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THE VALUE-DISTRIBUTION OF LACUNARY
SERIES AND A CONJECTURE OF PALEY

by Takafumi MURAI

1. Introduction.
The purpose of this paper is to establish the following

THEOREM 1. — For any real number q > 1, there exist two
positive numbers € and p, depending only on q, with the following
property: For every convergent (Hadamard) lacunary power series

f2) =X 2%, n,in,>q (1)
k=1
in the open unit disk D = {z ; |z| < 1} satisfying

leel<e X gl (k=1) )

j=k+1
and every complex number o satisfying

lal <p X I, 3)
k=1
f(z) takes o infinitely often in D, where 3, |c,| need not be
convergent. k=1

As immediate consequence, we have the following two corollaries.

COROLLARY 2. — An unbounded lacunary power series in D (*)
takes every complex value infinitely often.

&=,
(*) A lacunary series Z ¢z ®, ngyy/ny =q>1 in D is unbounded
& k=1 |
if and only if Z [l =+ .
k=1
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COROLLARY 3. — Let f(z) beasin Theorem 1. If Y, |c;l < + oo,
k=1
then f(e*), 0 <t < 2w, is a Peano curve, that is, {fe); 0<t <27}
contains an open set.

The problem whether Corollary 2 is valid or not was raised by
R.E.A.C. Paley in [10]. G Weiss and M. Weiss showed that a lacunary

power series f(z) = 2 c,c s Mga/ne =q >1 takes every

complex value mfimtely often in D, if f(z) is unbounded and

q = q, (= about 100) ([13]). W.H.J. Fuchs showed that the asser-

tion holds if lim sup [c,| > 0 ([4], [5]). I.LL. Chang showed that the
K—> oo

assertion holds, with D replaced by a sector {z€D; a<argz <},

if Z [c,[2*" = + o for some n >0 ([3]). (See Remark 21 in this
k=1

paper.) Other approaches to this problem are given in [1] and [2].

The first part of this paper gives a detailed proof of the result

announced in [9].

A function f(z) is said to possess the Peano curve property,
if it has the property stated in Corollary 3. The Peano curve property
was first discussed by R. Salem and A. Zygmund in [11]. Corollary
3 is not new. (See [7].) Our theorem is a solution to the above pro-
blem and useful to discuss the Peano curve property of lacunary
power series.

2. Preliminaries.

We denote by D(w,r) the open disk with center w and
radius r.

LeEMMA 4 ([4]). — Let 2 be a positive integer and g(§) an
analytic function in D(w,r) such that |g®(w)l =y, and
189 <y, ED(w,r). Then

g(D(w, 1) D D(g(w), n() r*yi*y; "),

where 1(R) is a constant depending only on %.

LeMMA S ([12)). — If a lacunary power series

hz) =Y a,z"% ,my, Im, =>q > 1
k=1
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satisfies the conditions lima, =0 and Y lagl =+ oo, then,
for every complex number o , there exists a point t q in [0,2m)

k
. i ) i

such that lim h(re''®) = lim > a,em’t°= a.
rt1 k-»uo/=l

Let £ be a straight line not passing through the origin. We
say that a point ¢ is situated to the right of £ if it is contained
in the closed half-plane limited by £ which does not contain the
origin. We denote by £(¢,r) the straight line of distance (from
the origin) r, which is perpendicular to the ray {¢{x ; x = 0}.

LEMMA 6 (Lemma 4 in [12]). — There exist two constants
0<A=A, <1 and B = B, = 1 depending only on q > 1 with
the following property: For every lacunary polynomial

Q(r) = i a.e

k=1

imgt
’ mk+1/mk > q ’

n

every straight line £ of distance (from the origin) A Y. la,| and
k=1

every interval 1 in [0,2m) of length B/m,, there exists a point

¢ in 1 such that Q(§) is situated to the right of £.

LEMMA 7. — Let d,d',r, A be as in (Fig). If 0< A<
and d = {(A? + 1)/A}r, then d' <d — (A/2)r.

(Fig.)
r d

Ar .
\_/(;\/'\—-/
Proof. — This lemma is analogous to Lemma 6 in [12]. Since
d? < (d— Ar)* + r*, we have
d? - d*>2Ard — (A2 + 1) = Ar{2d — (A2 + 1)/A-r} =0,
and hence
d—d > Ar{2d — (A2 + 1)/A-r}/2d = Ar{]1 — (A2 + 1)/A-(r]2d)}

and the lemma follows. = (A/2)r,
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n

LEMMA 8. — Let P(%) = Z a,exp(m;§) be an analytic func-
k=1

tion satisfying my,,/m, = q > 1. Then, for every complex

number w, there exists a non-negative integer 2 = Q(w ;P) with

2<onlogn (0 =0, =10(1 + 2/logq)) such that
PO (w)| = 1/2-m} la;| exp(mRew) (1 <k <n). (4)

Proof — In the case where n =1, (4) evidently holds with
2 = 0. Suppose n = 2 and set

n
P,= 2, m? a, exp(m; w)
k=1

& =m} la, | exp(mRew) (1 <k<n) Q)
% ner =0

Vo = Jrax, % ®=0.

Let A\ be the first integer such that ¢* > 5n (k> 1). Then
2Aan<onlogn. Hence it is sufficient to show that, for some
pO<p<n), (8),: Py, =1/2.V,,, .

Put j, = 1. Then the following two cases are possible:
(%), %o,io >5n0, (Gp<k<n+1l)

(*)o X, j, S Snog,  forsome jo <k<n+1.

If (+),, then (§), evidently holds. If (x),, then a set
{k >jo;a,\,k>a)\,io} is not empty, according to q* = 5n. Let
j, be the first integer in this set. Then the following two cases
are possible:

(%)) %y, >5n0y, , (G;<k<n+1l
()} Uy, j, S SN0y, forsome j, <k<n+1.
If (x),, then (§), holds, since

A
I Pl >°‘2A,il - 2 Uk — Z Ay, My
k> k<j;

= 4/5 an,il — a)"il Z m’t = 4/5 a2A:i1 - az)‘,il Z (mk/m,‘l)k
k<jy k<j,

>4/5 a5, — (@ = D7V, > 120, = 1/2:7,, .
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If (x)], then a set {k>j, ;a5 >0y, ;) is not empty. Let
j, be the first integer in this set. Then the following two cases are
possible :

(%), %gr, i, >5noy,, (G, <k<n+1)

(*); Up,j, S SN0y, forsome j, <k<n+1.

If (x),, then (§), holds. If («);, then we define j, and consider
corresponding two cases (%), , (*)'3 by the same manner as above.
If (+);, then (§); holds. We repeat this discussion.

Since j, <j, <:-- < n, there exists 0 <» <n such that
(%), does not occur. This signifies that (§)“ holds for some
os<u<n.

LEMMA 9. — Let (my),_, be a sequence of positive integers
satisfying my,,/m, 2 q >1 and (b,) a sequence of non-negative
numbers satisfying

b, <1/2 3 b (k>1), lim b, =0, (6)

j=k+1

oo
k=1

where i b, need not be convergent. For every positive integer
k=1
I', we put
uy=mrb,, U, =max{y;j<k}, U =0 N
ve=m by, V=3 v, =2 mTh (k>1).
>k i>k
We denote by K = {k,},., (k,,, >k,) the totality of all integers
k for which u, 2 U, and v, 2V, .

If T' satisfies
1-q¢7 T —(g" -1 >3/4, (8)
then

3 b, 212 3 b (31, ©)
M=v

x
Tnae

14

where (9) signifies ) b,‘n =+oo, if ¥ b =+0c0.
m=1 k=1

Proof — We first show lir,{\supuk =40, If Y b, =+00,
o 0 - k=1

then ( > m;r) SUp u; >) b, =+0c0, and hence limsup u, = + o,
k=1 k=1 k=e
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If 2 b, <+ oo, then, forevery k > 1
k=1
by<12 ¥ b 2 m="m,

123 b
j=k+1 j=k

supu =1/2 2 (mk/m) m, sup u;
j=k >k

< {2(1 - tI“‘)}‘l m; T sup

and hence u, < {2(1—¢ ")} supuy; <2/3-supu,, which gives
limsup u, = + o, 1>k =k

k—>oo

Let {K,J,_, (K,,;, > K,) be the totality of all integers k for
which u, > U,. Then & C {K,},_,. For every k satisfying
K, <k<K,,,, wehave u, < uy_, and hence
k)

r(K,—
b < (my [m) b <q " Py
Therefore
w1 w1 (K, - k)
Zb X X betbg <Y by, 2 q "
n=v K <k<K +1 “ n=v K <k<K (10)

by, <(1-g™")! 2 K, <u.

=p

Let ®' denote the totality of all integers k for which v, <V, .
If & is empty, then {K,},_, = ® and (9) follows from (10).

Suppose R’ # ®. We have, forevery kER’,
< Z (mk/m,)r bl < 2 qr(k_i)bi,

>k i>k
- and hence K

1

IR i L
K, <k<K,  kER' k=K, j>k
v M K
< (qF - 1! ﬁ b + ¥ g"MWPy fan
k=K, k>K,

Ky
=@ -1 Y b, +o(l) (v<up).
k=Kp

Remove R’ from {K,},_,. Then the resulting set equals &. By
(10) and (11), we have
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u
Y bg =2 b - z by
v<n<up, K, ER' n=v Kv<k<K“,kER'
Ky
2{1-q¢T—(@" -D"' Y b +o()
k=K”
Ky
=12 Y b, +o(l) (v<p).
k=Ky

Letting u tend to infinity, we have (9).

3. The case where Y. |c,| =+ .

—
k=1

Let f(z) = 2 ckz"" s Ngoy/n 2= q@>1 be a lacunary power
k=1 0o
series in D satisfying ) l¢;| = + . By the Fuchs result in [4],
k=1 .
we may assume the condition lim ¢, = 0. We consider an analytic
function ke
F(§) = f(ef) = 3, ¢ exp(n, $) (%) (12)
k=1
in a domain U = {{; Re¢{ < 0} and shall show that it takes every
complex value infinitely often in U* = UN {{; 0 < Im¢ < 27}.
We use two fixed integers v, N, depending only on ¢, which
are defined as follows.

DEFINITION 10. — Let vy =1, be an integer satisfying (8)
(T'=19) and N =N_ an integer satisfying :
g N (g -1 < 1/8e (13)
H(x,N;v,0) =exp{(2y +1+ 40N?) logx — x} < 1/8e (14)
forall x = qN, where 0 = g, is the constant in Lemma 8.

Now we define u,,U,,v,,V,,&={k),_, by m,=n,,
b, =lc,l, T =7 in Lemma 9. Then we have the following

(*) The author expresses the thanks to Prof. W .H.J. Fuchs, who suggested
to use this transform.
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LemMMA 11. — For every complex number w with Rew = —1/n,,
there exists an integer L =L(w;F) with v +1 <L <y + 1 + 40N?
such that

IFM(w)| = 1/2e- {n,‘“ el — 1/4- n,“'"Uk - 1/4. n,‘;""’ Vil 15)
IFD@) < C{nt el + nk=7U, + nb*7V,}
EDw, (1 —qgY/ny), (16)
where C=1/(g—-1)+ w! q* (w =2y +1 + 40N?).

Proof. — To define L(w ;F), we consider an analytic function
P.(5) = 2,° n;’“c, exp(n;§), where E;’ denotes the summation
over all j satisfying ¢~N <n;/n, <gN . Then the number of terms
of P,(¥) is at most 2N. By Lemma 8, there exists a non-negative
integer 2 = Qw;P,) with 2 < 0(2N)log(2N) < 40N? such that
IPO(w)l = 1/2- n? {(n)*! | ¢, |} exp(n, Rew) = 1/2e-n1**2 | ¢, |. (17)
Thenweput L =7 + 1 + &(w;P,). Evidently

Y+ 1<L<vy+1+40N?.

(15): Put ¢,() = Z‘,'c, exp(n,{‘) and ®,(8) = E;'c,. exp(nl.g'),
where 2/' denotes the summation over all j satisfying n; /n, < q N
(; if such j's do not exist, ¢,($) =0,) and E," the summation over
all j setisfying n,/n, > qN . Then

FO(6) = ¢ (0) + PO + o1 (8).
We have
160 < Zjnf el < Zjnf~ Uy = Zi(n/n) " ng™"U,  (18)
< Z‘,’(n,/nk) n,‘;”’Uk <q Mg - 1)“n};‘7Uk < 1/8e- n‘,;"' U,
according to (13). We have
| (w)| < Z}' nF | ¢l exp(n; Rew)
= nk T {(ne/m) 1¢;1} {(ny/m )V exp(—n;/ny)} (19)
< g (2] (ne/n))" I¢;l} sup {H(my/my N5 v, 0) 5 my/my > qN}
<1/8e-nL*'V,,
according to (14). Thus we have, from (17), (18) and (19),
IFO(w)| = [PO(w)| — 6 (w) | — 19 (w)
> 1/2e-{nglc,l — 1/4-ny=7U, — 1/4.nk*7V, ],
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(16): Put ¥, (§) = X ¢iexp(n;8) and ¥, (§) = Y ¢;exp(n;?),
j j>k

<k
where ¥, ($)=0 if & =Il . Then F(§) = ¢, (5) + ¢, exlp(nkg‘) +¥.(0).
Let {€D(w, (1 — g~ ")/n,). We have evidently

Hex exp(n, )Y < ngleg | < Cnklel.

By the same manner as in (18), we have [P ()<Y, (n,/n,) nt-7U,.
i<k
The right-hand side is dominated by (¢ — 1)"'nL~"U, < Cnk=7U,.
We have
wOE@I< Y n’ | ¢;l exp(—n;/qmy)
>k
= pnlL 2 v L+y _
ne 2 {(ne/n)Y 161} {(n;/my)"*" exp(—n;/qn,)}
P>k
S@L+7)! ¢t n}“ » (ne/n) Il < Cn,lc'*”Vk .
i>k

These estimates give (16).

LEMMA 12. — For every complex number «w with Rew = —1 /"k,, ,

we have F(D(w, (1 — q“)/nku)) O D(F(w), nlcyl), where n=mn,
is a constant depending only on q.

Proof — Let L = L(w;F) be the integer in Lemma 11. Since
uy, >V, and v, >V, , we have [FO(w)l>1/4e-n Ic,|
and |FO(®)| < 3Cnk Il (§€D(w,(1 - g Y/n)). Hence
Lemma 4 shows that F(D(w, (1 —q“)/nkp)) contains the open
disk with center F(w) and radius

(L) {(1 — g~ Y/} {1/4e-ng, I(:,‘pl}L+1 {3Cng, !Ckvl}—L

=n(L) {(1 - q7")/12eC}* (4e)~! | ¢, I (= n'(L) leg, |, say).
Putting 7 = min{n(V); vy + 1 <L <~y + 1 + 40N?}, we have the
required inclusion.

Now we show that, for a given complex number a , F({)
takes a infinitely often in U*. For the sake of simplicity, we
assume a = 0; in fact, the following discussion will be indepen-
dent of the given .number a. Let us remember the notation

& = {k,},_,. By Lemma 9, we have ) [¢,|=+c. Put
v=1
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r, =_1/”k,,’ O,={¢;Ret <r}, O =0,N{{;0<Im¢<2m}
(v=1). For a given v' 21, we assume that F({) does not take
0 in U*-0}. (Since F(¢) =F(E¢ +2m) ({€U), this equals
F(¢)# 0 in U— O, .) If this assumption leads to a contradiction,
it yields that F({) takes 0 in U* - O, .

To show a contradiction, we put
& = min {|F(¢)|; Ret = r,,} = min {|f(2)|; [z|=¢"},R,=0,-O,. ,

8, =min {IFQ)|; $E€ER}=min{If(2);e” <|z|<e*} (v>).
Then 8,8, are positive, according to our hypothesis. By Lemma
5, lim §, = 0, and hence there exists »'' > »' such that

Y —>oo
§, <8 (v=v"). Choose a sequence (w,),_,» (w,ER)) such
that &, = |[F(w,)|. Let »>»". By the minimum modulus

principle, Rew, =r,. By Lemma 12,
F(D(w, , (1 — g7/, )) D D(F(w,), nlcy 1.
Note that », + (1 — q“)/nku =— l/anv <r,, . Since F(}) does
not take 0 in R,,, , we have
8,4y <min {IF®)1; §ED(w, , (1 —g™H/n )} <8, —nlc,|,

thatis, 8, — 8,,, = nlc,|. Therefore

8!1"= 2 (GV—89+1)>TI 2 |ck”|=+°°’

v=v'' v=v''

which is a contradiction. Hence F({) takes 0 in U* — O} . Since
v' 2 1 is arbitrary, the proof is completed.

4. The cas where ), |c,| <+ oo.
k=1

We need the following

LEMMA 13. — There exist three constants € =€, (0 <e<1/2),
p=p; W=W, depending only on q > 1 with the following pro-
perty: For every lacunary power series S(t) = Z a, eim"t, my,,/m.=q
satisfying - k=1

lal <K€ Y lgl<+oo (k>1) (20)

j=k+1
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and every complex number a satisfying

lal <p Y lal, (21)
k=1

there exist a sufficiently large integer E and a corresponding point
0g in [0, 2m) such that

E
la — Sg(8g)l < Wlagl, where Sg() =Y a.™  (22)

k=1
layl <Wlagl (k=E) (23)
E-1
Ge_, = 2 laglg*E-D < Wiag]. (249
k=1

We postpone the proof of this lemma to the next section. In
this section, we show that Theorem 1 follows from this lemma.

Let f(z)= Y, ¢z, ng,,/n, =q>1 be a lacunary power
k=1

series in D. For a while, we assume the condition (20), replacing
a, by c,, where € is not a required constant in (2) and e will
be determined later.

As in the preceding scigtion, we deal with F(¥) = f(ef) and

use two fixed integers 7, N, depending only on ¢, which are
defined as follows.

DEFINITION 14. — Let ¥ =7, be an integer satisfying (8)
("'=7) and W(q" —1)"* < 1. Let N = N_ be an integer satisfying
(13) and (14), with v replaced by 7.

Now we define u,,U,,v,, Vs, & =1{k,}]_, by m=n,,
b, =lcl, T =% in Lemma 9. Then Lemma 11 holds, with v, N
replaced by 5, N. Hence Lemma 4 gives

l

LEMMA 15. — For every complex number «w with Rew =—1 /"k.,’
we have F(D(w, (1 —q7")/n,.)) DD(F(w), Nlc, ), where 7 =7,
is a constant depending only on q.

Let a be a complex number satisfying |a| < p Z [c,l. We
k=1
define r,,0,, O:‘ (v >=1) as above. For a given »' =1, we assume

that F() does not take a in U*— O} (, that is, F(§) # a in
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U — O,,). Under this assumption, we shall show an inequality, which
will contradict (2) for a sufficiently small €.

To show such an inequality, we shall apply Lemma 13 to

S(t) = f(e'*). Put § = min {IF¢)—al; Ret =r,}, R, =0,— 0,

, =min {|[F@) —a|; ¢€ER,} (v>'). Then 8,8, are positive.
Note that

Jim max |F(- 1/n, + it) — S,(1)]
—> 00 X .
=kl--l{2 32 (n,/nk)lcli+ 2 |CII%=0'
j=1

j=k+1
By Lemma 13, vlgll 8,=0. For every integer E in Lemma 13,
we have E€ &, since

5 E-1 _
Ug =max{n) lc;|; 1<k<E-1}< ) nllc,l
k=
. E-1 - _ E-1 1 .
=nl Y (m/ng) lel <np ¥ Il @7* B
k=1 k=1

<q 7nlGg_, SWqg~7nllcgl = Wq~7Up Sug

and
Ve= 2 milcI<Wiegl ¥ n?
k=E+1 k=E+1
=Wog % (ng/n)7 < W(g¥ — D7 og <vg.
k=E+1

Hence there exists »'' such that E=k,, is an integer in Lemma
13 and 6, <& (v =2v'"). By the same discussion as in the preceding
section, we have 4., = n Z lckvl . By Lemma 9, we have

v=p''
R

ol =12 X legl=1/2 X lel.
k=E

v=p"' k=E+1
Let 6 denote the corresponding point with E = k., in Lemma 13.
Then we have, with W' =2W + 1 + W/(g — 1),

8,» < la —F(—1/ng + i6g)l

E o0
S[a—SgOp) + Y led(1—e ™"Ey+ ¥ [ e " "E
k=1 k=E+1

00

SWicgl + i (np/ng) le,l + Wicgl Y e "ki"e

k=1 k=E+1
SWicgl +{Gg_; +lcgll +W/(g—1)- gl

S{2W+ 1+ W/(g—D}lcgl =W lcgl.
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Hence we have -
Wicg| 22 2 lel. (25)
k=E+1
Now we put € =min{e,n/3W'} and, in addition to the
above assumption, we suppose that f(z) satisfies (2). Then (25)
shows a contradiction, and hence F({) takes a in U* — O} . Since
v' =1 is arbitrary, F({) takes a infinitely often in U*. Since

a is arbitrary as long as [a| < p Z [cxl, the proof is completed.
k=1

5. Proof of Lemma 13.

It remains only to prove Lemma 13. For the proof of this
lemma, we use fixed constants A,B,K,Z,€, depending only
on g, which are defined as follows.

DEFINITION 16. — Let A=A, and B= B, be the constants
in Lemma 6. Let K=K, ,, Z=1Z, be two positive integers and
€ =€, a positive number such that

2eKZ(A? + 1)/A < min {A/8, A?/16B} (26)

Y, = 3A/i6 + (A/8 + 2€KZ) + Bg~¥*1(qg — 1)1 (A?%/16B + 1) (27)
—{A/2-(1 - €K —.2/Z) —(eK + 2/Z)} {1 — (A/8 + 2eKZ)} <0

A/2 —2/Z — Bqg ¥ (¢ - 1)"'(1+2/Z) > 0. (28)

Such a 3-tuple (K,Z,€) exists, since we can choose K,Z
such that (27) and (28) are valid, with € replaced by 0, and after
the choice of K,Z, we can choose € in such a way that the
required inequalities are valid.

Now let S(f)= Y ace™, my,,/m,=>q>1 be a lacu-
k=1
nary power series satisfying (20), where € is the constant given
above. For the sake of simplicity, we write, for a power series
R(?) = 2 ﬁ(n)e’"’, IR|| = 2 If{(n)l. We shall divide S(¢)
n=0 _ . n=0
into polynomials A,(#), A,(8),---;A,(8), A,(8),---, where the
number of terms of each Km(t) is K and that of each A, (¢) is
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less than or equal to K(2Z —2). Let Zg(t) = 2 akeim"t
K(2—-1)<k<KQ
(2=1). Choose a sequence (%, ):;’,= , of positive integers such that

12, Il = min (13,1l ; Z(m — 1) <2 < Zm}. We put
Z,,,(t) = ng(t), A, (D)= Z Kn(t) (m=1, %,=0),

2,1 <2<2,,

where A,(£) =0, if £ = 1. Note that
AN < 1Z- (AN + 1A, (m=>1). (29)
We put
m

_ im,t =
(Tm(t)-— "Zﬂ ae ¥, T(H=0 (30)

Ym
k—
En =2 laglq ™, g=0 (m=>1),
k=1

gvm = (the largest exponent occurring in 4,,(?))

where v, =g, =0, T, (1)=0, if A (¢f)=0. Now we break up
the proof of Lemma 13 into several steps.

LEMMA 17. — Forany m=1,

1A, 0l + 14, | < 2eKZ IS — T, (31)
2; Al < (€K + 2/Z) IS — T, I (32)
gl 1A (1=K —2/Z) IS T, | (33)
Y & <a(@—D" (g, +IS—T,l}. (34)

r

m

Proof — (31): By (20), we have, for every k=2v,,
la,| <€lIS—T,Ill. Since the number of terms of A, + A, is
less than 2KZ, we have (31).

(32): By (29), we have

“2 IAI<UZ % (A0 + 14,,,0) <2/Z- IS =Tl

r=m+1 r=m+1
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Since the number of terms of Zm is K, we have
14,1l < KIS —T,l,
according to (2£0). From these inequalities (32) follows.

(33): Since IS—T,ll= ¥ AN+ Y 14,1, (33) follows
from (32). rem+1 r=m

(34): Suppose v,, # 0. Then we have

o0

g =3 Z lald ™" < ¥ ¥ laglg*n
k=1

r=m n=y

]
8
s

m
l"Ifl oo oo
= Z Z qk n g Z Iakl 2 qk—-n
k=1 k=vpy+1 n=k
=q(q -1 sz Iaqu_"'+ Y lal
k=1 k=v,,+1

=q(q—- D" {g, +IS-T,l}.

Suppose v,, =0. Then m =1 and », =0. Since g, =0, T(H) =0,
we have
g =Y8<q@-1D"{g +IS-T,I}
r=1 =2
' <q(q- D7 {g, + IS—T,I}.

LEMMA 18. — Suppose that there exist a non-negative integer
J and a corresponding point s; in [0, 2w) such that

la —T,(s)| < A/8- IS - T,

and g; < A?’/16B-|IS — T,ll. Then there exist a pair (j',J"),
] <j'"<1)' of integers and corresponding points Sjtyeeey Sy in
[0,2m) verifying the following conditions: with X\, = |a — T, (s,,)]
(G'sm<1]), '

A, = (A2 + D/ANA,, N G'<m<I) (35)

Ay SN,y — A2-NA N+ 1A, 1l + Bg%g,,_, (j'<m <J)(36)
(A2 + D/A- 1A 1 >N = N — A/2- 1Al

+ 1A, _, Il + Bg ®g._, (3D

gy < (A2 + D/A- 14y, 1. (38)
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Proof. — (Definition of j'): Let j' be the first integer satisfying
T, — Tl = A/8-IS—T,ll (m=>=>7J). We show the following ine-
qualities

X,, = AlT,, — Tyl — Bg; = (A% + /A 14, 1| (m=j")39)
ind
Y = {3A/16- IIS— T, Il + IT;, — T, I}
—{A/2-(1 —€K—2/Z) —(eK + 2/Z)} IS—TIl (40)
+Bqg (g - D7 {g + IS-T,l} <0.
Let m>j'. Since [T, — T, > IT, — T, > A/8-[IS— Ty
and Bg; < A?%/16-||S — T;ll, we have, from (26) and (31),
X, = A?/16- IS — T,|l > A?/16- IS — T, Il > A>/32¢KZ - |A,,, I

= (A% + .
and hence (39). (A D/A- 14,411,

Since
NTy = Tyll = N Ty — Tyl + 1Ay I + 14,11
< A/8-IIS—Tyll + 2¢KZIS— T, _, Il < (A/8 + 2eKZ) IS — T, I,

IS —Tpll = IS =Tl = IT; — Tyl = {1 — (A/8 + 2eKZ)} IS — Tyl
and
g +IS—Tull <g + IIS—T,ll <(A?/16B + 1) IS — T, I,
we have Y/||S — T,
< 3A/16 + (A/8 + 2eKZ) + Bqg—X*1(g — 1)"1(A%/16B + 1)
—{A/2-(1 — €K —2/Z) — (eK + 2/Z)} {1 — (A/8 + 2€KZ)}
=Y, <o.
(Definition of sl.,): Applying Lemma 6 to Q(¢) = T;.(¢) — T,(?),

L=L(—a+T(s), AliQll) and I= (s, — B/u,s; + B/u) (u: the
smallest exponent in Q(¢)), we choose Sjr in I so that

Since [{a=Ty(s)} = {T;:(5;) — T, (50} = ANT, = Tyl

>\i' = Iﬂ - T,'(S,l)l
= [{a - TJ(SJ)} - {T,"(Si') "Tj(s,")} - {T](S,") - T](Sj)}l
d
= A"TI' — T]" - IS’-I - SJI d_t TJ()“
vy

> AT, — T, —B/u X, my la,| = AlT, — T, |l — Bg,
k=1

= X,-l = (A2 + 1)/A ° "A,"+1 ” s
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(35) holds for m = j'. Let us remark
)\i' = [{a — TJ(SJ)} - {Tj'(si') - T,(Sir)} - {T](si') - Tj(s] )H

Sla—Ty(s)l + 1T = Tyl + |55 — 551

d T, ( )'
— Ty(-
dt 41

< A/8-lIS-Tyll + IT; — T,Il + Bg,

< 3A/16-1IS—-Tyll + IT; — Tyl

(Definition of J'): Applying first Lemma 6 to Q(¢) = Ay, (D),

£ =L(a—Tu(s), AllQll) and I= (s, — B/, s; + B/uw) (u: the
smallest exponent in Q(f)) and using next Lemma 7, we choose
6" in I so that [{a —T;(s)}— A, () <N, —"A/2- 114,01l
Then |a — Ti.“(()')l

= o = Tp(sp) — 8,4, (0"} — ;") — {T;:(0") — Tpu(s;)}
— d
SN = A2 18 I+ 1A+ 16" — s,-.In = T,..(-)ﬂ

SN = A28, Il + 1141+ Bg X g, (=T, say).

We distinguish the following two cases:
(a) max|a— T, 0)< T,

(b) maxla - Ty, (0)] > T.

If (a), we choose Sj41 > With the aid of Lemma 6, so that
o =Ty (spri)| 2 AllT;,, Il Then we have, from (39),

la =Ty (500 )1 2 AllTppy 1 = ANT,y, — Tyl
> X,y = (A2 + D/A- 1A, 1,

and hence (35) and (36) hold for m = '+ 1. If (b), we choose Sjr+1 s
by the continuity of |a — T;,,(-)|, so that |a— T, (s ) =T.
Then (36) holds for m =j + 1.

If )\,.,H < (A? + D/A- ||A,..+2 I, then we put J =j"+1.
If Ny = (A? + D/A-1I4;,, 11, we find s, in the same manner
as we found Sjtay - We continue this process until we reach an integer

J' satisfying (37). Such an integer exists; otherwise, we have, from
Lemma 17, (36), (40) and (41),
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0 <lim inf A, < liminf(\,_, — A/2- 14,1l + IIA,_,|l + Bg~¥g,_))

r—>oo r—>oo

<liminf (\,_, — A/2-(IA,_,ll + 114, 1)
+ (1A, + 1A, _ ) + Bg=%(g,_, +&,_ )}

S <N -A2 Y AN+ Y IAI+BgKY g

r=j'+1 r=j' r=j’
< {3A/16- IS =TIl + IT; — Tyll} — A/2- (1 — €K — 1/Z) IS—T; I}
+ (eK + 2/Z) IS— T; ll + Bg= % (¢ — D7 {g; + IS = T}
=Y<o0,

which is a contradiction.

(Proof of (38)): Since A, _, = (A2 + /A - ALl O<A<I,
we have Aj_, — A/2-|Apll = (|Ayll. Hence we have, from (37),

VJI

&y = Z |ak| q
k=1

< Ny — A28} + 1Ay, Il + Bg=X gy, = A,
< (A7 + D/A- 1Ay,

k—vyr A
V<AL + A I+ g K gy

LEMMA 19. — Let |a| < A/8:||S|l. Then there exist a suffi-
ciently large integer 1" and a corresponding point sy. in [0, 2m)
such that | a — Tp.(s;0)| < (A2 + D/A- | Aoy, || and

g < (A2 + /A |4y, Il

Proof — Since |a|l < A/8.lS|| and g, = 0, the integer
J = 0 satisfies the conditions in Lemma 18 (, where s; = 0).
Hence there exist J' and a corresponding point s;, such that
Ay S (A2 + D/A- Ay, Il and gy < (A% + 1)/A- 1A, l. By (26)
and (31), we have

A/8-1IS—Tyll

(A2 + D/A Ay, I < 2eKZ(A? + D/A-IS=Tyll < ’
AY/16B-[IS— Ty,

and hence N\, <A/8-[IS—Ty,ll and g, <A?/16B-|IS—Tyll.
This implies that (J', s;.) also satisfies the conditions in Lemma 18.
Repeating this discussion, we obtain a required (J'"', Syr) .
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LEMMA 20. — There exists a constant W = V_V(q ,A,B,K,Z)
with the following property: For every complex number a
(lal < A/8-IS|l) and the associated integer J'' with a in Lemma 19,
there exists a point tg in [0,2m) such that | a— Tg(tp)l < w AR
and gy < WIAgll, where F s the first integer satisfying
14,1 = max 14,1 (m>1").

_ Proof. — Set W = (A2+ 1)/A + (1 +2/Z)q(q — 17" and
W=max{W', (A2 + 1)/A+1+3/Z+Bg X' (g-1)"2 (W + 1/2)}.

We shall show that W is a required constant. If F =1J", we
put tg = s;», where s;. is a point corresponding to J''. Then
the required inequalities evidently hold. Suppose F #J". We have,
forevery J'' <m <F,

9,:' k—v m m—-1
En= 2 laglg ™<gu+ 3 NANg™™+ X l4Alg ™
k=1 r=J""+1 r=J"
m—1

<g +q(@— DA+ 1YZ X (A0 + 114,,,1) g™ (42)

r=J"

<gp + (1+2/2)q(q — D7 AR < (A2 + D/A- 1Ay,
+(1+2/Z)q(q — D)7 1Al < W | Agll .
In particular, gp < W' [|Agll < W(ALIl.
For the choice of #;, we define inductively points {tm}f;,zl.,+ .

in [0,27) such that, with X, = |a —T,(,)] J"+1<m<F),

S X, < {(A2 + 1)JA + 1} 1A, + 14, _,I or

- - _ (43)
( Aw SN,y — A2-11AIL+ 1A, Il + Bg g, , .

Set tyi,, = s;». Then we have
Noreg = la = Tyog (sp) | S Ta = Tyo(sy) | + 1400l + 114y,

< {(A2 + D/A + 134, Il + 1A
m—1 have been defined. If
<(A* +D/A-N1AN,

Suppose that f;.,,,---, ¢
)\m—l

m—1 - Then

Ny SNy + 18, I+ 1A, < (A2 + D/A+1}IA, 1L+ 11, .

weput ¢, =t
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If A,_,>(A?>+1)/A-||A,ll, then, using Lemma 6 and 7, we
choose a point f, in (f,_; — B/W, t,_, + B/w) (W: the smallest
exponent in A,) so that

1{a— me1Cme)} = 8, (8D SN, — A/2- 114,11

Then A, <\, , — A/2- 1Al + IIA,,_,Il + Bg~¥g, _,. Thus
{t, } _ysy are defined.

Next we show that I is a required point. Let j' be the
last integer satisfying N, < {(A?2 + 1)/A + 1} 1A, Il + IIA,,, Al
J"+1<m<F).If /"—F then

< {(A? + /A + 1} | Agll + ||Kp_1|| < {(A?+ D/A + 1} Al
+ 1/Z - (1Ap_, Il + 1Al < {(A2 + 1)/A + 1+ 2/Z} |Ap | S W 1A

Hence ..-the required mequahty holds. Suppose j" # F. Put
d= Y lAa,ll, d= 2 1Al and g = Z &, - Then

m=j"+1 m=j"

T<UZ S (1A + WAy l) <2Z-d + Z 1A
m=/" <2/Z-d + 1/Z .|| Al
and
2<q(g@ -1 {gp + ITp_; — T ll} Sq(g— 1)~ {W gl +d +d}
<q(q—1D"1(1+2/Z)d +q(g— 1) (W +1/Z) Al
By these inequalities and (28), we have
Ne < Aoy — A/2-IAgH + A Il + Bg~ X gp_,
<<\ —A/2-d+d+Bg¥g
<Nw—A2:d + Q2/Z-d + 1/Z- | Al
+ Bg~**1(q — D7 {(1 +2/Z)d + (W' +1/Z) | Ag1l}
SNo + {1/Z + B ¥ (q = )7' (W' + 1/2)} | Ag I
< {(A? + /A + 1314l + 1D _ |
+{1/Z + Bg~¥*1(q — )" (W' + 1/2)} | Agll
< {(A% + D/A+ 11800+ 1Z - (1Az_, | + 114,01
+{1/Z + Bg™¥* (g — ) (W' + 1/Z)}IAg
< {(A2+ 1)/A + 1+ 3/Z + Bg~%* (g — D' (W' + 1/2)} 1A
<SWI(Agll.
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This completes the proof of this lemma.

Now we give three constants €, p, W in Lemma 13. Let
€ be the constant given in Definition 16. Put p = A/8 and
W = max {2KZ(W + 1), ¢*®2W2KZ}.

Let |a|<p ) la, | = A/8-1ISI| and (F, t&) be as in Lemma
k=1
20. We choose an integer E such that ag is one of coefficients
having the largest modulus in Ap. Then [[Agll <2KZ |ag|. Put
0g = tp . Then (E, 6g) is arequired pair, since
la— Se(0g)l < la —Te(tp)l + 1T — Sgll < (W + 1) 1Al
< 2KZW + 1) lag | < W agl
sup lal < sup ALl = NApll < 2KZ |ag] < W |ag|

E-1
—(F— —E+1 —_
Geg_y = 3, la1q* B0 <gF " g < g™ 2W | Al

k= —
' < g*XZW2KZ |agl < W |agl.
This completes the proof of Lemma 13.

Remark 21. — We also know that an unbounded lacunary
power series f(z) takes every complex value infinitely often in
every sector {z€D; a<argz <pB}. In fact, let us note that a
set {t€[0,2n); ’11_{r} | f(re*)| = + o} is dense in [0,2m), if

’}im ¢, = 0 ([12]). Hence we may assume
lin‘ll | f(re’)| = li_{q [f(re®)| = + oo,

The proof is now along the same line as the proof of Theorem 1.

BIBLIOGRAPHIE

[1] J.M. ANDERSON, Boundary properties of analytic functions with
gap power series, Quart. J. Math. Oxford, (2) 21 (1970), 247-256.

[2] K.G. BINMORE, R. HORNBLOWER, Boundary behaviour of functions
with Hadamard gaps, Nagoya Math. J., 48 (1972), 173-181.



156 T. MURAI

[3] I.L. CHANG, On the zeros of power series with Hadamard Gaps-
Distribution in sectors, Trans. of the Amer. Math. Soc., 178
" (1973), 393-400.

[4] W.H.J. Fuchs, On the zeros of power series with Hadamard gaps,
Nagoya Math. J., 29 (1967), 167-174.

[5] W.H.J. Fucas, Topics in Nevanlinna theory, Proc. NRL Confe-
rence on classical function theory, Math. Rec. Center, Naval
Research Laboratory, Washington, D.C., 1970, 1-32.

[6] J.P. KAHANE, Lacunary Taylor. and Fourier series, Bull. Amer.
Math. Soc., 70 (1964), 199-213.

[7] J.P. KaHANE, G. WEIss, M. WEiss, On lacunary power series,
Arkiv for Math., B.5 No 1 (1963), 1-26.

[8] T. Mural, Sur la distribution des valeurs des séries lacunaires,
J. of the London Math. Soc. (2), 21 (1980), 93-110.

[9] T. Mural, Une conjecture de Paley sur séries de Taylor lacu-
naires, C.R.A.S., Paris, t. 290 (2 juin 1980), 947-948.
[10] R.E.A.C. PALEY, On lacunary power series, Proc. Nat. Acad.
Sci. US.A., 19(1933), 271-272.

[11] R. SALEM, A. ZYGMUND, Lacunary power series and Peano curves,
Duke J. of Math., 12 (1945), 569-578.

[12] M. WEiss, Concerning a theorem of Paley on lacunary trigo-
nometric series, Acta Math., 102 (1959), 225-238.

[13] G. WEIss, M. WEIss, On the Picard property of lacunary power
series, Studia Math., 22 (1963), 221-245.

[14] A. ZyGMUND, Trigonometric series I, II, Cambridge, 1959.

Manuscrit regu le 22 aout 1980.

Takafumi MuURAI,
Department of Mathematics
Faculty of Science
Nagoya University
Chikusa-Ku
Nagoya, 464 (Japan).



