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LITTLEWOOD-PALEY DECOMPOSITIONS
AND FOURIER MULTIPLIERS

WITH SINGULARITIES ON CERTAIN SETS

by P. SJOGREN and P. SJOLIN

Introduction.

The well-known Hfirmander-MihIin multiplier theorem in R
says that any bounded function m(x) such that \x\ml(x) is
bounded belongs to the space Mp of Fourier multipliers for I/,
1 < p < °°. We shall generalize this result. A closed null set E C R
will be said to have property HM(p) if any bounded function m
such that d^m is bounded belongs to Mp . Here d^ denotes
the distance to E. We shall prove that property HM(p) is equi-
valent to the Littlewood-Paley decomposition property for V
with respect to the complementary intervals of E. There are also
equivalent properties of E related to the Marcinkiewicz multiplier
theorem.

As is well known, the Littlewood-Paley decomposition, and
thus also property HM(p), hold for 1 < p < oo when E is a
lacunary sequence tending to 0. We prove that these properties
are preserved if we, roughly speaking, add to such an E uniformly
lacunary sequences, one converging to each point of E. Sets obtained
by iteration of this procedure are called lacunary, and they are shown
to have the two properties. Further, we give a simple necessary
condition for the properties, saying that any bounded part of E
should not contain too many points. And finally. Cantor sets of
type {Se .Cy; 6. == 0,1} are shown never to have the properties
for p ^ 2 .

The precise formulations of these one-dimensional results are
given in Section 1. And Section 2 deals with the two-dimensional
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case, which is more complicated. Then E will be a set of direc-
tions. We compare the following three properties of E: firstly, the
Littlewood-Paley decomposition property with respect to the com-
plementary sectors of E, secondly a Hfirmander-MihIin property
for homogeneous multipliers with singularities on rays in the E
directions, and, thirdly, the boundedness on I/ of the maximal
function with respect to rectangles in the E directions. Improving
earlier results of J.-O. Stromberg and A. Cordoba -R. Fefferman,
A. Nagel-E.M. Stein-S. Wainger [5] have shown that the first and
third properties hold for lacunary sequences of directions. Extend-
ing the definition of lacunary sets described above to sets of direc-
tions, we prove that such sets have all three properties (see Corollary
2.4). We finally give some necessary conditions.

As for notations, C is a generic constant, not always the same,
and f-g means l/C<f/g<C. The definition of the Fourier
transform we use is /({) = / e-^^^x) dx.

1. One-dimensional results.

Let E C R be a closed null set and 1̂  , *: = 1,2 , . . . , the
complementary intervals of E, i.e., the components of R \E .
We denote by x^ the characteristic function of 1̂  . Call S^ the
operator given by (S^/T = X^/

DEFINITION. - Let 1 < ^ < o o . E is said to have property
LP(p) (Littlewood-Paley) if there is a constant C such that for
all fW C-1 H/ll^ < ||(2 IS^/12)1/2^ < C 11/11^ .

The smallest such constant is called the LP(p) constant of
E. Further, E is said to have property HM(p) (HOnnander-MihIin)
if any function wCC^RXE) such that m(x) and d^(x)m\x)
are bounded is in Mp . And E is said to have property Mar(p)
(Marcinkiewicz) if any bounded function m locally of bounded
variation in R\E such that sup f |dw|<oo isin M .k \ P

If E has property HM(p), it follows from the closed graph
theorem that there is an associated constant C such that the M
norm of m is bounded by C(sup \m\ + sup [dg. m'\). A similar
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remark applies to property Mar(p). Notice that the three properties
defined, and the associated constants, are invariant under transla-
tion and dilation.

THEOREM 1.1. - // 1 < p < °° and E C R is a closed null
set, then properties LP(p), HM(p), and Mar(p) are equivalent,
and so are the associated constants.

Proof. - If E has property HU(p) or Mar(p), it follows
that 2 ± Xjk E M^, , uniformly for all sign combinations. Averag-
ing as usual by means of Rademacher functions, one obtains
||(2 JS^/12)1^ < C H/ll^ . By a duality argument, the converse
inequality follows, cf. [7, p. 105]. Thus E has property LP(p).

To prove that LP(p) implies HM(p), assume
sup|m(x) |<oo, sup\d^(x)mt(x)\<^. (1.1)

Select a function ^GC^RVE) which equals 1 in the leftmost
third and 0 in the rightmost third of each bounded 1̂  , and
satisfies the same inequalities (1.1) as m. On unbounded intervals
1̂  , let <p = 1 . Then ^m also satisfies (1.1). Let m\ = \^m.
It follows that m1 is a translate of an ordinary Hbrmander-MihIin
multiplier in R , with bounds uniform in k . By D.S. Kurtz and
R.L. Wheeden [4], the m\ are uniformly bounded Fourier mul-
tipliers on weighted L^R), with any weight in Muckenhoupt's
class A^ . But then these multipliers define a bounded operator
on \f(t2) for l < p < o ° , as proved by J.L. Rubio de Francia
[6]. This means that if (f^ are functions in !AR) with
(SI/jJ2)172 ^ ̂ p and F^ = m\f^ , then

11(2 IF^lWl^C ||(2 1.41WI,,.

The same thing holds for m^ and F2 , defined by replacing ^
by 1 — <^. Letting F^ = Fj^ 4- F2 , so that Fj^ = Xj^A > w® thus
have

11(2; | FJ2)1/21|^ < C||(£|/J2)1^ . (1.2)

Now take /£ Lp and /^ = S^/, so that F^ = S^F, where
F = w / . If E has property LP(p), (1.2) says that I I F I I p < C||/||^
and property HM(p) follows.
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Finally, to prove that LP(p) implies Mar(p), we proceed
as in [7, p. 111-112] (see also the last part of the proof of our
Theorem 2.1). Theorem 1.1 is proved.

Let pf be the exponent dual to p . Since M , = M , clearly
the three properties of Theorem 1.1 are also equivalent to L P ( p ' ) ,
HMQs/), and Mar(jo'), Notice that the three properties are here-
ditary to subsets, with smaller or equivalent constants. They are
also hereditary to certain larger sets, as we shall now see.

DEFINITION. — If E and E' are closed null sets in R , we
call E' a successor of E if there exists a constant c > 0, called
the successor constant, such that x , y £ E' and x ^ y implies
\x -y\> cd^(x).

A sequence Oc/)^ or (x^)^ converging to x is called
lacunary if x. ̂  x for all j and there exists 0 > 1 so that
(x. — x ) / ( x ^ ^ - x) > 6 for all / . Then the above definition
implies that if Ij^ is a bounded complementary interval of E,
then E' H \^ is contained in the union of two lacunary sequences
converging to the endpoints of 1̂  , and analogously for an unbounded
^ -

We define lacunary sets of order n inductively as follows. A
lacunary set of order 0 is a one-point set, and a lacunary set of
order n > 1 is a successor of a lacunary set of order n — 1 . Thus
a double exponential sequence like {21 4- 27: / , / G Z } U {0} is a
lacunary set of order 2 .

THEOREM 1.2. -// E has property LP(p), then so does any
successor of E. A lacunary set of finite order has property LP(p)
for 1 < p < oo .

Proof. — The second statement is a consequence of the first
one. Assume E' is a successor of E. Let ]a^, 6jJ be the comple-
mentary intervals of E' and x^ their characteristic functions. Take
non-negative functions V/^ £ C°°(R\E) such that

(i) ^ = 1 on [a^, 6J
(ii) sup sup(^Cc) + d^(x) \^(x)\) < oo

k x

(iii) supp ̂  C [^ - rfe(^)/2 , bj, + dj,(b^/2].
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Notice that d^(a^) and d^(b^) may be 0. Then the ^ have
bounded overlap, so S ± ̂  is uniformly in M^, if E has property
HM(p). Let G^ = V/fc/ and F^ == x^/ for /€ L^ . Averaging,
we have ||(2 IGJ2)172!^ < C||/ll^ . Using Hilbert transforms, we
get ||(2 |FJ2)1/2!^ <C||(2|GJ2)1/2^, and property LP(p) for
E' follows, by duality.

Notice that the LP(p) constant of E' can be estimated in
terms of that of E and the successor constant.

Remark. - Theorem 1.2 implies that the following strong
Hormander-MihIin-Marcinkiewicz property is equivalent to those
of Theorem 1: Let m be bounded and locally of bounded varia-
tion in R\E and such that supi f \dm(x)\ < °°, where the sup
is taken over all intervals I with 111 = dist(I, E). Then m £ Mp .
This is easily proved by means of property Mar(p) for a successor
of E.

Next, we give a simple necessary condition.

THEOREM 1.3. — Let E have property LP(p) for some p > 2.
Then there exists a constant C such that if I is a bounded inter-
val and 0 < d < 11|, then E H I contains at most C(| Il/rf)2^
points all of which have mutual distances at least d .

Proof. — By translation and dilation, we may assume I = [0,1].
Take / so that /G C^ and / = 1 in [0,2]. Let x ^ . . . . . ̂  be
points of E 01 of mutual distances at least d . Then the set
D = [ x ^ , x^ + d , x^, x^ 4- d , . . . , x^ + d} is easily seen to be
a successor of E with constant c = 1. Thus D has properties
LP(p) and LP(p') with constant independent of d . Denoting
by Sj the operator Sj/= Xj/ for any interval J , we get

^is^^/l^l^^cii/ii,,.

Hence, n1'2 sm"^2 < CII/11-,, which implies n < Ccl-2'" .
II ^ Ik

The proof is complete.

From Theorem 1.3 we get the well-known result that no
sequence of type (M°')^i has property LP(p) for p ^ l , a^O.
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Consider now Cantor sets of type E = ^ e^ ; e, == 0 or 1 { ,
' i '

where £,., / = 1 ,2 , . . . , are positive numbers satisfying fi^ < ^./2 .
For ^ . = 2 . 3 ~ 7 , we get the classical Cantor set. Such sets will
satisfy the necessary condition of Theorem 1.3, if the C, are small
enough, but clearly they are not lacunary of finite order.

THEOREM 1.4. - A Cantor set E of the above type has pro-
perty LP(p) for no p ^ 2 .

To prepare for the proof, fix p G ] 1,2 [ and let
/»7T

m = 7T-1 / \COSX\P dx .
• "'0

By Holder's inequality, m^ < m^2 = 2-^2 with strict inequality,
so we can take Sp with m < s < 2~p/2 .

It is easy to prove that

fh(x)\cosQx\pdx —^ [ h ( x ) d x , Q —^ oo,

for an integrable h. We need a uniform iterated version of a
special case of this.

LEMMA 1.5. - There exist numbers (A.)00 in ]l,°°[ such
that if (Q,)^ are positive and Q,/Q^_i > A, for / = 1 , 2 , . . . ,
then for any natural N

r sin QpX N ,. j ̂  Q
J ————ncosQ^ ^<^J—-°- dx.

Proof - We can clearly assume Qo = 1 . Let for N = 0,1 ....
sinx N p

M )̂ = —— n cosQ,jc .
x i

Assuming A I , . . . , A N _ I constructed, we must find A^ . Take
B > 0 so that

^L|>B ^^p-^)^-1 /^^rfx/2, (1.3)

and observe that h^ < h^ . For any Q^ , we have

f^ h^(x)dx < £ r^1^'^ h^(x) IcosQ^xl^djc,
B ^w/Qj^
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where the sum is taken over those k for which the interval
J^ = [^TT/QN , (k + l)7r/QiJ intersects [-B,B]. Thus, at most
2BQN/7T + 2 values of k occur. For each k , take x,p G Jj^ so
that ^N-i(^) equals the mean value of A^-i m ^k • Then

f AN^OOICOSQ^^^
JJ^
< f AN.iO^lcosQN^dx + ^—f suplA^J IcosQ^^dx

^ ^N ^

/» 7T2

= w^ j h^(x) dx + —— sup I AN-I I ^p •
•̂  ^N

Summing in k, we obtain

/_^V;c)<foc<^ /AN-I + ——^Pl^N-il- d-4)

Since the Qy are increasing, it is easy to see that sup lA^i I < C^QN.I .
So if QN_I/QN is sufficiently small, the last term of (1.4) will be
dominated by (Sp - m^) ̂ -1 f ' h^dxil. From this and (1.3)-(1.4)
the lemma follows, by the induction assumption.

Proof of Theorem 1.4. — Given an integer N > 0 , select a
finite subsequence £„ , £^, . . ., S. such that n^ = 1 and
^/£^>AN_, tor , = 0 , . . . , N - 1 . Writing Q, = ^_/2,
we thus have Q y / Q < i > Ay as in the lemma. Clearly, all points

^ 2e^Qp e, = 0 or 1, are in E, so if E has property LP(p),
o

these points form a set E^ with LP(p) constant bounded uni-
formly in N. Define /^ so ^at fy is the sum over e ^ , . . . , e^
of the characteristic functions of the intervals

r N N -|
H ^/QpS 2e,Qy+2Qo ,

L /-i /-i J
so that

fy = ^(0,2Qo]» S 5 N
ep....CN 22e/Q,

1 = 1 / /

One finds ' ^
WQX _ ^ £ €,Q.X

^(X) = (27T)-1 ———————- ^ ^ ^=1 ; /

^^-^i-ifid^^,
X /=!
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and thus

1/^001=^-^ smQOX ft COSQ,JC
J^ f — •*

But the Littlewood-Paley sum of / corresponding to E^ is

^i 2N/2 ^"L^ [ property LP(p) implies

7T • 2Np/2 f sin QQX | p
dxx
<C^2^f smQ^ ft cosQ,x ^x.

^ JC /=! ;

But this is false for large N when p < 2, by Lemma 1.5. The case
p > 2 follows, so the theorem is proved.

2. Two-dimensional results.

Let E denote a closed subset of S1 with measure 0. We
then have S^E = U 1̂  , where 1̂  are the open component
intervals of S^E. Let D^ = [x £ R2 ; x ' E 1^} , where x' == x / \ x \,
and Eo = {Q G R ; (cos 6 , sin 0) e E} .

We shall now define properties LP(p), HM(p), and Max(p),
1 < p < oo , for a set E of this type. Define operators S^ by
setting (S^/y = XD A where ^p denotes the characteristic func-
tion of D^ . Then E is said to have property LP(p) if

||(2 IS^/ I2 )1 /2 ! !^-11/11^, /GL^R2 ) .
We let ( r , 6 ) denote polar coordinates in R2 and shall consider
functions m G L^R2) with the following property:

m(x) = Wo(0), niQ £ C^R^^), niQ has period lir,
(2.1)

|mW(0)|<C^(0)-^ k = 0 , 1 , 2 .

The set E is said to have property HM(^) if every function m
satisfying (2.1) is a Fourier multiplier for L^R2). For aES 1

we set

MJ-(;c) = sup — [ h \f(x + ta)\ dt, x G R2 , /E C^(R2).
/i>o Ih ^-h o
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and ME/= sup M^f, /£C^(R2). We say that E has property
ttGE

Max(p) if ME can be extended to a bounded linear operator on
L^R2). This is equivalent to I/ boundedness of the maximal
function operator defined with respect to all rectangles in the E
directions.

In this section, we study the relations between the above three
properties and prove that lacunary sets of finite order have all the
properties for 1 < p < oo.

Observe first that HM(p) implies LP(p). This follows from
the fact that if m = 2 ± XD^ » then m satisfies condition (2.1).
The next theorem is a partial converse of this observation.

THEOREM 2.1. - Assume 2 < ̂  < oo and 1 <r < ( p / l ) ' . //
E has properties Max(r) and LP(p), then E has property WM(p).

Proof - We set 1̂  = {(cos 6 , sin 0) ; ̂  < 6 < b^} . Without
loss of generality, we may assume that 0 < 6^ = b^ - a^ < Tr/2.
Set ^ = (cos a^ , sin ̂ ), /^ = (cos b^ , sin 6^) and let the coor-
dinates (^ , 7^) of a point x E D^ be defined by x = {^ + 7^.4 .
Choose (pEC^(R) such that ^p(t) = 1 , 1 < r < 2, and ^?(r) = 0
if t < 2/3 or t > 3. Then set ^(t) == ^(2-(r) , i E Z , and
^/(x) = ̂ (y «P,(^)- Let R^. denote the parallelogram

{ J C ; 2 ( < ^ < 2 ( + 1 , 2 / <^<2^ 1 } ,

and define the operators S ,̂,. and S .̂ by the formulas

(S.,/)-=X^/
and (S^./T = ^,,/. We shall prove that

|(S IS„-//12)1/2|| - 1 1 / 1 1 , . (2.2)
II k.i.j / \\P

To do this, we shall use the operators T^ , P^ ^ and Q^ ^ defined
in the following way, where (^)°°^ is an2 enumeration of the
Rademacher functions:

T,/0c) = ^ r,(^) r,(^) ^,(^3) S,,,/(^),
k,i,i

(P^/TOO = (^ r,(t,) ^,(^))/(x)
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and (Qk t,/)^) = (S '/(^) ^(T?k)) /W •• 3 \ ^

Here jc e R2 and t = (^, ^, ^3) € [0,1]3 . We then have

T./-S ^(^^Q^A

With q = (p/2)', property LP(p) implies

IIT^II^CIKSIP^Q^/lWl2

= sup C f ^ lP fc .Qk . / l 2 ) ^
l|lCII,=l •/ • 2 ' 3

= sup C 2 f |P^ Qk,^Sfc/|2 ^ dx.

Introducing the notation e^ and f^ for the vectors

(cos(0fc + w/2), sin(flfc + w/2))

and (cos(&t - ir/2), sin(&k - w/2)), we easily see that

^ = /t • jc/sin 6^ .

It foUows that (Pk^/TW = Po<^ •x) A<), where

Pot") =: S ''f(^) ̂ (u/sin^),
i

and hence l^")!^ and lPo(M) l< c l—• We then choose

s = <?/r and set A<^ = (M^ I ̂  n1^, a € S 1 . Then the restriction
of Af. ̂  to almost every line parallel to 4' will belong to the class
A^ of weight functions (see [1]). Using the above estimates for
py and p'y and a similar result for the operator Qfc ̂  we therefore
obtain

H-VII2 < sup C£ f \Q^S,f\2 ̂ )dx

< sup C2/ |Sk/|2 A^A^)dx

< sup C f (S I Sk/|2) (M2 (Wdx
\h v 1

< sup C ||(2 IS, /I2)1/2!!2 (/ [U^Wdx)

< sup CH/II2 1 1 ^ 1 1 , =C||/||2,

i/<?
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where E^ = {a E S1 ; a • j3 = 0 for some <3 G E}. Here we have
used property LP(p) for E and also the assumption that Mg
and thus also Mg are bounded on I/ . We have proved that

IIT,/||^<C H/ll^ (2.3)

and it follows that
[(I ISL/^II^CII/H,. (2.4)

From duality, it also follows that (2.3) and (2.4) hold with p
replaced by p 9 .

Now let Vj^, k = 1,2,3 , . . . , be half-planes and assume
that the boundary of each V^ is parallel to a vector in E. Define
the operator H^ by (H^gV = Xv 8 ' We then claim thatk

11(2 |H^|2)1^ < C||(2|^|2)1/2^. (2.5)

This is easily proved in the following way (cf. A. Cordoba, R.
Fefferman [2]):
11(2 IH^I2)1^ = ||2 IH^I2!!^ = j^ f (2 |H^|2)^ Ac

<sup2 ^^(ME (^^dx^ j i

< sup 11(2 l^l2)^2!!2 IKME/^*))^!! < C 11(2 l^l2)1/2!!,.
(// r- 1 -I ^r

From duality we then conclude that (2.5) holds also with p replac-
ed by p1. A combination of (2.4) and (2.5) and the analogous
inequalities with p then yields 11(2 IS^,/!2)172^ < C||/||^ and
||(2 IS^/I2)172!!^ < C H/ll^ , and (2.2) follows.

We shall now use (2.2) to prove that E has property HM(p).
Let m and Wg satisfy (2.1) and assume that F = mf, where
/ELW). Setting n(^ rf) = m(^ 4- ̂ ), { > 0 , T ? > O , we
have

/»^ (*'n V'n /»^ 9nna •7?) = f, ̂  ̂  ̂ 'f2) ̂ ^2 + ̂  3/7 al'2/) rf/l

+ F l*"^',^)^ +n(2',2/)
•'2' "^
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,2<+l ,/+l y^
=^2 ^ ar ;̂ ̂ "^^(r,,^^^^.^!,^^

/•2(+l a«
+^ aT^1'20^1!^

/^+1 3^
+^ ^(2/>^xl^*l<T')^+"<2('2/)'

2'< $ <2 ' + 1 ,2 / <T?<2 / + 1 .

Setting A, = (2', 2'+l) and A^ = A, x Ay and observing that
m(x) = "(Sfc, T?fc) for .x: £ Dfc , we conclude that

a2/!
^F=^, aTaT^^W^ay U((U(^

9n Qn
+/.. aF-^-^^^^^X. 37-^'^^W^A, ar,^ a/i

+n(2',2/)S^/,

(Vr0c) = x^ ,^i](^) X[,^^I,(^)A^) ,
where

(s,\/rw=x^ ^iak)/w
and 1>

(s^m^x^^o?*)/^).
We have n($, 17) = w(^ + 17 )̂ = m^Q), and it is easy to see
that the relation between 9 and (^, 77) is given by

T) sin 0fe
0 = a.. + arctan ————-—— •

^ + 77 COS 0fc

A computation using this formula and the estimates (2.1) of the
derivatives of m^ then shows that

a« (/i,/,) <c —,a. ^i ' "z^a/i
a/i (/i,/,) < c —a/, V > 1 ) ^

and yn
a^a^ (^,^2) <C

fl/2



LITTLEWOOD-PALEY DECOMPOSITIONS 169

Invoking the Cauchy-Schwarz inequality, we then see that

/• /» V'Yl
IS^FI^CJ^ ^-(^) \s^,f?dt,dt,

-H | 9/i ̂ 2
an/• on

+c^. o/;^'20 Is; Wl2^

+ c .£. 1^ (2 f ' t2 ) ls^s*'//12^ + c ls"//12
 •

Now (2.2) yields

ll^^lkS IS.,•F|2)1T.1/2 2

HP\\ ^k i f f \\P^.i.J

^(/[.SX. ay is,s )̂l.*]"'<'

+c^[.£^ ^"-^ ;̂,WMP *,]'"<'L — > *»/ ' 1 J

^OLU a^"'-'^ i^^/W'".]'" ̂ )"'

^(/(siwwi'rAr.
' v If S S ' '' k . i j

We shall only show how to estimate the first term on the right-hand
side. The estimates for the other terms are similar. The first term on
the right-hand side equals

- /» r ^ V-n 1c ̂ J\L 4 ̂  ̂  is.wooi^j wd.IIV'II<,=1 «/ [" ^A,y |3/id/2

=CsupI : f -^0 ^ \. a/,a/,
< c s u p V / ' -yn-

* ^^ii ^^h

= c T ̂  4 i^ (0 [ /i^^/^)'2 ̂ x)^]dt

< CTSX,. ^^;(r) [/'^^''(M^W)17'^] ̂
= c ^P / (S IWWI2) (M|,(^))^^
<C1(IIS^/•12)1/T<C||/||2,

H v ' \\ D r

where we have invoked (2.2) once more.
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It follows that II F||̂  <C ||/||̂  and hence m is a multiplier
for V . We conclude that E has property HM(p), and the proof
of the theorem is complete.

COROLLARY 2.2. - Assume 1 < p < 2. // E has properties
Max(p) and LP(p), then E has property HM(p).

Proof. - It is sufficient to prove that Max(^) and LP(T/)
imply HM(p'), and this follows from Theorem 2.1 since p < ( p ' / l ) ' .

We define a successor of a set E C S1 in the same way as
for subsets of R , and we also define lacunary sets of order n,
n = 0 , 1 , 2 , . . . , analogously.

THEOREM 2.3. - Assume E' is a successor of a set E C S1

and that E has properties Max(p) and HM(p), where l < p < 2 .
Then E' has properties Max(p) and HM(p).

Proo/ - We shall first prove that E' has property Max(jo).
Let e k ' fk-> a^ bk have the sa^le meaning as in the proof of
Theorem 2.1. We may assume E'\E = {(?^.,/^.: k , j = 1,2 ,...},
where e^ =^ (cosa^, sina^.) and (a^)Jli is a lacunary sequence
tending to a^ and contained in }a^, (^ + b^)/2], and analo-
gously for f^. Letting F = {^}, we shall prove that My is
bounded on L^ . The set {/^.} can be treated in a similar way.

Our proof is a modification of that of A. Nagel, E.M. Stein
and S. Wainger [5]. First, we prove assertions I and II below.

I. If p < r < 2 and

IdlM^.I^-ll^clKsi.,!-)17^, (2.6)

then
IIM^/H, < C 11/H,. (2.7)

II. If (2.7) holds for some r with 1 < r < 2 , then

|(SIM^)^<C|(£1,,,,)-^ (2.8)

for all q satisfying ^ < 1 < 1 (l + 1).

Assertion II can be proved in the same way as in [5, Lemma 3].
We shall now prove I and first set
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N ,̂/(^) = -^ jT^ Ht/h)f(x - te^,) d t , x € R2 ,

where ^eC^(R), ^ is positive and ^(r) = 1 for | r | < l . Also
set m = ^ and 6jy = fljy — a^ . Let ((>^ £C"'(R2) and assume that
<^0c) = 1 for |x| < 1. Set ^ = 1 - <^ and

g^x) = m(x^ + x^) ̂ i(x).

Also let a? £ C°°(R2\{0}) be homogeneous of degree zero and
assume that c>?(x) = 1, \x^ + x^\ < c\x\ and

u(x) = 0 , \x^ +x,| >2c|.<|,
where c is a small positive constant. Set

g^(x) = m(x^ + x^) ̂ (x) (1 - u(x)).
Let Rfc: R2 —>• R2 denote a rotation of angle - a^ . We then
have
(N^/ra)=w(^,.^)/a)

= m(he^- $) ^(A cos5y(RfcS)i, A sin 8 ̂ R^) /(£)
+ m(A^ • S) ^2 (A cos 5jy(Rfc{)i , A sin S^^R^O;)

(1 - w(h cos 8fc/(Rtf)i , h sin 8fc,(R^))/a)
+ m(he^ • Si) ̂ (h cos 6^(R^\, h sin S^,(R^)

• w(h cos 8k,(RfcOi, h sin ̂ (R^),) /(£)
= (A^/TO) + (B,k^*(f) + (C,k,/)'(f).

Now e^ = (cos(0k + 5^.), sin(ak + 6^)) and so
e^ • ^ = cos 5^(Rfc{)i + sin 8^(R^^ .

Hence,
(A^//)*(0 = 8,(h cos 8fc,(R^)i, h sin 5^.(R^),)/(f)

and
(B/,fc//)^^) = 8z(h cos 8fc,(R^)i, h sin S^R^VO).

We setA*/= sup |A^,/| and B*/= sup )B^,/|. From the fact
/», k,f h, kfj

that ^i and g^ belong to the Schwartz class S, we conclude
that A*/+B*/< CM^ME /. We have assumed that E has pro-
perty Max(^), and it follows by interpolation that E also has
property Max(r). Hence,

1|A*/||,+ ||B*/||̂  < C 11/11,. (2.9)
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Setting

(D^/mS) = m(he^ . $) u(h cos ̂ (R^\, h sin ̂ ,(R^)f(^,

we have C*f<CM^M^ D*f, since 0, = 1 - 0, and ^SS.
Here C* and D* are defined in the same way as A* and B* . It
follows that

||C*/||, < C ||D*/||^. (2.10)
Define the operator K^y by setting

(K,y/ra) = ^(cos6fc,(R^)i, sin6y(R^)/a).

Then D^f = N^K^./, and it follows from (2.6) that

IIDVll^l^s^PlD^/l2)172!^

^cll^lM^K^y-J^cll^lK^

Wehave (^ ±K^,/)"({) =w(S)/(S), where
"ft

m($) == H ± u(cos6^,(R^ , sin 6^,(R^)2).
fc,/

Let E[ denote the set E rotated an angle Tr/2 and E'/ the set
E rotated an angle — ?r/2. A computation then shows that
m = m1 4- m'\ where m' satisfies (2.1) for E[ and m1 satisfies
(2.1) for E'/. Since E and thus also E[ and E'/ have properties
HM(p) and HM(r), we conclude that

|^K,,^<CII/11,.

It follows that
[KZIK^/I^^II^CH/II , , (2.12)

and a combination of (2.9) - (2.12) shows that ||N*/|| < C ||/|| ,
where N*/ = sup |N^./|. It follows that Mp is bounded on U ,

hf k,j
and hence assertion I is proved.

A repeated application of I and II now shows that Mp is bounded
on \f , and hence E' has property Max(^).

It remains to prove that E' has property HM(/?). First, let
V^ , k = 1 ,2 ,3 , . . . , be half-planes and assume that the boundary
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of each V^ is parallel to a vector in E'. Define the operator H^
by (H^F = Xv^ • It then follows that

||(2 IH^J2)1/2!!^ C||(2 l^l2)172^,?^^. (2.13)

This can be proved in the same way as (2.5) if we observe that
p < (p'W and that E' has property Max(p). We shall now
show that E' has property LP(p). Write e^ = /^ and let DJ^?
denote the sector between the vectors ^, , and ^; and D^ the

/ \ / / \
sector between f^ and f^^ . Then D^ = ( G D[1)) u( U D^) ,
except for a set of measure zero.

Let ^ GC^R^O}) be homogeneous of degree zero and
satisfy c^OO = 1 f o r x G D ^ ? , where ( = = 1 , 2 and A:,/ = 1,2,3,.. .
From the lacunarity of the sequences (^,)J^ and C4,)Jli, it follows
that we can choose the c^ so that if we set m = Y ± co0? , then

iXf /

m will satisfy condition (2.1) for the set E. Since E has property
HM(^) it follows that m is a Fourier multiplier for I/(R2) for
p < r < p\ Thus, if (T^/)' = o^0 /, we have

|[ S ±011 <c "/11^ P<^<^ .
11/^J "r

Hence
||(S IT^/I2)172! <C 1 1 / 1 1 ^ , p<r<p\
II t,fc,/ " rII <^,/

An application of (2.13) yields
II/ ^ ,om..,.V/2^ IS^/I2)172! <C 1 1 / 1 1 , , ^<r<p\

't',fc,/ 11 r

where (S^/)' = X^o-)/. It follows that E' has property LP(p),
and using Corollary 2.2, we conclude that E' has property HM(p).

The proof of the theorem is complete.
A repeated application of Theorem 2.3 gives the following co-

rollary.

COROLLARY 2.4. — Lacunary sets of finite order have properties
Max(p), HM(p) and'LP(p) for 1 < p < o o .

The fact that lacunary sets of order 1 have the properties
Max(p) and LP(p) for 1 < p < oo was proved in [5].
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One- and two-dimensional sets are related as follows. If E C S1,
we let E* = [rx: r> 0, x E E} be the corresponding union of rays.

PROPOSITION 2.5. - Let EC S1 have property LP(p). Then
the intersection of E* with any line not passing through the origin
is a one-dimensional set with property LP(p).

Proof. - Keeping our notation, we see that 2 ± XD E^ (R2) ,
uniformly for all sign combinations. In view of M. Jodeit's note [3],
this implies that the restriction of S ± \^ to any line not contain-
ing 0 is in M^(R), uniformly. The conclusion follows.

COROLLARY 2.6. - // E C S1 has property LP(p), p > 2 ,
then any arc I C S1 contains at most Cdll/d)2^ points of mutual
distances at least d . Here 0 < d < 11| and C = C(E).

Proof. - This follows if we intersect E* with the lines x^ = ± I ,
x^ = ± 1, say, and apply Proposition 2.5 and Theorem 1.3.

From Theorem 1.4 we obtain examples of sets E C S1 homeo-
morphic to the Cantor set not having property LP(p), p ^ 2.
Simply choose E so that the intersection of E* with some line
is a Cantor set of the type studied in Theorem 1.4.

As to the maximal property, there is a simple necessary con-
dition like that of Corollary 2.6.

PROPOSITION 2.7. - // E C S1 has property Max(p), 1 <p <oo,
then E contains at most Cd l~p points of mutual distances at
least d for 0 < d < 2n, where C = C(E).

Proof. - Assume E contains points x ^ , . . ., x^ with
\x^ — x.1 > d , i ̂  f. (It is irrelevant whether we consider Euclidean
distance in R2 or arc length in S1). Let / be the characteristic
function of the unit disc. Consider the rectangles with directions
in some ;Cy, centered at 0, and having width 2 and length l 0 / d .
They will cover a set of area at least n/d on which M^f>Cd.
The maximal property now implies n < C d 1 ' 1 ' .

Notice that this result applies to Cantor sets in S1 of constant
ratio q < 1/2 (i.e. C,+i/£, = q in the definition in Section 1), and
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shows that such sets do not have property Max(p) for
p < 1 4- log2/log<7-1 .

And Corollary 2.6 implies that they do not have property LP(p)
for p > 2 logqr'Vlogl.
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