWn) = ̂ (^n)/^n
the quotient algebra and WJ^, 0^) the subalgebra of 0^-basic elements
of W^(gf^). Then, one has the following well-known theorem (see [6]
or [5]) :

THEOREM. — W^(^) (respect. W^(^^,0^)) has the same cohomology that
Us subalgebra

W^A^,^,...,^)®1^
•'w

(respect. WO,. = \(h^...,) <g) I^n))

wh^re tfe^ fc^ are, for odd i, the 0^-basic elements such that dh^ = c\.

This theorem plays a fundamental role in the theory of characteristic
classes of foliations because the cohomology ring H*<WO^) (respect.
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H^W,.)) is the domain of the characteristic homomorphism of n-
codimensional foliations (respect, with trivialized normal bundle).

Similarly, the domain of the characteristic homomorphism for
subfoliations, as defined in the earlier section, can be seen having as domain
the cohomology ring of a convenable relative truncated Weil algebra. To
explain that, let us consider the Lie algebra ^(N) = gl^ x gl^ , its Weil
algebra W(^(N)) and the homogeneous ideal I of W(^(N)) generated by
thesubspaces S'l^) ® S^y, where the integers i\, ^ satisfy at least
one of the inequalities 1-2 > n^ ^ 4- ^ > n, 4- n^. Clearly, I is a graded
subcomplex of W(^(N)), so the quotient Wi(^(N)) = W(^(N))/I is a
multiplicative graded complex; moreover, if ON = ()„ x 0 is the
product Lie group, we denote W^(N),ON) the graded'subcomplex of
Wi(^(N)) of ON-basic elements.

Now, through the canonical isomorphism

W(^(N)) ^ W(gl^) ® W(^y

let us consider the graded differential subalgebras Wi, W0i of Wifo(N))
and WI(^(N),ON) respectively, given by

W, = AW,^,. . ..̂ ) o, AW, ̂ .. .,,y g) ̂  ® I(^

WO,=AW,^..., )®A(^..., )®I(^)®I^2),

the A; (respect, h^) being such that 4A; = c;. (respect, ri/i;' = c;') and c;.,
^2»- • .^i (respect. Ci', c;,.. .,cy the Chern polynomials which generate
l(gl^) (respect. I(^); and for odd f , h\ (respect. A;') is supposed to be
0^-basic (respect. 0^-basic).

Then, we have

THEOREM 5.1. — The canonical injections

Wi —— W^(N))
WO, —— W^(N),ON)

induce isomorphisms on cohomology.

Proof. - The result follows from a device similar to that used in the
ordinary case.
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We start by defining an even filtration of Wi and W0i as follows :

f r^y ® r2^)}
F^(Wi) == A(^,...) ® A(^,. • . ) ® ^ © ———————4

lil+î P 1 J

f I11^) ® r^yl
F^(WOO=A(^,/i3,...)®A(/i'i,^...) ® ^ ® ———————4

UI+^P 1 )

and the second term E^ of the spectral sequence associated to Wi
(respect. W0i) can be canonically identified with Wi (respect, with W0i).

On the other hand, we define an even filtration of Wi(^(N)) by

F^(Wi(^(N)) = A^(N))® { @ (S1^) ® S^(gl^)\'
l«l+i2^P J

Since this filtration is by ON-invariant ideals, it induces a new and
similar filtration of Wi(fir(N),ON). In both cases, the associated spectral
sequence is of the Hochschild-Serre type [7], hence its second term is given
by

Ej^ = H^(N),R) ® {©([S^y]^ ® [S^^y]^)}
I w )

for that associated to Wi(^(N)), and by

Ej^ = H^^(N).ON) ® {© ([.^(gl^ ® [S^y]^)}
I 'i'^ J

for that associated to WI^(N),ON); here, in both cases, the summation on
the right extends over all couples i\, i^ such that i\ + i^ = p, i'2 ^ ^2
and i'i + i'2 ^ n! + "2' and the symbol [ ']glni denotes the set of gl^r
invariants.

Now, the canonical projection ofA^,^,...) ® \(h'[,h"^...) (respect.
A(^,h3,...)(g)A(^,/i'3,...)) over A*(^(N)) (respect, over [A*(^(N))]o^
induces an isomorphism on cohomology and the result follows by applying
a comparison theorem.

Q.E.D.

Thus, Theorem 5.1 shows that the graded differential algebras Wi and
W0i, which were introduced in the earlier section, play in the context of
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subfoliation theory the same role as that of W^ and WO^ in the context
of the foliation theory.

Now, let us consider the canonical projection homomorphism of Lie
algebras

gW = gin, x gin, — ̂ .

This homomorphism induces an homomorphism of graded differential
algebras

^i : W(^ —— W^(N))

which is compatible with the truncation by !„ and I, and since
ON = 0 x 0 applies onto 0 , we obtain a graded differential
algebra homomorphism

^i : W^,0^) —— W^(N),ON)

and this homomofphism ^ acts on the generators as follows :

Hi^-)-^ Hi(^)=^.

Analogously, the canonical injective homomorphism of Lie algebras

glW == ql^ x gl^ ——- gl^^

induces a graded differential algebra homomorphism

^2 : W^(^^,0^) ——W^(N),ON)

and 'this homomorphism ^2 acts on ^e generators as follows :

^(hi)=h,^h^ H2(c,)=c;4-c;.

Consequently, and by restricting to the corresponding subalgebras, we
obtain two graded differential algebra homomorphisms

^ : WO^ —— WO,, ^ : WO^,^ —— WOp

Hereafter, we shall denote ^j*, k = 1, 2, the induced homomorphism at
cohomology level.

Let (F^F^) be a (^i^^odimensional sulrfoliation on a manifold M
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and put HI = d = q^ — q^, n^ = q^. Also, denote by

^ : H*(WO^ ——. H^(M)

the characteristic homomorphism of F^, fe = 1,2, as defined by Bott [1].
Then, we have

THEOREM 5.2. — For each k = 1,2, the diagram

H*(WO^ —^ H*(WOi)

H*(M)
commutes.

Proof. — We shall proceed separately for each value of k.

1. k = 1.

Let V° = l^0 © 2^0 (respect. V1 = 1^1 ® 2^) be a Riemannian
connection (respect, a basic connection) on v(Fi,F2) = vF^i ® vF^.
Then, 2VO (respect. ^^ is a Riemannian connection (respect, a basic
connection) on vF^. Therefore, from the definitions of ^(F,,F.)» ^-F, ^d
^i, we have Xp = ^-(F ,F ) ° P i» ^e commutativity of the diagram at the
cochain level.

2. k = 2.

Let us consider vF^i, vF^ and vF^ as vector subbundles of TM in
such way that vF2 ^F2i©vFi = v(Fi,F2); that can be done, for
example, by using a Riemannian metric to split the exact sequence

0 ——> vF^i ——> vF2 ——^ vFi ——^ 0.

Then, let {Z,, i=l,2,.. .,^2} be a local basis of sections for vF2 over
an open set U c= M, adapted to such splitting; that is, being
[Z^l^a^d] (respect. {Z^d-l-l^u^^}) a ^oca^ basis of sections for
vF2i (respect, for vF^); then the change of such local trivializations will be
given by a matrix of the form

[A °iLO BJ
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where A (respect. B) is the matrix of change of local trivialization for
vF2i (respect, for vF^).

Now, let us consider an adapted triple (V1, V, V2) of basic connections;
with respect to the local basis of sections {Z^l^i^q^} above, the
matrices of local 1-forms which define these connections are, respectively,

Q^m, e=f^ °"|, y^m
L^ub ^uvJ

where (9^) is non zero in general.

On the other hand, we can consider on vF^ the connection sum
V = V1 © V2 , which is locally defined by the matrix of local 1-forms

e-r0" °1.^Lo ej
Let us remark that V is not a basic connection on vF^, in general, but

it is differentiably J(> ^"homotopic to the basic connection V, in the
sense of Lehmann [II], as we shall state in Lemma 5.3 below; therefore, V
can be used in order to compute ^ .

Keeping all that in mind, the commutativity of the diagram follows
directly from the definitions of ^p^ ^ and ^, through a
straighforward calculation, taking 9 = V1 ® V2 in the place of a basic
connection on vF^, the same 9 as a basic connection on v(¥^¥^) and
V° == °V1 © °V2 as Riemannian connection in both fiber bundles,
°V1 (respect. °V2) being a Riemannian connection on vF2i (respect. vFi).

Q.E.D.

LEMMA 5.3. — Let (V\V,V2) be an adapted triple of basic connections,
^ = V1 © V2 the connection on vF^ defined as in Theorem 5.2 above.
Then, V and ^ are differentiably J(>q^)-homotopic connections on vF^
(in the sense of Lehmann [11]).

Proof. — First of all, let us remark that both V and V are ^(>qz)-
connections, because their curvature tensors vanish over F^.

Now, we define the connection V = tV + (1—t)^ on the vector
bundle vF2 x I ^ M x I , I = [0,1]. With respect to a local basis of
sections {Z^l^i^^} for this bundle, as above, V is locally defined by
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the matrix of local 1-forms

re. o-i
Ix, ej

Therefore, V is also a 3 (>q ̂ -connection, because if K' is the
curvature form of V and /eP(^-), /(K/) = 0 forr > q^; in fact,
locally /(K') is given by

/(K')=AAr/(e-8,K,)+/(K,)

where K, denotes the curvature form of the connection for each fixed t.
Since / (6—8,K()==0 for every r, because

—L:]
and /(KJ = 0 for r > q^, the result follows immediately.

Analogously, we can state :

Q.E.D.

THEOREM 5.4. — Let (¥^,¥^) be a (q^.q^codimensional subfoliation on
M mth a trivialized normal bundle. Then, for each k = 1,2 the diagram

H*(W^ —^ H*(Wi)

commutes.

6. Applications.

In this section, we shall explain two applications of the results and
techniques developped in the earlier section.

1. — First, let us remark that Theorems 5.2 and 5.4 allow to approach
an answer to Feigin's Question. Obviously, from those Theorems we
deduce the following
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THEOREM 6.1. — A necessary condition so that Feigin's Question can have
an affirmative answer is the vanishing of those exotic classes of F which are
obtained from the elements in Ker |A^ .

In fact, the spirit of the final note in Moussu's article [12] is that of this
theorem. On the other hand, Feigin [4] constructs a 2-codimensional
foliation with a trivialized normal bundle for which the answer to his
Question is negative. Now, by using the results of Yamato [15] and
Theorem 5.2, we shall give another new example for which the answer is
also negative.

For this purpose, let us remark that the groups H^WOi) have, for
^i = 1» ^2 = 2 and d = 1, the following dimensions :

dim H^WOi) ==
2 for r = 5,6
1 for r = 0,3
0 for the remaining r

and, in fact, for r = 5, the cohomology classes of h\ ® (c\)2 and
h\ ® c\ g) c\ (or its cohomologous h'[ (g) (c\)2) are generators of
H^WOi).

Now, let us recall Yamato's Theorem :

THEOREM [15]. — For any integer q ^ 1, there exists a q-codimensional
foliation ¥ on a closed (2q 4- l)-manifold M such that all the exotic
characteristic classes of F which correspond to the canonical generators
[^®(p] of H2q+l(WOq) are non zero, where (p eR[ci,.. .,c^] is a
monomial of degree 2(^—7+1).

Hence, for q = 2, the canonical generators of H^WO^) are the
cohomology classes of h^ ® c\ and h^ ® c^. Hence, Yamato's theorem
implies that ^([/ii®^]) is not zero, while the class [h^c^] belongs to
Ker n5 » therefore, on such a manifold M does not exist any (1,2)-
codimensional sub foliation (F^F^) such that F^ be homotopic to the
Yamato's 2-codimensional foliation on M.

2. — Let F^ be a ̂ -^dimensional foliation on M and suppose there
exist vector fields Y^, . . . , Yj on M such that :

(i) YI, .. . ,Y^ are everywhere independent,
(ii) YI, ..., Y^ are infinitesimal transformations of F^ and everywhere

transverse to F^,
(iii) F^ and Y^, .. .,Y^ define a new ^i-codimensional foliation F^
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on M, q^ = q^ — d , and therefore ¥^ c: Fi; for this subfoliation
(F^F^), the vector bundle vF^i is trivial, being its trivialization defined
by Y,.. . . ,Y,.

The techniques used in the proof of Theorem 5.2 and Lemma 5.3., lead
us to the following :

THEOREM 6.2. — Under the hypothesis above, the diagram

H^WO^ ——F2- H^(M)

H*(WO^)
commutes.

Here, [i* is the homomorphism induced from the canonical injection

Q1^ ——" Qld x ̂ i ——" ̂ '

COROLLARY 6.3. — The existence of d everywhere independent and
transverse infinitesimal transformations of a q-codimensional foliation F,
satisfying (in) above, implies the vanishing of ^ on the Kernel of

^ : H*(WO,) —— H*(WO,.,).

Proof of Theorem 6.2. — With the help of a convenable Riemannian
metric on M, we may consider the normal vector bundles vF^, v¥^ and
v(F^,¥^) as vector subbundles of TM in such way that
vF^ = vF2i © vFi, and v¥^^ being still trivialized by Y^, .. . ,Y^. In
fact, with this identification, the vector fields Y i , . . . , Y ^ on M are
considered as foliated sections for vF^ and, consequently, the flat
connection defined on vF^i by this trivialization is a basic connection in
the sense of Definition 3.1.

Now, if °V2 and 1V2 are, respectively, a metric and a basic connection
on vFi, by using the flat connection on vF^i. we get, as in the proof of
Theorem 5.2 and in order to compute X^ , that the curvature forms of the
corresponding connections on vF^ are expressed, with respect to an
adapted basis of sections, by

OK-? °i , .K-r° ° t
""LO "K2] ^LO ^J
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where °K2 (respect. ̂ ^ is the curvature form of °V2 (respect, of 1V2).

The result follows now immediately.
Q.E.D.

The following are two examples where Theorem 6.2 and Corollary 6.3
are applied.

Example 1. — Let G be a d-dimensional Lie group acting locally and
freely transverse to a foliation F on M and mapping leaves of F into
leaves of F. Then, the Lie algebra of G gives rise to d infinitesimal
transformations of F, Y i , . . . , Y ^ , satisfying the hypothesis above.
Moreover,

[Ya,YJ= Z %Y,, 1 ^ a , b < ^ d
c=l

where C,,. e R.a b '

Let us remark that this particular case has been firstly considered by
Lazarov-Shulman [9], their results being weaker than that of Corollary 6.3.
In fact, Lazarov-Shulman announce the result of Corollary 6.3 for the most
particular case where C^ =0 , 1 ̂  a,b,c ^ d ([10]).

Example 2. — Let K : P -^ M be a foliated principal bundle, F being
the ^-codimensional foliation on M and F the foliation on P. Let us
consider the canonical subfoliation (Tr^F,?) on P; then, the following
diagram commutes

H*(WO^) -̂ - H^(P)

m <D ^^ ® ]^

H^WO,) —F-̂  H^(M)

The commutativity of (D is consequence of Theorem 6.2 and that of
(2) is given by the naturality of the exotic homomorphism of a foliation.
That means

^=71*0^0^ .

If, moreover, vF is a trivialized vector bundle, we have a similar
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commutative diagram

^H*(W^) —-— H^(P)

H*(W,) -̂ — H^(M)

Now, let us remark that, in both cases, if TC* is injective, the vanishing
of an exotic class of F implies the vanishing of the corresponding one of
F. A situation where this is applied is the following : suppose vF
trivialized and P being the principal bundle of transverse references of F ;
then TC* is injective because P is topologically a product bundle.
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