MARIUS VAN DER PUT The class group of a one-dimensional affinoid space

Annales de l'institut Fourier, tome 30, nº 4 (1980), p. 155-164 <http://www.numdam.org/item?id=AIF_1980__30_4_155_0>

© Annales de l'institut Fourier, 1980, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Fourier, Grenoble 30, 4 (1980), 155-164.

THE CLASS GROUP OF A ONE-DIMENSIONAL AFFINOID SPACE

by Marius van der PUT

Introduction.

The field k is supposed to be complete with respect to a nonarchimedean valuation. Moreover we will assume that k is algebraically closed. An affinoid space Y over k is the set of maximal ideals of an affinoid algebra. The standard affinoid algebra is $k\langle T_1, \ldots, T_n \rangle =$ the set of all power series $\sum a_n T_1^{\alpha_1} \cdots T_n^{\alpha_n}$ converging on the closed polydisk

$$\{(t_1,\ldots,t_n)\in k^n|\text{all}|t_i|\leqslant 1\}.$$

An affinoid algebra is a residue class ring of some $k \langle T_1, \ldots, T_n \rangle$. An algebraic variety over k can be studied locally by its analytic structure over k, that is by means of affinoid spaces.

We show that a one-dimensional, normal, connected affinoid space Y is an affinoid subset of a non-singular, complete curve C over k (Thm 1.1). If Y has a trivial classgroup then Y is in fact an affinoid subset of \mathbb{P}^1 (Thm 2.1). A curve is locally a unique factorization domain (U.F.D. for short) if and only the curve is a Mumford curve (i.e. can be parametrized by a Schottky group). In general the class group of Y can be expressed in terms of the Jacobi-variety of C (prop. 3.1).

Some examples show the connection between the class group of Y and the class group of the (stable) reduction of Y. For k-analytic spaces we refer to [2], [3]. I thank A. Escassut for bringing the problem on unique factorization on affinoid spaces to my attention. Related questions are treated in [1].

1. Affinoid subspaces of an algebraic curve.

A curve C (non-singular and complete) over k has a natural structure as (rigid) analytic space over k. This structure is given by a collection

of subspaces Y of C, called affinoid, and a sheaf $\mathcal{O} = \mathcal{O}_{C}$ with respect to the Grothendieck topology of finite coverings by affinoids. For any Y, $\mathcal{O}(Y)$ is an affinoid algebra (1-dim. and normal) over k with $Sp(\mathcal{O}(Y)) = Y$. We want to show :

1.1. – THEOREM. – Every 1-dimensional, normal, connected affinoid space Y = sp(A) is an affinoid subspace of a non-singular complete curve.

Proof. - Y is called connected and normal if the algebra A has no idempotents $\neq 0, 1$ and A is integrally closed. We use the notations $A^{\circ} = \{f \in A | ||f|| \leq 1\}, A^{\circ\circ} = \{f \in A | ||f|| < 1\} \text{ and } \bar{A} = A^{\circ}/A^{\circ\circ}, \text{ where}$ $||f|| = \max \{|f(y)| | y \in Y\}$ is the spectral norm on Y. The algebra \overline{A} is of finite type over \overline{k} = the residue field of k and the algebraic variety $\bar{Y}_c = Max(\bar{A})$ is called the canonical reduction of Y. There is a natural surjective map $\mathbf{R}: \mathbf{Y} \to \overline{\mathbf{Y}}_c$, also called the canonical reduction. A pure covering of an analytic space X, is an allowed covering $\mathcal{U} = (U_i)$ by affinoid spaces, such that for every $i \neq j$ with $U_i \cap U_j \neq \emptyset$, the set $U_i \cap U_j$ is the inverse image of a Zariski open set V_{ij} in $(U_i)_c$ under the map $U_i \to \overline{(U_i)_c}$. The reduction $\overline{X_{\mathscr{U}}}$ of X with respect to \mathscr{U} is obtained by glueing the affine algebraic varieties $\overline{(U_i)_c}$ over the open sets V_{ii} . The result is an algebraic variety over \bar{k} . If X is separated then the $U_i \cap U_j$ are also affinoid, the V_{ij} are affine and equal to $(U_i \cap U_j)_c$ and \overline{X}_{u} is separated. If X is non-singular, 1-dimensional, connected and if X_{a} is complete then X is a non-singular complete curve over k (see [2] ch. IV 2.2).

Our proof consists of glueing affinoid spaces Y_1, \ldots, Y_s to Y such that the reduction of $X = Y \cup Y_1 \cup \ldots \cup Y_s$ with respect to the pure covering $\{Y, Y_1, \ldots, Y_s\}$ is complete. Then clearly Y is an affinoid domain of the algebraic curve X. The 1-dimensional space $\overline{Y_c}$ lies in a complete 1-dimensional Z such that $F = Z - \overline{Y_c}$ is a finite set of non-singular points. Suppose that we can find for every $p \in F$ an affinoid space Y_p with canonical reduction $R_p: Y_p \to (\overline{Y_p})_c \subset Z$ where $(\overline{Y_p})_c$ is a neighbourhood of p and such that

$$\mathbf{Y}_p \supset \mathbf{R}_p^{-1}((\mathbf{Y}_p)_c \cap \mathbf{Y}_c) \simeq \mathbf{R}^{-1}((\mathbf{Y}_p)_c \cap \mathbf{Y}_c) \subset \mathbf{Y}.$$

Then we can glue Y_p to Y. The space $X = YU \cup Y_p$ has reduction Z which is complete. So the glueing has to be done locally on Y and $\overline{Y_c}$. The component C of Z on which p lies can be projected into $\mathbf{P}^2(\overline{k})$ such that (the image of) p is still non-singular. A good projection onto P^1 maps p onto o and o is an unramified point for the projection. Replacing Y and $\overline{Y_c}$ by neighbourhoods of p we may therefore suppose :

$$\overline{\mathcal{O}(\mathbf{Y})} = \mathcal{O}(\overline{\mathbf{Y}_c}) = \overline{k}[t,(t,e(t))^{-1},s]/(\mathbf{P}),$$

where

1) $e(t) = (t - \overline{a_1}) \dots (t - \overline{a_s})$ with $\overline{a_1}, \dots, \overline{a_s}$ different points of k^* ; they are the residues of $a_1, \dots, a_s \in k^0$.

2) P is a monic irreducible polynomial of degree n with coefficients in k[t].

- 3) $\frac{dP}{ds}$ is invertible as element of $k[t,(e(t))^{-1},s]/(P)$.
- 4) the point (p) corresponds to t = 0.

Then $\mathcal{O}(Y)^0$ has the form $k^0 \langle T, U, S \rangle / (TE(T)U - 1, Q)$ where

$$E(T) = (T-a_1) \dots (T-a_s)$$
 and $\bar{Q} = P$.

Since Q is general with respect to the variable S, we can apply Weierstrassdivision and assume that Q is a monic polynomial of degree n in S with coefficients in $k^0 \langle T, U \rangle / (TE(T)U-1)$. Suppose that we can find a monic polynomial Q* of degree n in S and coefficients in $k^0 \langle T, V \rangle / (E(T)V-1)$ such that

$$k^{0}\langle \mathrm{T},\mathrm{U},\mathrm{S}\rangle/(\mathrm{TE}(\mathrm{T})\mathrm{U}-1,\mathrm{Q}^{*})\simeq \mathcal{O}(\mathrm{Y})^{0}.$$

Then $Y_p = Sp(k\langle T, V, S \rangle / (E(T)V - 1, Q^*))$ has the required properties. So we have to get rid of the negative powers of T in the coefficients of

$$\mathbf{Q} = \mathbf{S}^n + a_{n-1}\mathbf{S}^{n-1} + \cdots + a_0.$$

1.2. - LEMMA. - If $Q^* = S^n + a_{n-1}^* S^{n-1} + \cdots + a_0^*$ has coefficients in $A = k^0 \langle T, U \rangle / (TE(T)U-1)$ and $\overline{Q^*} = \overline{Q} = P$, then

a) Q* is irreducible

b) Q* has a zero in $\mathcal{O}(Y)^0$

c) $k \langle T, U, S \rangle / (TE(T)U - 1, Q^*) \simeq \mathcal{O}(Y)$.

Proof. – a) Let Q^* be reducible over the quotient field of A. Since A is normal, Q^* is a product of monic polynomials with coefficients in A. This contradicts the irreducibility of $\overline{Q^*} = P$. b) First we show that $\left\{Q^*, \frac{dQ^*}{dS}\right\}$ generates the unit ideal in A[S]. Let m be a maximal ideal containing Q* and $\frac{dQ^*}{dS}$. If $\mathfrak{m} \cap k^0 \neq 0$ then \mathfrak{m} induces a maximal ideal of $k[t,(te(t))^{-1}][S] = \overline{A}[S]$ containing P and $\frac{dP}{dS}$. This contradicts our assumptions on P. So \mathfrak{m} corresponds to a maximal ideal \mathfrak{m}_1 , of $k\langle T, U \rangle/(TE(T)U-1)[S]$, containing Q* and $\frac{dQ^*}{dS}$.

If $\mathfrak{m}_1 \cap k\langle T,U \rangle/(TE(T)U-1) \neq 0$ then \mathfrak{m}_1 , is the kernel of a homomorphism in k given by $T \mapsto \lambda_1 \in k$, $S \mapsto \lambda_2 \in k$ with

$$|\lambda_1| \leq 1$$
, $|\lambda_1 E(\lambda_1)| = 1$, $|\lambda_2| \leq 1$

since $Q^*(\lambda_2) = 0$. From $\left(P, \frac{dP}{dS}\right) = k[t, (te(t))^{-1}, S]$ it follows that $Z_1(S)Q^* + Z_2(S)\frac{dQ^*}{dS} = 1 + \sum_{i>0} a_i S^i$

for certain Z_1 , $Z_2 \in A[S]$ and $a_i \in A$ with $||a_i|| < 1$. The substitution $T \mapsto \lambda_1$; $S \mapsto \lambda_2$ makes $0 = 1 + \sum_{i>0} a_i(\lambda_1)\lambda_2^i$, which is impossible. So m and m_1 correspond to an ideal of L[S] with L the quotient field of A. Since Q* is irreducible, this means that $\frac{dQ^*}{dS} = 0$. This is obviously in contradiction with $\left(P, \frac{dP}{dS}\right) = k[t, (te(t))^{-1}]$.

We conclude the existence of Z_1 , $Z_2 \in A[S]$ with

$$1 = Z_1(S)Q^* + Z_2(S)\frac{dQ^*}{dS}.$$

By Newton's method we will show that Q* has a zero in $\mathcal{O}(Y)^0$. Let $\eta \in \mathcal{O}(Y)^0$ satisfy $||Q^*(\eta)|| < 1$ (e.g. η is the residue of S mod Q in $\mathcal{O}(Y)^0$). Then $1 - Z_1(\eta)Q^*(\eta) = Z_2(\eta)\frac{dQ^*}{dS}(\eta)$ and since

 $||Z_1(\eta)Q^*(\eta)|| < 1$ it follows that $\frac{dQ^*}{dS}(\eta)$ is invertible. Put $\eta_1 = \eta - Q^*(\eta) \left(\frac{dQ^*}{dS}(\eta)\right)^{-1}$. Then $||Q^*(\eta_1)|| \le ||Q^*(\eta)||^2$. The usual procedure and the completeness of $\mathcal{O}(Y)^0$ show the existence of a root of Q^* in $\mathcal{O}(Y)^0$.

c) The quotient field of $A[S]/Q^*$ is contained in that of A[S]/Q, because of (b). Both fields are extensions of degree *n* of the quotient field of A. So they are equal. The rings $k\langle T,U,S\rangle/(TE(T)U-1,Q^*)$ and O(Y) are both the integral closure of $k\langle T,U\rangle/(TE(T)U-1)$ in that field. So they are equal.

End of the proof of 1.1. – We choose Q^* with coefficients in $k^0 \langle T, V \rangle / (VE(T) - 1)$ and $Q^* = P$.

1.3. – COROLLARY. – Let Y be as in (1.1); then Y is affinoid in a curve X (complete non-singular) such that $\bar{X} - \bar{Y}_c$ is a finite set of non-singular points.

2. Unique factorization.

We want to show the following :

2.1. – THEOREM. – Let Y = Sp A be a 1-dimensional connected affinoid space. Then A has unique factorization if and only if Y is an affinoid subspace of $\mathbf{P}^{1}(k)$.

Remarks. -1) Since A has dimension 1 the condition «A has unique factorization » is equivalent to «A is a principal ideal domain ».

2) It seems that this theorem has also been proved by M. Raynaud.

A connected affinoid subspace Y of $\mathbf{P}^1(k)$ has clearly a U.F.D. as affinoid algebra. Before we start the proof of 2.1, we like to state its algebraic analogue. It is :

2.2. – PROPOSITION. – Let A be a finitely generated algebra over an algebraically closed field k. Suppose that A is 1-dimensional and a U.F.D. Then A is isomorphic to the coordinate ring of a Zariski-open subset of $\mathbf{P}^1(k)$.

Proof. – A is the coordinate ring of a Zariski-open subset X of some non-singular complete curve C; put $X = C - \{p_1, \dots, p_s\}$. Let D be a

divisor of degree 0 on C; since A is a U.F.D. there is a rational function fon C with D = (f) on X. This means that the map $\left\{\sum_{i=1}^{s} n_i p_i | n_i \in \mathbb{Z} \text{ and} \sum n_i = 0\right\} \longrightarrow J(C)$ = the Jacobi-variety of C, is surjective. If C is not a rational curve then its Jacobi variety (or better its points in k) is not a finitely generated group. Hence $C \simeq \mathbf{P}^1(\mathbf{k})$.

We prove the theorem in some steps.

2.3. - LEMMA. - Suppose that $\mathcal{O}(Y)$ is a U.F.D. and that \overline{Y} is irreducible, then $H^1(\overline{Y}, \mathcal{O}_{\overline{Y}}^*) = 0$.

Proof. $-\bar{Y}$ denotes the canonical reduction of Y. An element $\xi \in H^1(\bar{Y}, \mathcal{O}^*)$ corresponds to a projective, rank 1, $\mathcal{O}(\bar{Y})$ -module N; let F be a free $\mathcal{O}(\bar{Y})$ -module, $\sigma : F \longrightarrow F$ an idempotent endomorphism with im $\sigma = N$. Then F, σ lift to similar things over $\mathcal{O}(Y)^0$ since $\mathcal{O}(Y)^0$ is complete and $\mathcal{O}(\bar{Y}) = \mathcal{O}(Y)^0 \otimes \bar{k}$. So we find a projecture, rank 1, $\mathcal{O}(Y)^0$ -module M with $M \otimes \bar{k} = N$.

Further $M \otimes \mathcal{O}(Y) \simeq \mathcal{O}(Y)$ since $\mathcal{O}(Y)$ is a U.F.D. There exists a Zariski-open covering of \overline{Y} such that N is free on the sets of this covering. That implies the existence of $f_1, \ldots, f_s \in \mathcal{O}(Y)^0$ such that

a) each $||f_i|| = 1$ and $(f_1, \ldots, f_s)\mathcal{O}(\mathbf{Y})^0 = \mathcal{O}(\mathbf{Y})^0$.

b) $M \otimes \mathcal{O}(X)^0 \langle S \rangle / (Sf_i - 1)$ is a free $\mathcal{O}(X)^0 \langle S \rangle / (Sf_i - 1)$ -module.

We identify M with $M \otimes \mathcal{O}(Y)^0 \subset \mathcal{O}(Y)$ and we may suppose that $M \subset \mathcal{O}(Y)^0$; max $\{||m|| | m \in M\} = 1$ and $M \supset \lambda \mathcal{O}(Y)^0$ for certain $\lambda \in k^0$, $\lambda \neq 0$. Then

$$\mathbf{M} \otimes \mathcal{O}(\mathbf{Y})^{\mathbf{0}} \langle \mathbf{S} \rangle / (\mathbf{S}f_i - 1) \subseteq \mathcal{O}(\mathbf{Y})^{\mathbf{0}} \langle \mathbf{S} \rangle / (\mathbf{S}f_i - 1)$$

is generated by one element h. This element has norm 1 and it has no zeros is $\{y \in Y | |f_i(Y)| = 1\} = Y_i$. So h is invertible in $\mathcal{O}(Y_i)$. Its inverse h^{-1} has also norm 1 since $\overline{Y_i}$ is irreducible and the norm on $\mathcal{O}(Y_i)$ is, as a consequence, multiplicative. Hence $M\mathcal{O}(Y_i)^0 = \mathcal{O}(Y_i)^0$. It follows that some power of f_i lies in M. Since $(f_1, \ldots, f_s) = \mathcal{O}(Y)^0$ we find that $M = \mathcal{O}(Y)^0$. So N is free and $\xi = 0$.

2.4. – LEMMA. – Let L be affine, 1-dimensional and irreducible over \bar{k} . If $H^1(L, \mathcal{O}_L^*) = 0$ then L is rational and non-singular.

Proof. – Let $\pi : L_1 \longrightarrow L$ be the normalization of L. We have an exact sequence of sheaves on $L : 0 \longrightarrow \mathcal{O}_L^* \longrightarrow \pi_* \mathcal{O}_{L_1}^* \longrightarrow F \longrightarrow 0$ where F is the skyscraper sheaf with stalks, $F_p = \tilde{\mathcal{O}}_{L,p}^* / \mathcal{O}_{L,p}^*$ and $\tilde{\mathcal{O}}_{L,p}$ is the integral closure of $\mathcal{O}_{L,p}$.

One finds an exact sequence

$$0 \longrightarrow \mathcal{O}(L)^* \longrightarrow \mathcal{O}(L_1)^* \longrightarrow H^0(F) \longrightarrow H^1(L, \mathcal{O}_L^*) \longrightarrow H^1(L_1, \mathcal{O}_{L_1}^*) \longrightarrow 0.$$

So clearly (by 2.2) $L_1 = \mathbf{P}^1(\overline{k}) - \{p_1, \ldots, p_s\}$ and the group $\mathcal{O}(L_1)^*$ is isomorphic to $\overline{k}^* \oplus N$ where N is a subgroup of \mathbf{Z}^{s-1} .

So we find that $H^{0}(F)$ is a finitely generated Z-module.

If L has a singular point p then $H^{0}(F)$ has $\tilde{\mathcal{O}}_{L,p}^{*}/\mathcal{O}_{L,p}^{*}$ as component. The last group has \bar{k} or \bar{k}^{*} as quotient group. It is not finitely generated. So we conclude that L is non-singular, and hence a Zariski-open subset of $\mathbf{P}^{1}(\bar{k})$.

2.5. - Continuation of the proof of 2.1.

We have to consider the case where \bar{Y} , the canonical reduction of Y, has more than one component. Let L be a component and $L_{1,2} = L - \{$ the intersection of L with the other components $\}$; $Y_1 = R^{-1}(L_1)$. Then Y_1 is affinoid, also a U.F.D. and with canonical reduction L_1 . We know by 2.3 and 2.4 that L_1 is Zariski-open in $P^1(\bar{k})$ and so Y_1 must be an affinoid subset of $P^1(k)$ of the form

$$\{z \in k \mid |z| \leq 1, \quad |z - a_i| \geq 1 \quad (i = 1, \dots, s)\}$$

Let a_{d+1}, \ldots, a_s correspond to the points of intersection of L with the other components of \overline{Y} . Let $Y_2 = \{z \in k | |z| \leq 1 \text{ and } |z - a_i| \geq 1 \text{ for } i = d + 1, \ldots, s\}$. Then we glue Y_2 to Y over the open subset Y_1 . The resulting analytic space $Y \cup Y_2$ has as reduction with respect to the covering $\{Y, Y_2\}$ the space $\overline{Y} \cup \overline{Y}_2$. From [2] ch. IV (2.2) it follows that $Z = Y \cup Y_2$ is also affinoid and its canonical reduction is obtained by contracting the complete one of $\overline{Y} \cup \overline{Y}_2$ to a point. If we can show that Z is also a U.F.D., then (2.1) follows by induction on the number of components of \overline{Y} . Since

$$H^{1}(Y, \mathcal{O}_{Y}^{*}) = H^{1}(Y_{1}, \mathcal{O}_{Y_{1}}^{*}) = H^{1}(Y_{2}, \mathcal{O}_{Y_{2}}^{*}) = 0$$

we can calculate $H^1(Z, \mathcal{O}_Z^*)$ = the class group of Z, with respect to the covering $\{Y_2, Y\}$. That Z is a U.F.D. is equivalent with $H^1(Z, \mathcal{O}_Z^*) = 0$ and will follow from the following

2.6. - LEMMA. - The map $\mathcal{O}(Y)^* \oplus \mathcal{O}(Y_2)^* \longrightarrow \mathcal{O}(Y_1)^*$, given by $(f_1, f_2) \longrightarrow f_1 f_2^{-1}$, is surjective.

Proof. – The norm on $\mathcal{O}(Y_1)$ is multiplicative. So any $f \in \mathcal{O}(Y_1)^*$ has the form f = cg with $c \in k^*$ and $g \in (\mathcal{O}(Y_1)^0)^*$. Further the analoguous map $\mathcal{O}(\bar{Y})^* \oplus \mathcal{O}(\bar{Y}_2)^* \longrightarrow \mathcal{O}(\bar{Y}_1)^*$ is clearly surjective. So $\bar{g} = \bar{f}_1 \bar{f}_2^{-1}$ for certain $f_1 \in (\mathcal{O}(Y)^0)^*$ and $f_2 \in (\mathcal{O}(Y_2)^0)^*$. We are reduced to consider $f \in \mathcal{O}(Y_1)^*$ of the form 1 + h with $h \in \mathcal{O}(Y_1)$, ||h|| < 1. We want to write f as $(1+h_1)(1+h_2)^{-1}$ with $h_1 \in \mathcal{O}(Y)$, $h_2 \in \mathcal{O}(Y_2)$ and $||h_1|| < 1$, $||h_2|| < 1$. This amounts to showing that $\beta : \mathcal{O}(Y)^0 \oplus \mathcal{O}(Y_2)^0 \mapsto \mathcal{O}(Y_1)^0$, given by $(h_1,h_2) \mapsto h_1 - h_2$, is surjective. By [2], ch. IV (2.2), we know that the cokernel of β is a finitely generated k^0 -module M. Moreover $M \otimes \bar{k} = 0$ since $\mathcal{O}(\bar{Y}) \oplus \mathcal{O}(\bar{Y}_2) \longrightarrow \mathcal{O}(\bar{Y}_1)$ is surjective. So M = 0, β is surjective and the Lemma is proved.

2.7. – COROLLARY. – Let X be a complete non-singular curve over k. Then X is a Mumford curve (i.e. can be parametrized by a Schottky group) if and only if X is locally a U.F.D.

Proof. – Locally a U.F.D. means that X has an affinoid covering $(X_i)_{i=1}^s$ such that each $\mathcal{O}(X_i)$ is a unique factorization domain. According to (2.1) this implies $X_i \subset \mathbf{P}^1(\mathbf{k})$. According to [2], ch. IV (5.1), this is equivalent with X is a Mumford curve.

3. Class groups.

X will denote a normal, connected, 1-dimensional affinoid space. The class group of X (i.e. the group of isomorphy-classes of projective, rank 1, $\mathcal{O}(X)$ -modules) is equal to the analytic cohomology group $H^1(X, \mathcal{O}_X^*)$. This follows from the bijective correspondance between projective, rank 1, $\mathcal{O}(X)$ -modules and invertible sheaves on X.

3.1. – PROPOSITION. – Let X be embedded in a complete non-singular curve C. Then $H^1(X, \mathcal{O}_X^*) \simeq J(C)/H$ where J(C) is the Jacobi-variety of C and H is the subgroup consisting of the images of the divisors of degree zero on C with support in C – X. The group H is an open subgroup in the topology of J(C) induced by the topology of k.

Proof. — The restriction map $\text{Div}_0(C) \longrightarrow \text{Div}(X)$ induces a surjective homomorphism $\text{Div}_0(C)/P(C) \longrightarrow \text{Div}(X)/P(X)$ where P(C) denotes the principal divisors on C and $P(X) = \{(f) \text{ on } X | f \}$

meromorphic on X}. It is easily seen that $H^1(X, \mathcal{O}_X^*) = \text{Div}(X)/P(X)$. Let $D \in \text{Div}_0(C)$ have image 0 in $H^1(X, \mathcal{O}_X^*)$, then there exists a meromorphic function f on X with (f) = D on X. As one can calculate (see [2], ch. III (1.18.5) and on) any divisor of a holomorphic (or meromorphic) function on X is the divisor of a rational function on C restricted to X. So there is a rational function g on C with (g) = D on X. Then D - (g) is a divisor of degree 0 with support in C - X. This proves the first assertion. The map $C \times \ldots \times C \longrightarrow J(C)$ given by $(x_1, \ldots, x_g) \longmapsto \sum_{i=1}^g x_i - gx_0$ (where and topology on J(C). The map is almost bijective and open. So the image of $(C-X) \times \ldots \times (C-X)$ is open and H is open.

Remark. – In general it seems to be rather difficult to calculate explicitely $H^{1}(X, \mathcal{O}_{X}^{*})$. However using (3.1) one can work out the following special cases.

3.2. - Example. - Let the curve C have a reduction $R : C \longrightarrow \overline{C}$ such that \overline{C} is rational and has one ordinary double point p. Take p_1, \ldots, p_s points in $\overline{C} - \{p\}$ and put $X = R^{-1}(\overline{C} - \{p_1, \ldots, p_s\})$. Then X is affinoid and its canonical reduction is $C - \{p_1, \ldots, p_s\}$. The curve C is a Tate-curve and $\simeq k^*/\langle q \rangle$ with 0 < |q| < 1. The points p_1, \ldots, p_s correspond to open discs of radii 1 around points $1 = a_1, a_2, \ldots, a_s \in k$ with all $|a_i| = 1$ and $|a_i - a_j| = 1$ if $i \neq j$. Using (3.1) one finds an exact sequence :

$$1 \longrightarrow \overline{k^*}/\langle \overline{a_2}, \ldots, \overline{a_s} \rangle \longrightarrow \mathrm{H}^1(\mathrm{X}, \mathcal{O}^*_{\mathrm{X}}) \longrightarrow |k^*|/\langle |q| \rangle \longrightarrow 1$$

where $\langle \overline{a_2}, \ldots, \overline{a_s} \rangle$ is the subgroup of \overline{k}^* generated by $\overline{a_2}, \ldots, \overline{a_s}$; $|k^*|$ is the value group of k and $\langle |q| \rangle$ its subgroup generated by |q|. Note further that $\overline{k^*}/\langle \overline{a_2}, \ldots, \overline{a_s} \rangle = H^1(\overline{X}, \mathcal{O}_{\mathbb{R}}^*)$.

3.3. – Example. – Let C be a Mumford curve of genus $g \ge 1$ and let $\mathbf{R} : \mathbf{C} \longrightarrow \overline{\mathbf{C}}$ be its stable reduction. (The components of C are rational, the only singularities are ordinary double points.) The Jacobi-variety of C is a holomorphic torus $(k^*)^g/\Lambda$ where Λ is a lattice in $(k^*)^g$. Take ordinary points $p_1, \ldots, p_s \in \overline{\mathbf{C}}$ and put $\mathbf{X} = \mathbf{R}^{-1}(\overline{\mathbf{C}} - \{p_1, \ldots, p_s\})$. Then X is affinoid and using (3.1) one calculates an exact sequence :

$$1 \longrightarrow (\bar{k}^*)^g/S \longrightarrow H^1(X, \mathcal{O}_X^*) \longrightarrow |k^*|^g/|\Lambda| \longrightarrow 1$$

where

$$|\Lambda| = \{ (|\lambda_1|, |\lambda_2|, \dots, |\lambda_a|) | (\lambda_1, \dots, \lambda_a) \in \Lambda \}$$

and S is a finitely generated subgroup of $(\bar{k}^*)^g$. The group $(\bar{k}^*)^g$ is in fact the Jacobi-variety of \overline{C} and the subgroup S is the subgroup of the divisors of degree 0 on \overline{C} with support in $\{p_1, \ldots, p_s\}$. So $(\overline{k}^*)^g/S$ is again $H^1(\bar{X}_s, \mathcal{O}^*)$ where \bar{X}_s denotes the stable reduction of X.

BIBLIOGRAPHY

- [1] A. Escassut, Éléments spectralement injectifs et générateurs universels dans une algèbre de Tate, Memoria publicada en Collectanea Mathematica vol. XXVIII, fasc. 2 (1977), 131-148.
- [2] L. GERRITZEN, M. van der Put, p-adic Schottky groups and Mumford curves, forthcoming in Lecture Notes in Math.
- [3] M. van der Put, Schottky groups and Schottky curves, Algebraic Geometry, 1978, Lecture Notes in Math., 732, 518-526.

Manuscrit reçu le 4 février 1980.

Marius van der Put,

Mathematisch Instituut Universiteit van Groningen WSN-Gebouw, Postbns 800 Groningen (Pays-Bas). æ.

U.E.R. de Mathématiques et d'Informatique Université de Bordeaux I F-33405 Talence Cedex.

164