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C1 - MINIMAL SUBSETS OF THE CIRCLE

by Dusa McDUFF

1. Introduction.

In this note we give a partial answer to the following question
which was raised by M. Herman. For which Cantor subsets K of
the circle T does there exist a C^diffeomorphism of T having
minimal set K ? (For short, such sets will be called C^minimal
sets.) Recall that any homeomorphism / of T which has no pe-
riodic points has a unique minimal set, which is either the whole
circle, in which case the homeomorphism is conjugate to an irra-
tional rotation, or is a Cantor set. Denjoy showed in [1] that the
latter case cannot occur if /is C1 and its first derivative has bounded
variation. He also constructed examples of C^iffeomorphisms
/ which have minimal sets which are Cantor sets and so are not
conjugate to rotations. Since the group of homeomorphisms of T
acts transitively on the collection of Cantor subsets of T, every
Cantor set is the minimal set of some homeomorphism of T.
However, not every Cantor set is C^minimal. For instance, we
will see that the usual ternary Cantor set, obtained by removing
the interval (1/2, 1) from T = R/Z and then the middle third
of [0, 1/2], and so on, is not C^minimal.

00

Given any positive numbers £„ , n G Z, with ^ £^ < 1
n=—et»

and such that S.n/^n+1 —> ^ as \n\ —^°°» one can construct a
Cantor set K , and a C^diffeomorphism / with minimal set K ,
such that the complement C K of K is the union of connected
components !„ = /"(Io), n G Z , of lengths £„=£(!„) . (See [1]
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18-20, and § 2 below. Note that the derivative of / is identically
equal to 1 on K , so that this construction is rather special. Other
examples are given in [1] 29-30 and [2] X.3.) If one rearranges these
lengths £„ into a decreasing sequence X^ > X^ > ... > 0, then
it is easy to see that lim \/\+i is also equal to 1. Therefore, it

|-».oo

seems reasonable to ask the following question.

Suppose that K is any C^-minimal set, and let X^ > X^ > ... > 0
be the lengths of the components of its complement, arranged in
decreasing order. Then must lim X,/X,+, = 1 ?

i-><io

I do not know the answer. However, as a special case of the
results in § 4 we will see that the set of ratios {X,/X,+ ^ : i > 1}
is bounded, and has 1 as a non-trivial limit point. Thus there must
be a subsequence consisting of ratios \/\+i ^> 1 which converge
to 1. It follows that the ternary Cantor set, which has \-/\-+i
equal to 1 or 3 for all i, is not C1-minimal. See Corollary 4.3
and the note immediately following.

We will prove the following localization result in § 3 : if K
is C ̂ minimal then, given any open set U C T such that U H K =^= 0,
there is an open subset V C U such that V H K is non-empty and
C^minimal. One concludes that:

THEOREM 1.1. — Suppose that K is C3^minimal and that U
is an open subset of T with U H K ^ 0. Let X^ > X^ > ... be
the lengths of the components of C K which are contained in U,
arranged in decreasing order. Then the set {^v|^^:i>\} is
bounded and has 1 as a non-trivial limit point.

Sharper restrictions on the X^/X^ may be obtained by using
Proposition 4.2 of § 4 rather than its corollary.

None of the conditions discussed so far is C^invariant. For
example, it is not hard to see that if KQ is the ternary Cantor set,
one can find a C^iffeomorphism g such that gK^ satisfies the
conclusion of Theorem 1.1. (All that is necessary is that g take the
components of equal length in C K() to components of slightly differ-
ing lengths.) However, because the derivative of a C^iffeomorphism
varies very little on sufficiently small sets, one can often formulate
C^invariant conditions by "localization". For example, it is easy
to check that the following condition is C ̂ invariant:
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For every open subset U C T with U H K ^ 0 , Urn Xy/X^, = 1.
/-».oo

This condition is not sufficient for K to be C^minimal since
it does not take into account the homogeneity conditions discussed
below and in § 5. (Even if it did, it would be unlikely to be suffi-
cient.) However, it is satisfied by all the C^minimal sets which I
know of, and so it may be a necessary condition.

So far, we have only looked at conditions on the lengths of
the components of the complement of a C1-minimal set. Clearly,
the way in which these components are placed around the circle is
also crucial. In particular, C^-minimal sets have the following homo-
geneity properties:

(H^): Given neighbourhoods U,V of two "interior" points x , y ^ K ,
there are smaller neighbourhoods U\V of x , y and a C^-diffeomor-
phism gy ̂  : U' —> V which maps U9 n K onto V n K.

(H^): Given neighbourhoods U,V of the closures I , J of two corn-
ponents of C K , there are smaller neighbourhoods U^V' of I , J
and a C^-diffeomorphism gj j : IT —> V' which maps U' H K onto
V n K.

(An "interior" point of K is one which is not contained in the
closure I of any complementary component.)

In fact, one can choose the g a n d gj j to be suitable powers
of /, where / is a C^-diffeomorphism with minimal set K . This
follows easily from the fact that / is semi-conjugate to an irrational
rotation, see § 2.

Conditions (H) imply, for instance, that if K has positive
Lebesgue measure so does any non-empty subset of the form U H K .
Also, the lengths of the components of C K which are contained
in the open set U must tend to zero at the "same" rate for diffe-
rent U, in a sense which is made precise in Proposition 5.2 of § 5.
For example, there is no C^minimal set K with {^} = {c/i2}
and {\y}={c7j3} forsome U . V C T .

Since the ternary Cantor set satisfies (H^) and (H^) but is
not C1-minimal, these properties alone are not sufficient for
C1-minimality. However, we will prove in § 3 by a cutting and
pasting argument, that if K is C1-homogeneous (that is, satisfies
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(H^) and (H^)) and is locally C^minimal, then it is C^minimal,
as long as the local diffeomorphisms g and gj i which provide
the homogeneity are "compatible" with the diffeomorphisms of
T whose minimal sets are U H K , (see Proposition 3.4).

The methods used in this note are completely elementary.
In order to make the paper self-contained, I will begin by recalling
Denjoy's description of the structure of homeomorphisms whose
minimal set is a Cantor set. Sections § 3, § 4 and § 5 are mutually
independent and may be read in any order.

I wish to thank M. Herman for raising the problem and discuss-
ing it with me, and J. Milnor for some helpful suggestions.

2. Homeomorphisms whose minimal set is a Cantor set.

This section is a review of well-known facts. Proofs may be
found in [l]and [2] 11.7, X.3.

If / is a homeomorphism of T whose minimal set is a Cantor
set K , then / is semi-conjugate to an irrational rotation R^ . (This
number a is called the rotation number of /.) This means that there
is a continuous monotone map <p of degree 1 such that the follow-
ing diagram commutes:

T ———————> T
<p| |<^

* Ra 'T ———a———> T.

In particular, / has no fixed or periodic points. The map \p is
uniquely determined by / up to composition on the left by a
rotation. Observe that <pK = T. (For <^K is a closed subset of T
which is invariant under R^ .) In fact, ^ maps each component I
of C K to a single point, so that <^(CK) is a countable R^-invariant
set. Moreover <p is 1 - 1 on the "interior" { K - u T : I C C K } of
K . Note that the countable set D == ^?( C K) is uniquely determined
by / up to being rotated. One can show that its isometry class,
together with a, determines the C°-conjugacy class of / [3].

Conversely, starting from any countable, R^-invariant subset
D C T, one may construct /, ^ and K as above, with <^( C K) = D .
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To do this, one chooses disjoint, closed intervals 1̂  C T, for d G D,
which have the same ordering as the points in D and are dense in
T\ Then there is a continuous map ^ : T —> T, such that
^-i(d) =T^ for all d, and which is 1-1 on (^(T-D). The
restriction o f / t o K = T — U I ^ is then determined. (Here 1̂
is the interior of 1̂  .) Since R^ has minimal set T, it is easy to
see that / has the unique minimal set K . Also, it is not hard to
prove that / may be chosen to be C1, with derivative D/= 1
on K , provided that the sum of the lengths C(I^) of the intervals
1̂  is < 1, and that the ratios £(I^)/C(Id+a)» d E D > "W be

arranged into a sequence which converges to 1. Note that when
2 C(I^) < 1 , there are many ways of placing the intervals 1̂  in
T. However only one yields a C^-diffeomorphism /. For, if D/= 1
on K , then / must preserve the restriction m \ K of Lebesgue
measure to K . Hence <^(w|K) is R^-invariant, and so must be
a multiple of m. It is easy to check that this happens for a unique
(up to rotation) choice of the 1̂  .

3. Cutting and pasting C1-minimal sets.

In this section we describe some easy ways of making new
C1-minimal sets out of old ones. In particular, we will show that
every C1-minimal set is locally C1-minimal and C1-homogeneous,
and will discuss the converse.

PROPOSITION 3.1. - Let K be minimal for the C^-diffeomorphism
/, and let A be any open arc of the form (x , fkx), where x £ CK
and k ^ 0. Then A U K is C^-minimal.

Note. - We will always consider T = R/Z to be oriented in
the obvious way, and will denote by (a, b) the open arc with
first endpoint a £ T and second endpoint b € T. In particular,
( a , b ) cannot equal T. Its length is the fractional part (b - a)
of b — a .

Proof of (3 .1 ) . - By § 2, / is semi-conjugate to a rotation
R^. Thus there is < ^ : T — > T such that R o , ° ^ = ^ ° / . We
may choose ^ so that ^p(x) = 0. Then ^(fkx) = ka modulo Z ,
and so ^?(A) has length (ka). Let t be the circle of length (ka)
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which is obtained from T by collapsing T — <p(A) to a single point,
and let TT : T —> t be the projection. Then ip = TT o ^ maps T
onto t and is 1-1 on the "interior" points of A H K . Now
choose m so that (ma)/(ka) is < 1 and irrational. (It suffices
to choose m so that m>\k\ and 0 < (ma) < (ka). For, if
(ma)/(ka) were rational it would have to equal m/k.) Then the
translation r of t by (ma) has no periodic points. Moreover
the countable set D = TTD == <^( CK) C T is invariant under r.
Indeed, if t is identified with the arc [0, (ka)) C T in the obvious
way, then r is translation by (ma) on [0,(ka) - (ma)), and
is translation by (ma) - (ka) on [(ka) - (ma), (ka)). Hence,
r may be lifted to a C^-diffeomorphism h of T, such that
< p o A = r o ^ . In fact, if l = ( a , b ) is the component of CK
which contains x , we may put h = /w on the arc [b,flc~m(a)]
and h^f^^ on the arc [f^^b), fk(d)}, and extend over
the rest of T by any C^-diffeomorphisms /^-^(I)—>[f k(a),b]
and [/^(fl),^]—^ /^(I) which coincide with /w or fm-k,
as required, near the ends of these intervals. Thus we have constructed
a C^-diffeomorphism h which is semi-conjugate to r. Since r
has no periodic points, its minimal set is t. Because ^ maps the
"interior" points of A H K injectively onto the dense subset
t — D of t, it follows easily that the minimal set of A is A H K .

D

As a corollary we see that (^-minimal sets are "locally C1-
minimar'.

COROLLARY 3.2. - If K is ^-minimal, any xCK is contained
in an arbitrarily small open arc A such that A H K is also C1-
minimal.

Note. — The different possible choices for m in (3.1) give rise
to different diffeomorphisms h with minimal set A H K . However,
the restriction of any such h to A H K has the form h\ h^, for
some £ =^ 0 and 0 < / < n, where h^ and h^ are fixed diffeo-
morphisms such that h^ has minimal set A U K and h^ = id
on A H K . To see this, observe first that the restriction of h to
A H K is completely determined by its rotation number (ma)l(ka) .
Therefore, the set of such h corresponds to the irrational elements
of the group <R consisting of all ratios (ma)/(ka) mod Z , where
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0 < (ma) < (ka). Suppose that (ka) = ka + A- ' , and put n
equal to the greatest common factor of k and k 1 . Then there
are unique integers a and a ' such that a k ' — a ' k = n and
0 < ad + a' < to + W . Set <3 = (aa + ^) (A:a -h A:')-1 = (aa)/(ka).
Then it is easy to check that <R consists of the numbers if! 4- //^,
where C £ Z and 0 < 7 < ^. Now let h^ and /^ be the diffeo-
morphisms corresponding to fS and l / n respectively. Then h^ = id
on A H K , and if h corresponds to m = ifS + //w , we clearly
have h = h\h[ on A n K.

A similar remark can be made about the diffeomorphisms h
constructed in (3.3).

The next result shows how one can piece together C1-minimal
sets.

PROPOSITION 3.3. - Suppose that A U K is minimal for the
C^-diffeomorphism f, and that K has a covering by disjoint open
arcs A, = (;c,, y ^ ) , 1 < / < n, which satisfy the following condi-
tions:

(i) for each i, there is a C^-diffeomorphism g^ of A^ into
A such that ^,(A, n K) = ^,(A,) n K ; and

(ii) the components of fi (A H K) which contain the points
gi(Xf), gf(Yf), l < ^ < w , are all in the same f-orbit.

Then K is C^mimmal.

Proof. - For simplicity we will first assume that n = 2. Let
<p: T —^ T be the semi-conjugating map of / t o R^ . Then by
(ii) the points ^(g^x^)) and ^(^,(^,)), where ^ = = 1 , 2 , are all
in the same R^-orbit. Therefore, if ^i, denotes the length of the
arc (pO^.A,.), for i = 1 , 2, we have ^ + ̂  = p + qa for some
integers p and ^.

Let T be a circle of length 11 = ̂  + ̂  , which we will
consider to be the union of a copy, [0,^iJ, of <^(^A^) with a
copy, [ M i , J^L of (^(^A^). Then there is a monotone map
^: T —^ t such that (^(A^ n K) C [0, ̂ J and ^(A^ H K) C [^ , ̂ ],
which is given by \p o ^, on A, H K , for each i. Set D = <p( C K).
Then it is easy to see that D is invariant under translation by a.
Choose m so that (/na)//i is irrational. (Since IJL = (qa) modZ, this
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can be done as in (3.1).) Then the map r : t —^ t which translates t
by (ma) has no periodic points. Also r(D) = D. Therefore, in order
to show that K = (Ai n K) U (A^ n K) is C^minimal, it suffices to
construct a C^diffeomorphism A of T which lifts r, in the sense
that r o <^ = (p o h. However, it is easy to check that such a map
h can be constructed from /, g^ and g^ as in (3.1). This completes
the proof when n = 2 • The proof for n > 2 is similar. D

Observe that condition (ii) of (3.3) is automatically satisfied
if / acts transitively on the components of C (A H K) .

Note. - Let K be a Cantor set which is minimal for some C1

/. If K has many C1-symmetries, that is C^-diffeomorphisms g
of T which restrict to non-trivial homeomorphisms of K , one can
use (3.1) and (3.3) to construct other C^-diffeomorphisms with
minimal set K as follows. Suppose, for example, that g is a symmetry
of K which fixes a point x £ C K and takes the arc A = (x , f(x))
to an arc B = ( x , f k ( x ) ) which contains A. Then there is a C1-
diffeomorphism g of T which takes K onto

K n (f^x) , f(x)) = K n (C (B - A)).

By (3.1) gK is minimal for some C1 h. Therefore K is minimal
for g~lhg. One can construct examples where the rotation number
of g ~ l h g , which has the form (ma)/(l — (k — l)a), is not a ra-
tional multiple of the rotation number a of /. Hence (g~ihg)n ,
n ̂  0, is not equal on K to the conjugate of any power of /.

Finally, let us consider the question of whether every homo-
geneous and locally C^-minimal Cantor set K is C^minimal. More
precisely:

Let K be a Cantor set which satisfies (H^) and (H^) in § 1 ,
and also satisfies

(L): any x £ K is contained in an arbitrarily small open arc A such
that A H K is ^-minimal.

Then must K be C^-minimal ?

Note that, by Proposition 3.1, we may replace condition (L)
by:
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(I/): there is an open arc A such that the set A H K is non-empty
and minimal for a C1-diffeomorphism f.

It follows easily from (3.3) that if K satisfies (H^), (H^) and
(L') and if, in addition, the diffeomorphism / of (I/) acts tran-
sitively on the components of C (A H K) , then K is C^-minimal.
It seems unlikely, however, that these three conditions are sufficient
in general for C1-minimality. We will prove the following weaker
statement which assumes some compatibility between the gy ^
and gj i of conditions (H) and the / of (L').

PROPOSITION 3.4. - A Cantor set K is ^-minimal if and only
if it satisfies (H^), (H^) and (I/), as well as:

(HL): the g ^ and g^ j of conditions (H) may be chosen so that
the local diffeomorphisms g ^ g ^ , where each g^ has the form
gy x or Ss i » respect one of the orbits 0 == { / ^ I : k £ Z} of f
on the complement of A U K . Thus we require that i^i^I')^®
whenever I ' G © is entirely contained in the domain of g^gi -

Proof. - It is clear that any C1-minimal set K satisfies all
these conditions. For we may choose the arc A in (L') so that
A H K = K , and then choose the gy ̂  and gj i to be powers of /.
To prove the converse, it suffices to construct a covering of K
by disjoint arcs A ^ , . . . , A^ , which satisfies the conditions of (3.3).
This may be done in the following way. First choose open arcs
B , C A and local diffeomorphisms i,, of the form g y ^ or ^j ^ ,
so that the arcs g^ B ^ , . . . , g^n cover T. By (H^) we may suppose
that every component J of C K is entirely contained in at least
one of the i,B,.. Notice that, by (HL), if JC^B,n^ .B , , then
g^JE © if and only if i^JE ©. It follows easily that there is
a covering of K by disjoint arcs A^ C g^ B ^ , . . . , A^ C g^B^ where
each A, has endpoints in i, © . Therefore, setting g, == g~^1 for
all / , the conditions of (3.3) are satisfied, n

4. The lengths of the complementary intervals.

Suppose that K is a Cantor set in T and let X^ > \ > . . . > 0
be the lengths of its complementary intervals, as in § 1 . Further,
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let J^ = [Qy, .̂ ] , / > 1, be disjoint, possibly degenerate, closed
subintervals of (0,1], which are arranged in decreasing order and
which contain the X^ . Thus {X, : i > 1} C J^ U J^ U ..., and
^i ^ Pf+i < a/ for a11 i ' ^ will show that if K is a (^-minimal
set the "gap" ratios ay/^ cannot be too large relative to the
"interval" ratios j^/o^. As a first step, we show:

LEMMA 4.1.-// K is C1^minimal, the gap ratios c^./^
are bounded.

Proof. - Clearly, it suffices to show that the ratios X,/X,^
are bounded. So, suppose that K is minimal for the C^-diffeomor-
phism /, and choose c > 0 so that Df(x) > c for all x E T. Then
£(/!) > cC(I) for all components I of C K . It foUows easily that
^Ar+i < ^1° for a11 l> 1 • ^r, because Urn £(^1) = 0 for all

fc-»>00

I, there is, for any / , a component I^/^I such that C(I') > X,
and C(/0 < \^ . Hence \/X^i < e(I')/e(/I') < 1/c, as
claimed, n

PROPOSITION 4.2. - Suppose that the \, a, awf j3y afrove
satisfy the following condition:

(*) /or each N > 0 there is rf = T?(N) > 0 ^cA that
^n-i/Pf^n > (1 -h ^7) <3,/^, /or - N < n < N a^d all
! > N.

FACT K wwor ^-minimal.

In particular, suppose that (^ > a^ > ... > 0 is the set obtained
from the X, by deleting repetitions, and that we choose a. = j3, = a
for all 7 . Then each Jy is a single point {a.}, and

{ X , : f > i } c j ^ u j ^ u . . . .
Also, the interval ratios j^/o^. are all equal to 1 , while the gap ratios
Qy/j3,+i run over the set of all ratios X,/X^ which are > 1 .
Therefore, Lemma 4.1, together with the case N = 1 of Proposition
4.2, implies that:

COROLLARY 4.3. - If K Is ^-minimal, then the ratios \1\^^
are bounded and have I as a non-trivial limit point.
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Note. — This corollary implies in particular that a Cantor set
KQ , whose complement consists of intervals of lengths ak , k e Z ,
for some 0 < a < 1, cannot be C1 -minimal. This may be proved
more easily by observing that any C^-diffeomorphism / such that
/(K^) = Kg is equal on K^ to the restriction of some PL homeo-
morphism of T. Since any PL homeomorphism of T either has
periodic points or is conjugate to a rotation (see [2] VIA, 5), K^
cannot be minimal for /.

For a given set of X/5 one can improve on (4.3) by choosing
the intervals J^ more carefully. Here is an example.

COROLLARY 4.4. — Let fi, a be any two positive numbers.
Then there is no ^-minimal set K such that

{ X , : i> 1}C{^ , a k : k e Z } .

Proof. — If ^k = cr8 for some k , £ £ Z , this reduces to
(4.3). Therefore, we may assume that ^ ^ a^ for any k , £ .
Then 1 is a limit point of the ratios p ^ / a ^ so that (4.3) does not
apply. For convenience, let us assume that ^ < a < 1 . Then
{X, : i > l } C { p k , o k : k>\}.

Let the J. consist of the following intervals, arranged in
decreasing order:

_\_
(a) intervals [^, a8] with k , C > 1 and a^l^ < a 4 ,

_j_
(b) intervals [a8, ̂ ] with k , i> 1 and ^/a8 < a 4 ,
(c) the points {a8}, {A^}, ^, C > 1, which are not con-

tained in intervals of types (a) or (b).
_1 -1

Then the gap ratios are > a 4 and the interval ratios are < a 4 .
Moreover, even though both the gap ratios and the interval ratios_j_
approach a 4 arbitrarily closely, condition (*) of (4.2) is sa-
tisfied. To prove this we must show that for each N the ratios
(^/+y,-i/j3,+n)/(<3//^,) are bounded away from 1 for | ^ | < N and
all / > N. Consider the case r = ^/+^-i/A+» = ^ ' / a 9 1 and
s = j3 ,̂ = a8/^ . Then ^ = a8' and j3, = a8. Using the fact
that | n | < N and that each power a, a2, a3,... belongs to a
different J,, it is not hard to see that | £ ' - B | < N . Therefore
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—-L _JL
we have r> a 4 , s < a 4 while rs = ^^k'~k|ay~9• is bounded
away from a 2 . The desired conclusion follows easily. D

The final result in this section is a version of Proposition 4.2
localized at an orbit in C K.

PROPOSITION 4.5. — Let K be minimal for the homeomorphism
f and suppose that there is a component I^ of C K such that
the set { X , : i > \} of lengths of the components /"IQ, n^.Z,
together with appropriate a ^ , ̂ , satisfies condition (*) of (4.2).
Then f is not C1 .

We will now begin the proof of Proposition 4.2. Throughout
the following discussion we consider a fixed Cantor set K together
with a fixed choice of intervals J. = [a. , 5. ].

DEFINITION 4.6. - The depth d(l) of a component I of C K
is the integer f such that £(I) E J. .

Note 4.7. - £(I) > 6(1') implies that d(I) < d(V). Con-
versely, if d(l) < rf(I') = f then £(I) > a, while B(I') < j8,.
Thus fl(W(l) < P,/^ .

The following lemma shows the importance of condition (*).

LEMMA 4.8. - Suppose that K is minimal for the C^iffeo"
morphism f and that (*) is satisfied. Then K may be covered by
disjoint open arcs A ^ , . . . , A,, in such a way that, for any pair
1,1' of components of C K which are both contained in the
same A,, d(I) < rf(I') =^ d(/I) < d(fV).

Proof. — The idea is the following. Choose the covering
A ^ , . . . , A ^ of K so that the derivative D/ of / varies very little
on each A,. Then for any pair 1,1' of components of C K which
are both contained in A, the difference C(/I)/C(I) - J2(/I')/e(I')
is small. However, if d(\) < d(V) while d(f\) > d(fV), then by
(4.7) £(r)/e(I)<j3,/a, while WWfl) > a^_,/p^ for some
n. We will see that \n\ is bounded. (Its bound depends on D/.)
If (*) holds, the gap ratios ^^n-i/Pj+n are definitely bigger than
the interval ratios ^./c^.. We will see that this implies that the diffe-
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rence £(/!)/£(!) - £(/I')/e(I') is quite large, and so derive a con-
tradiction.

Here is the proof in detail. By (*) with N = 1, there is
T/ > 0 such that c^/^i > (1 4- T?') j3,./a, > 1 + T/ for all 7 > 1 .
Therefore, by Lemma 4.1, there is L such that ft./a. < ^,/A+i ^ L
for all 7 . Hence

(1 + ^N < a,/^N < L^ (I)

for all / . In particular, one can choose N so that
a,/^ > sup {Df(x), Df-^x) : x E T} for all 7 .

Then, if C(I )e j^ , both »(/!) and CC/1-1!) are > j3,^ . It follows
that

| d(fl) - d(I) | < N for all I. (II)

Let 5<7y(N)/L 2 N , and cover K by open subsets W ^ , . . . , W ,
of T so that |D/(;c) - Df(y)\ < 6/2 for all x , y C W, , 1 < i < s .
Then, it is easy to see that, if 1,1' are any two components of C K
which are contained in the same W,, we have

| j2(/r)/e(r)-j2(/i)/£(i)i<6. (IID
Since the covering A ^ , . . . , A^ of K can be chosen to exclude any
finite set of components of K , it will suffice to show that, if
N < d(l) < d(V) while d(fl) > d(flf) , then (III) does not hold.

So, suppose that N < 7 = d(l) < d ( I ' ) and that
7 + ^ = d ( / I ) > r f ( / I ' ) .

Then £(!') < j3, and £(/!') > a^n-\ ' and so

WW) - C(/I)/e(I) > a^.,/^ - ̂ ,,,/a,
=(o^-i/^-j3,7a,). P^.

By (II), | ^ | < N . Therefore, because 7 > N , we may apply (*)
and (I) to get

WM) - e(/I)/C(I) > r?(N) ^,^/a, > r^W/L^ > 8 .

Thus (III) does not hold. a

LEMMA 4.9. — Let K , / be as in Lemma 4.8, and let
LQ = sup { & /a. : 7 > 1}. TT^M, /or all e > 0, ^r^ ^ a^i open
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subset U of T wrt U H K + 0 5McA ^ter, for all components
F of C K ^hich are contained in U and all k > 0, CC^F) < LQC.

Proof, — Let A ^ , . . . , Ay be the covering of K constructed
in Lemma 4.8. By making e smaller if necessary, we may suppose
that any component of C K with length < LQ€ is entirely contained
in some A^. Let 3 be the set of all components I of C K such
that S.(fkl) <e for all k > 0. Then the components in 3 accu-
mulate on K so that there is a connected open set U such that

(a) U n K ^ 0 , and

(b) one of the components Ig C U of maximal length belongs
to 3 .

We will now show by induction on k that the following statements
hold for all k > 0.

(P^): fk(V)^KCsome A/ ;

(Q^): for all f e u , d(fkr)> d(fk^).

Note that (Qo) holds because, by (b), 6(1') < C(Io) for all I' C U.

Proof that (Q^)—^(P^).

Recall that, by hypothesis on c, every component of C K
of length < LQ€ lies in some arc A ^ . Note also, that by (4.7),
d(^)>d(l^) implies that £(Ii) < Lo. C^). Hence (Q^) implies
that, for all I ' C U , we have £(^0 < LQ . ̂ /^o). But
f^(fklo)<e, since I^ E 3 by (b). Therefore, every interval f^V
must lie in some arc A,. But the A^ are disjoint, and both U and
the A, are connected. It follows that all the components fkV ,
for I ' C U , must lie in the same A,. Thus fk(V)r}KCA^ as
required. D

Proof that (P^), (Q^ -^ (Q^i).

This follows immediately from Lemma 4.8.
Thus (Q^) holds for all k . Since fl(fklo)<€ for all k>0,

it follows that t(fkV)<\.Q€ for all k>0. This completes the
proof of Lemma 4.9. D

It is now easy to prove Proposition 4.2.
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Proof of Proposition 4.2.

It suffices to show that Lemma 4.9 cannot be true. Suppose
to the contrary that Lemma 4.9 holds for some K, /. Choose
e > 0 so that there is a component, I say, of C K with length
> L^e, and let U be as in the lemma. Then the components /"^(I)
for k > 0 accumulate on K so that f~k(l) C U for some k > 0.
Put I' = /-^(I). Then £(^0 = £(I) > LQC , a contradiction, o

We will finish this section with:

Proof of Proposition 4.5.

Let ^ be the sum of the lengths of the components of C K
which are not in the orbit /"(Io), n C Z , of I^ , and let t
be the circle of length 1 - ̂  obtained from T by collapsing
all these components to points. Let TT : T —> t be the quotient
map, so that e (7 r I )=C(I ) for all I= /»( IQ) . Clearly there is a
homeomorphism / of t so that the diagram

T —f——> T"l , i*
t / > t

commutes. Then / has minimal set K = TTK . By hypothesis the
lengths X, of the components of C K together with appropriate
o .̂ , j3y satisfy (*). The claim is that / cannot be C1 .

Suppose to the contrary that / is C1. Then / need not be
C1 , and so we cannot immediately apply (4.2). However, it is not
hard to check that Lemma 4.8 still holds for K , /. For, in the
proof of this lemma, the differentiability of / was used only to
construct the covering W/ for which (III) holds, and such a cover-
ing can be found for / too. Similarly, Lemma 4.1 is also true for
K . Since the rest of the proof of (4.2) was based only on (4.1)
and (4.8), and did not mention the differentiability of /, one may
derive a contradiction as before, a
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5. A consequence of homogeneity.

In this section we give precise form to the statement made in
§ 1 that, if K is C1-minimal, the sequences {X^} tend to 0 at
approximately the same rate.

DEFINITION 5.1. — Let {^/} and {^\} be two sequences of
positive numbers which tend to 0, with decreasing rearrangements
{^} and { /Xp(o}. Then we will say that {^}<{^ .} , if there
are integers k and L > 0 such that A^^,) < LJLI^,) for all i > 1 .
Further, if { ^ - } < { ^ } and { ^ } < { j L i , } , we will say that the
two sequences are equivalent, and will write { IJL{ } ^ {^} .

It is easy to check that the relation — is an equivalence
relation. Note that {^} ^ {^ici^rn^ ^ t^/} is decreasing. On
the other hand { I / / 2 } ^ {1 / f 3 } . The main result of this section is:

PROPOSITION 5.2. -// K is ^-minimal, then { ^ - { X V } ,
where U and V are any open subsets of T such that
u n K ^ 0 ^ v n K .

Before proving this, it will be convenient to prove the following
lemma.

LEMMA 53. — If {^(} and {^.} are two positive sequences
which tend to 0, and are such that (1/L). ju, < ̂  < L^ for all
i>\, then {^ , } -{^} .

Proof. — We may suppose that {p.^} is decreasing. Let TT be
a permutation of N such that {/iw/)} is decreasing. It will suffice
to show that (1/L). IJL{ < ̂ ^ < LJL^ for all i .

This may be seen as follows. Since ^ < L^i, < Lp.^ for all
i > n, there are at most n — 1 of the JLI,' which are > L^ .
Hence, ^n)» which is the 72th largest of the ^, must be < LJLI^ .
Similarly, there are at least n of the p.\ which are > (1/L). ̂  .
Hence the nth largest of the ^ must also be >(1/L).^ . o

Proof of Proposition 5.2.
By the homogeneity of K , it suffices to prove that {X" } - {\J }

in the following two cases: (i) V = gV for some C^-diffeomorphism
g such that gK = K , and (ii) V C U .
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Case (i). - The proof in this case follows immediately from
Lemma 5.3 and the fact that, if I C U and

L = sup [Dg(x), Dg-1 (x): x G T}
then ( l /L) .£ ( I )< je (^ I )<LC(I ) .

Case (ii). - Note first that {XY'} is a subsequence of {XV}
whenever V ' C U . Hen^e { X Y } < { X y } , and it will clearly suffice
to show that {X0} < {\.°} , where V^ is any connected open subset
of V.

Let g ^ , . . . , g^ be C^-diffeomorphisms which leave K inva-
riant and are such that U C ^VQ U ... U ^VQ . (The g, may be
taken to be iterates of /, where / is the diffeomorphism with
minimal set K . ) Because Vo is connected, there are only finitely
many components I of C K which lie in U but not in any of the
sets g^ VQ . Since the equivalence class of {X^} is not changed by the
deletion of a finite number of its terms, we may ignore these I . Then
{XV} is a subsequence of the disjoint union {Xf1 °} U ... U {^wvo} .
But {\^ °} - {X,0} by case (i), and it is easy to check that, for any
sequence {^.}, we have {^} - {^} U . . . U {^.} . Hence
{ X V } < {X^}, as required, o
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