Annales de l'institut Fourier

Marius Van Der Put
 The class group of a one-dimensional affinoid space

Annales de l'institut Fourier, tome 30, nº 4 (1980), p. 155-164
http://www.numdam.org/item?id=AIF_1980__30_4_155_0
© Annales de l'institut Fourier, 1980, tous droits réservés.
L'accès aux archives de la revue «Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

THE CLASS GROUP OF A ONE-DIMENSIONAL AFFINOID SPACE

by Marius van der PUT

Introduction.

The field k is supposed to be complete with respect to a nonarchimedean valuation. Moreover we will assume that k is algebraically closed. An affinoid space Y over k is the set of maximal ideals of an affinoid algebra. The standard affinoid algebra is $k\left\langle\mathrm{~T}_{1}, \ldots, \mathrm{~T}_{n}\right\rangle=$ the set of all power series $\Sigma a_{\alpha} \mathrm{T}_{1}^{\alpha_{1}} \cdots \mathrm{~T}_{n}^{\alpha_{n}}$ converging on the closed polydisk

$$
\left\{\left(t_{1}, \ldots t_{n}\right) \in k^{n}|a l l| t_{i} \mid \leqslant 1\right\} .
$$

An affinoid algebra is a residue class ring of some $k\left\langle\mathrm{~T}_{1}, \ldots, \mathrm{~T}_{n}\right\rangle$. An algebraic variety over k can be studied locally by its analytic structure over k, that is by means of affinoid spaces.

We show that a one-dimensional, normal, connected affinoid space Y is an affinoid subset of a non-singular, complete curve C over k (Thm 1.1). If Y has a trivial classgroup then Y is in fact an affinoid subset of \mathbf{P}^{1} (Thm 2.1). A curve is locally a unique factorization domain (U.F.D. for short) if and only the curve is a Mumford curve (i.e. can be parametrized by a Schottky group). In general the class group of Y can be expressed in terms of the Jacobi-variety of C (prop. 3.1).

Some examples show the connection between the class group of Y and the class group of the (stable) reduction of Y. For k-analytic spaces we refer to [2], [3]. I thank A. Escassut for bringing the problem on unique factorization on affinoid spaces to my attention. Related questions are treated in [1].

1. Affinoid subspaces of an algebraic curve.

A curve C (non-singular and complete) over k has a natural structure as (rigid) analytic space over k. This structure is given by a collection
of subspaces Y of C , called affinoid, and a sheaf $\mathcal{O}=\mathcal{O}_{\mathrm{C}}$ with respect to the Grothendieck topology of finite coverings by affinoids. For any $\mathrm{Y}, \mathcal{O}(\mathrm{Y})$ is an affinoid algebra (1-dim. and normal) over k with $\operatorname{Sp}(\mathcal{O}(\mathrm{Y}))=\mathrm{Y}$. We want to show :
1.1. - Theorem. - Every 1-dimensional, normal, connected affinoid space $\mathrm{Y}=\mathrm{sp}(\mathrm{A})$ is an affinoid subspace of a non-singular complete curve.

Proof. - Y is called connected and normal if the algebra A has no idempotents $\neq 0,1$ and A is integrally closed. We use the notations $\mathrm{A}^{\circ}=\{f \in \mathrm{~A} \mid\|f\| \leqslant 1\}, \mathrm{A}^{\mathrm{oo}}=\{f \in \mathrm{~A} \mid\|f\|<1\}$ and $\overline{\mathrm{A}}=\mathrm{A}^{0} / \mathrm{A}^{\mathrm{oo}}$, where $\|f\|=\max \{|f(y)| \mid y \in \mathrm{Y}\}$ is the spectral norm on Y. The algebra $\overline{\mathbf{A}}$ is of finite type over $\bar{k}=$ the residue field of k and the algebraic variety $\overline{\mathrm{Y}}_{c}=\operatorname{Max}(\overline{\mathrm{A}})$ is called the canonical reduction of Y . There is a natural surjective map $\mathrm{R}: \mathrm{Y} \rightarrow \overline{\mathrm{Y}}_{c}$, also called the canonical reduction. A pure covering of an analytic space X, is an allowed covering $\mathscr{U}=\left(\mathrm{U}_{i}\right)$ by affinoid spaces, such that for every $i \neq j$ with $U_{i} \cap U_{j} \neq \varnothing$, the set $U_{i} \cap U_{j}$ is the inverse image of a Zariski open set $V_{i j}$ in $\overline{\left(U_{i}\right)_{c}}$ under the map $U_{i} \rightarrow \overline{\left(U_{i}\right)_{c}}$. The reduction $\overline{X_{\mathscr{w}}}$ of X with respect to \mathscr{U} is obtained by glueing the affine algebraic varieties $\overline{\left(U_{i}\right)_{c}}$ over the open sets $\mathrm{V}_{i j}$. The result is an algebraic variety over \bar{k}. If X is separated then the $U_{i} \cap U_{j}$ are also affinoid, the $V_{i j}$ are affine and equal to $\overline{\left(U_{i} \cap U_{j}\right)_{c}}$ and $\overline{X_{q l}}$ is separated. If X is non-singular, 1-dimensional, connected and if $\overline{X_{\mathscr{Q}}}$ is complete then X is a non-singular complete curve over k (see [2] ch. IV 2.2).

Our proof consists of glueing affinoid spaces $\mathrm{Y}_{1}, \ldots, \mathrm{Y}_{s}$ to Y such that the reduction of $X=Y \cup Y_{1} \cup \ldots \cup Y_{s}$ with respect to the pure covering $\left\{\mathrm{Y}_{1}, \mathrm{Y}_{1}, \ldots, \mathrm{Y}_{s}\right\}$ is complete. Then clearly Y is an affinoid domain of the algebraic curve X. The 1 -dimensional space $\overline{\mathrm{Y}}_{c}$ lies in a complete 1-dimensional Z such that $\mathrm{F}=\mathrm{Z}-\overline{\mathrm{Y}}_{c}$ is a finite set of non-singular points. Suppose that we can find for every $p \in \mathrm{~F}$ an affinoid space Y_{p} with canonical reduction $\mathrm{R}_{p}: \mathrm{Y}_{p} \rightarrow\left(\overline{\mathrm{Y}_{p}}\right)_{c} \subset \mathrm{Z}$ where $\left(\overline{\mathrm{Y}_{p}}\right)_{c}$ is a neighbourhood of p and such that

$$
\mathrm{Y}_{p} \supset \mathrm{R}_{p}^{-1}\left(\left(\overline{\mathrm{Y}_{p}}\right)_{c} \cap \overline{\mathrm{Y}_{c}}\right) \simeq \mathrm{R}^{-1}\left(\left(\overline{\mathrm{Y}_{p}}\right)_{c} \cap \overline{\mathrm{Y}_{c}}\right) \subset \mathrm{Y} .
$$

Then we can glue Y_{p} to Y. The space $X=Y U \cup Y_{p}$ has reduction Z which is complete. So the glueing has to be done locally on Y and \bar{Y}_{c}. The component C of Z on which p lies can be projected into $\mathbf{P}^{2}(\bar{k})$ such that
(the image of) p is still non-singular. A good projection onto \mathbf{P}^{1} maps p onto o and o is an unramified point for the projection. Replacing Y and $\overline{\mathrm{Y}_{c}}$ by neighbourhoods of p we may therefore suppose :

$$
\overline{\mathcal{O}(\mathrm{Y})}=\mathcal{O}\left(\overline{\mathrm{Y}_{c}}\right)=\bar{k}\left[t,(t, e(t))^{-1}, s\right] /(\mathrm{P}),
$$

where

1) $e(t)=\left(t-\overline{a_{1}}\right) \ldots\left(t-\overline{a_{s}}\right)$ with $\overline{a_{1}}, \ldots, \overline{a_{s}}$ different points of k^{*}; they are the residues of $a_{1}, \ldots, a_{s} \in k^{0}$.
2) P is a monic irreducible polynomial of degree n with coefficients in $k[t]$.
3) $\frac{\mathrm{dP}}{\mathrm{d} s}$ is invertible as element of $\bar{k}\left[t,(e(t))^{-1}, s\right] /(\mathrm{P})$.
4) the point $« p$ » corresponds to $t=0$.

Then $\mathcal{O}(\mathrm{Y})^{0}$ has the form $k^{0}\langle\mathrm{~T}, \mathrm{U}, \mathrm{S}\rangle /(\mathrm{TE}(\mathrm{T}) \mathrm{U}-1, \mathrm{Q})$ where

$$
\mathrm{E}(\mathrm{~T})=\left(\mathrm{T}-a_{1}\right) \ldots\left(\mathrm{T}-a_{s}\right) \quad \text { and } \quad \overline{\mathrm{Q}}=\mathrm{P}
$$

Since Q is general with respect to the variable S, we can apply Weierstrassdivision and assume that Q is a monic polynomial of degree n in S with coefficients in $k^{0}\langle T, U\rangle /(T E(T) U-1)$. Suppose that we can find a monic polynomial Q^{*} of degree n in S and coefficients in $k^{0}\langle\mathrm{~T}, \mathrm{~V}\rangle /(\mathrm{E}(\mathrm{T}) \mathrm{V}-1)$ such that

$$
k^{0}\langle\mathrm{~T}, \mathrm{U}, \mathrm{~S}\rangle /\left(\mathrm{TE}(\mathrm{~T}) \mathrm{U}-1, \mathrm{Q}^{*}\right) \simeq \mathcal{O}(\mathrm{Y})^{0} .
$$

Then $\mathrm{Y}_{p}=\mathrm{Sp}\left(k\langle\mathrm{~T}, \mathrm{~V}, \mathrm{~S}\rangle /\left(\mathrm{E}(\mathrm{T}) \mathrm{V}-1, \mathrm{Q}^{*}\right)\right)$ has the required properties. So we have to get rid of the negative powers of T in the coefficients of

$$
\mathrm{Q}=\mathrm{S}^{n}+a_{n-1} \mathrm{~S}^{n-1}+\cdots+a_{0}
$$

1.2. - Lemma. - If $\mathrm{Q}^{*}=\mathrm{S}^{n}+a_{n-1}^{*} \mathrm{~S}^{n-1}+\cdots+a_{0}^{*}$ has coefficients in $\mathrm{A}=k^{0}\langle\mathrm{~T}, \mathrm{U}\rangle /(\mathrm{TE}(\mathrm{T}) \mathrm{U}-1)$ and $\overline{\mathrm{Q}^{*}}=\overline{\mathrm{Q}}=\mathrm{P}$, then
a) Q^{*} is irreducible
b) Q^{*} has a zero in $\mathcal{O}(\mathrm{Y})^{0}$
c) $k\langle\mathrm{~T}, \mathrm{U}, \mathrm{S}\rangle /\left(\mathrm{TE}(\mathrm{T}) \mathrm{U}-1, \mathrm{Q}^{*}\right) \simeq \mathcal{O}(\mathrm{Y})$.

Proof. - a) Let Q^{*} be reducible over the quotient field of A . Since A is normal, Q^{*} is a product of monic polynomials with coefficients in A . This contradicts the irreducibility of $\overline{\mathrm{Q}^{*}}=\mathrm{P}$.
b) First we show that $\left\{Q^{*}, \frac{d Q^{*}}{d S}\right\}$ generates the unit ideal in $A[S]$. Let \mathfrak{m} be a maximal ideal containing Q^{*} and $\frac{d Q^{*}}{d S}$. If $\mathfrak{m} \cap k^{0} \neq 0$ then m induces a maximal ideal of $\bar{k}\left[t,(t e(t))^{-1}\right][\mathrm{S}]=\overline{\mathrm{A}}[\mathrm{S}]$ containing P and $\frac{d \mathrm{P}}{d \mathrm{~S}}$. This contradicts our assumptions on P . So \mathfrak{m} corresponds to a maximal ideal m_{1}, of $k\langle\mathrm{~T}, \mathrm{U}\rangle /(\mathrm{TE}(\mathrm{T}) \mathrm{U}-1)[\mathrm{S}]$, containing Q^{*} and $\frac{d \mathrm{Q}^{*}}{d \mathrm{~S}}$.

If $\mathfrak{m}_{1} \cap k\langle\mathrm{~T}, \mathrm{U}\rangle /(\mathrm{TE}(\mathrm{T}) \mathrm{U}-1) \neq 0$ then \mathfrak{m}_{1}, is the kernel of a homomorphism in k given by $\mathrm{T} \longmapsto \lambda_{1} \in k, \mathrm{~S} \longmapsto \lambda_{2} \in k$ with

$$
\left|\lambda_{1}\right| \leqslant 1, \quad\left|\lambda_{1} E\left(\lambda_{1}\right)\right|=1, \quad\left|\lambda_{2}\right| \leqslant 1
$$

since $\mathrm{Q}^{*}\left(\lambda_{2}\right)=0$. From $\left(\mathrm{P}, \frac{d \mathrm{P}}{d \mathrm{~S}}\right)=\bar{k}\left[t,(t e(t))^{-1}, \mathrm{~S}\right]$ it follows that

$$
\mathrm{Z}_{1}(\mathrm{~S}) \mathrm{Q}^{*}+\mathrm{Z}_{2}(\mathrm{~S}) \frac{d \mathrm{Q}^{*}}{d \mathrm{~S}}=1+\sum_{i>0} a_{i} \mathrm{~S}^{i}
$$

for certain $\mathrm{Z}_{1}, \mathrm{Z}_{2} \in \mathrm{~A}[\mathrm{~S}]$ and $a_{i} \in \mathrm{~A}$ with $\left\|a_{i}\right\|<1$. The substitution $\mathrm{T} \longmapsto \lambda_{1} ; \mathrm{S} \longmapsto \lambda_{2}$ makes $0=1+\sum_{i>0} a_{i}\left(\lambda_{1}\right) \lambda_{2}^{i}$, which is impossible. So m and m_{1} correspond to an ideal of $L[S]$ with L the quotient field of A. Since Q^{*} is irreducible, this means that $\frac{d Q^{*}}{d S}=0$. This is obviously in contradiction with $\left(\mathbf{P}, \frac{d \mathrm{P}}{d \mathrm{~S}}\right)=\bar{k}\left[t,(t e(t))^{-1}\right]$.

We conclude the existence of $Z_{1}, Z_{2} \in A[S]$ with

$$
1=\mathrm{Z}_{1}(\mathrm{~S}) \mathrm{Q}^{*}+\mathrm{Z}_{2}(\mathrm{~S}) \frac{d \mathrm{Q}^{*}}{d \mathrm{~S}}
$$

By Newton's method we will show that Q^{*} has a zero in $\mathcal{O}(\mathrm{Y})^{0}$. Let $\eta \in \mathcal{O}(Y)^{0}$ satisfy $\left\|Q^{*}(\eta)\right\|<1$ (e.g. η is the residue of $S \bmod Q$ in $\left.\mathcal{O}(Y)^{0}\right) . \quad$ Then $\quad 1-Z_{1}(\eta) \mathrm{Q}^{*}(\eta)=Z_{2}(\eta) \frac{d \mathrm{Q}^{*}}{d \mathrm{~S}}(\eta) \quad$ and \quad since
$\left\|Z_{1}(\eta) Q^{*}(\eta)\right\|<1 \quad$ it follows that $\frac{d Q^{*}}{d S}(\eta)$ is invertible. Put $\eta_{1}=\eta-Q^{*}(\eta)\left(\frac{d Q^{*}}{d S}(\eta)\right)^{-1}$. Then $\left\|Q^{*}\left(\eta_{1}\right)\right\| \leqslant\left\|Q^{*}(\eta)\right\|^{2}$. The usual procedure and the completeness of $\mathcal{O}(\mathrm{Y})^{0}$ show the existence of a root of Q^{*} in $\mathcal{O}(\mathrm{Y})^{0}$.
c) The quotient field of $\mathrm{A}[\mathrm{S}] / \mathrm{Q}^{*}$ is contained in that of $\mathrm{A}[\mathrm{S}] / \mathrm{Q}$, because of (b). Both fields are extensions of degree n of the quotient field of A . So they are equal. The rings $k\langle\mathrm{~T}, \mathrm{U}, \mathrm{S}\rangle /\left(\mathrm{TE}(\mathrm{T}) \mathrm{U}-1, \mathrm{Q}^{*}\right)$ and $\mathcal{O}(\mathrm{Y})$ are both the integral closure of $k\langle\mathrm{~T}, \mathrm{U}\rangle /(\mathrm{TE}(\mathrm{T}) \mathrm{U}-1)$ in that field. So they are equal.

End of the proof of 1.1. - We choose Q^{*} with coefficients in $k^{0}\langle\mathrm{~T}, \mathrm{~V}\rangle /(\mathrm{VE}(\mathrm{T})-1)$ and $\mathrm{Q}^{*}=\mathrm{P}$.
1.3. - Corollary. - Let Y be as in (1.1); then Y is affinoid in a curve X (complete non-singular) such that $\overline{\mathrm{X}}-\overline{\mathrm{Y}}_{c}$ is a finite set of non-singular points.

2. Unique factorization.

We want to show the following :
2.1. - Theorem. - Let $\mathrm{Y}=\mathrm{S} p \mathrm{~A}$ be a 1-dimensional connected affinoid space. Then A has unique factorization if and only if Y is an affinoid subspace of $\mathbf{P}^{1}(k)$.

Remarks. - 1) Since A has dimension 1 the condition «A has unique factorization» is equivalent to "A is a principal ideal domain».
2) It seems that this theorem has also been proved by M. Raynaud.

A connected affinoid subspace Y of $\mathbf{P}^{1}(k)$ has clearly a U.F.D. as affinoid algebra. Before we start the proof of 2.1, we like to state its algebraic analogue. It is :
2.2. - Proposition. - Let A be a finitely generated algebra over an algebraically closed field k. Suppose that A is 1-dimensional and a U.F.D. Then A is isomorphic to the coordinate ring of a Zariski-open subset of $\mathbf{P}^{1}(k)$.

Proof. - A is the coordinate ring of a Zariski-open subset X of some non-singular complete curve C ; put $\mathrm{X}=\mathrm{C}-\left\{p_{1}, \ldots, p_{s}\right\}$. Let D be a
divisor of degree 0 on C ; since A is a U.F.D. there is a rational function f on C with $\mathrm{D}=(f)$ on X . This means that the map $\left\{\sum_{i=1}^{s} n_{i} p_{i} \mid n_{i} \in \mathbf{Z}\right.$ and $\left.\Sigma n_{i}=0\right\} \longrightarrow \mathrm{J}(\mathrm{C})=$ the Jacobi-variety of C , is surjective. If \mathbf{C} is not a rational curve then its Jacobi variety (or better its points in k) is not a finitely generated group. Hence $C \simeq \mathbf{P}^{1}(k)$.

We prove the theorem in some steps.
2.3. - Lemma. - Suppose that $\mathcal{O}(\mathrm{Y})$ is a U.F.D. and that $\overline{\mathrm{Y}}$ is irreducible, then $\mathbf{H}^{1}\left(\overline{\mathrm{Y}}, \mathcal{O}_{\mathrm{Y}}^{*}\right)=0$.

Proof. - $\overline{\mathbf{Y}}$ denotes the canonical reduction of Y . An element $\xi \in \mathrm{H}^{1}\left(\overline{\mathrm{Y}}, \mathcal{O}^{*}\right)$ corresponds to a projective, rank $1, \mathcal{O}(\overline{\mathrm{Y}})$-module N ; let F be a free $\mathcal{O}(\overline{\mathrm{Y}})$-module, $\sigma: \mathrm{F} \longrightarrow \mathrm{F}$ an idempotent endomorphism with im $\sigma=\mathrm{N}$. Then F, σ lift to similar things over $\mathcal{O}(\mathrm{Y})^{0}$ since $\mathcal{O}(\mathrm{Y})^{0}$ is complete and $\mathcal{O}(\overline{\mathrm{Y}})=\mathcal{O}(\mathrm{Y})^{0} \otimes \bar{k}$. So we find a projecture, rank 1 , $\mathcal{O}(\mathrm{Y})^{0}$-module M with $\mathrm{M} \otimes k=\mathrm{N}$.

Further $\mathrm{M} \otimes \mathcal{O}(\mathrm{Y}) \simeq \mathcal{O}(\mathrm{Y})$ since $\mathcal{O}(\mathrm{Y})$ is a U.F.D. There exists a Zariski-open covering of $\overline{\mathrm{Y}}$ such that N is free on the sets of this covering. That implies the existence of $f_{1}, \ldots, f_{s} \in \mathcal{O}(\mathrm{Y})^{0}$ such that
a) each $\left\|f_{i}\right\|=1$ and $\left(f_{1}, \ldots, f_{s}\right) \mathcal{O}(\mathrm{Y})^{0}=\mathcal{O}(\mathrm{Y})^{0}$.
b) $\mathrm{M} \otimes \mathcal{O}(\mathrm{X})^{0}\langle\mathrm{~S}\rangle /\left(\mathrm{S} f_{i}-1\right)$ is a free $\mathcal{O}(\mathrm{X})^{0}\langle\mathrm{~S}\rangle /\left(\mathrm{S} f_{i}-1\right)$-module.

We identify M with $\mathrm{M} \otimes \mathcal{O}(\mathrm{Y})^{0} \subset \mathcal{O}(\mathrm{Y})$ and we may suppose that $\mathbf{M} \subset \mathcal{O}(\mathrm{Y})^{0} ; \max \{\|m\| \mid m \in \mathrm{M}\}=1$ and $\mathrm{M} \supset \lambda \mathcal{O}(\mathrm{Y})^{0}$ for certain $\lambda \in k^{0}$, $\lambda \neq 0$. Then

$$
\mathrm{M} \otimes \mathcal{O}(\mathrm{Y})^{0}\langle\mathrm{~S}\rangle /\left(\mathrm{S} f_{i}-1\right) \subseteq \mathcal{O}(\mathrm{Y})^{0}\langle\mathbf{S}\rangle /\left(\mathrm{S} f_{i}-1\right)
$$

is generated by one element h. This element has norm 1 and it has no zeros is $\left\{y \in \mathrm{Y}\left|\left|f_{i}(\mathrm{Y})\right|=1\right\}=\mathrm{Y}_{i}\right.$. So h is invertible in $\mathcal{O}\left(\mathrm{Y}_{i}\right)$. Its inverse h^{-1} has also norm 1 since \bar{Y}_{i} is irreducible and the norm on $\mathcal{O}\left(Y_{i}\right)$ is, as a consequence, multiplicative. Hence $\mathrm{MO}\left(\mathrm{Y}_{i}\right)^{0}=\mathcal{O}\left(\mathrm{Y}_{i}\right)^{0}$. It follows that some power of f_{i} lies in M . Since $\left(f_{1}, \ldots, f_{s}\right)=\mathcal{O}(\mathrm{Y})^{0}$ we find that $\mathrm{M}=\mathcal{O}(\mathrm{Y})^{0}$. So N is free and $\xi=0$.
2.4. - Lemma. - Let L be affine, 1-dimensional and irreducible over \bar{k}. If $\mathrm{H}^{1}\left(\mathrm{~L}, \mathcal{O}_{\mathrm{L}}^{*}\right)=0$ then L is rational and non-singular.

Proof. - Let $\pi: \mathrm{L}_{1} \longrightarrow \mathrm{~L}$ be the normalization of L . We have an exact sequence of sheaves on $\mathrm{L}: 0 \longrightarrow \mathcal{O}_{\mathrm{L}}^{*} \longrightarrow \pi_{*} \mathcal{O}_{\mathrm{L}_{1}}^{*} \longrightarrow \mathrm{~F} \longrightarrow 0$ where F is the skyscraper sheaf with stalks, $\mathrm{F}_{p}=\widetilde{\mathcal{O}}_{\mathrm{L}, p}^{*} / \mathcal{O}_{\mathrm{L}, p}^{*}$ and $\widetilde{\mathcal{O}}_{\mathrm{L}, \mathrm{p}}$ is the integral closure of $\mathcal{O}_{\mathrm{L}, p}$.

One finds an exact sequence
$0 \longrightarrow \mathcal{O}(\mathrm{~L})^{*} \longrightarrow \mathcal{O}\left(\mathrm{~L}_{1}\right)^{*} \longrightarrow \mathrm{H}^{0}(\mathrm{~F}) \longrightarrow \mathrm{H}^{1}\left(\mathrm{~L}, \mathcal{O}_{\mathrm{L}}^{*}\right) \longrightarrow \mathrm{H}^{1}\left(\mathrm{~L}_{1}, \mathcal{O}_{\mathrm{L}_{1}}^{*}\right) \longrightarrow 0$.
So clearly (by 2.2) $\mathrm{L}_{1}=\mathbf{P}^{1}(\overline{\mathrm{k}})-\left\{p_{1}, \ldots, p_{s}\right\}$ and the group $\mathcal{O}\left(\mathrm{L}_{1}\right)^{*}$ is isomorphic to $\bar{k}^{*} \oplus \mathrm{~N}$ where N is a subgroup of \mathbf{Z}^{s-1}.

So we find that $H^{0}(F)$ is a finitely generated Z-module.
If L has a singular point p then $\mathrm{H}^{0}(\mathrm{~F})$ has $\widetilde{\mathcal{O}}_{\mathrm{L}, p}^{*} / \mathcal{O}_{\mathrm{L}, p}^{*}$ as component. The last group has \bar{k} or \bar{k}^{*} as quotient group. It is not finitely generated. So we conclude that L is non-singular, and hence a Zariski-open subset of $\mathbf{P}^{1}(\bar{k})$.

2.5. - Continuation of the proof of 2.1.

We have to consider the case where $\overline{\mathrm{Y}}$, the canonical reduction of Y , has more than one component. Let L be a component and $L_{1 ،}=L-\{$ the intersection of L with the other components $\} ; Y_{1}=R^{-1}\left(L_{1}\right)$. Then Y_{1} is affinoid, also a U.F.D. and with canonical reduction L_{1}. We know by 2.3 and 2.4 that L_{1} is Zariski-open in $\mathbf{P}^{1}(\bar{k})$ and so Y_{1} must be an affinoid subset of $\mathbf{P}^{1}(k)$ of the form

$$
\left\{z \in k||z| \leqslant 1, \quad| z-a_{i} \mid \geqslant 1 \quad(i=1, \ldots, s)\right\} .
$$

Let a_{d+1}, \ldots, a_{s} correspond to the points of intersection of L with the other components of $\overline{\mathrm{Y}}$. Let $\mathrm{Y}_{2}=\left\{z \in k| | z \mid \leqslant 1\right.$ and $\left|z-a_{i}\right| \geqslant 1$ for $i=d+1, \ldots, s\}$. Then we glue Y_{2} to Y over the open subset Y_{1}. The resulting analytic space $\mathrm{Y} \cup \mathrm{Y}_{2}$ has as reduction with respect to the covering $\left\{Y, Y_{2}\right\}$ the space $\overline{\mathrm{Y}} \cup \overline{\mathrm{Y}}_{2}$. From [2] ch. IV (2.2) it follows that $\mathrm{Z}=\mathrm{Y} \cup \mathrm{Y}_{2}$ is also affinoid and its canonical reduction is obtained by contracting the complete one of $\overline{\mathrm{Y}} \cup \overline{\mathrm{Y}}_{2}$ to a point. If we can show that Z is also a U.F.D., then (2.1) follows by induction on the number of components of $\overline{\mathrm{Y}}$. Since

$$
\mathbf{H}^{1}\left(\mathrm{Y}, \mathcal{O}_{\mathrm{Y}}^{*}\right)=\mathrm{H}^{1}\left(\mathrm{Y}_{1}, \mathcal{O}_{\mathrm{Y}_{1}}^{*}\right)=\mathrm{H}^{1}\left(\mathrm{Y}_{2}, \mathcal{O}_{\mathrm{Y}_{2}}^{*}\right)=0
$$

we can calculate $\mathrm{H}^{1}\left(\mathrm{Z}, \mathcal{O}_{\mathbf{Z}}^{*}\right)=$ the class group of Z , with respect to the covering $\left\{\mathrm{Y}_{2}, \mathrm{Y}\right\}$. That Z is a U.F.D. is equivalent with $\mathrm{H}^{1}\left(\mathrm{Z}, \mathcal{O}_{\mathbf{Z}}^{*}\right)=0$ and will follow from the following
2.6. - Lemma. - The map $\mathcal{O}(\mathrm{Y})^{*} \oplus \mathcal{O}\left(\mathrm{Y}_{2}\right)^{*} \longrightarrow \mathcal{O}\left(\mathrm{Y}_{1}\right)^{*}$, given by $\left(f_{1}, f_{2}\right) \longrightarrow f_{1} f_{2}^{-1}$, is surjective.

Proof. - The norm on $\mathcal{O}\left(\mathrm{Y}_{1}\right)$ is multiplicative. So any $f \in \mathcal{O}\left(\mathrm{Y}_{1}\right)^{*}$ has the form $f=c g$ with $c \in k^{*}$ and $g \in\left(\mathcal{O}\left(\mathrm{Y}_{1}\right)^{0}\right)^{*}$. Further the analoguous map $\mathcal{O}(\overline{\mathrm{Y}})^{*} \oplus \mathcal{O}\left(\overline{\mathrm{Y}}_{2}\right)^{*} \longrightarrow \mathcal{O}\left(\overline{\mathrm{Y}}_{1}\right)^{*}$ is clearly surjective. So $\bar{g}=\bar{f}_{1} \bar{f}_{2}^{1}$ for certain $f_{1} \in\left(\mathcal{O}(\mathrm{Y})^{0}\right)^{*}$ and $f_{2} \in\left(\mathcal{O}\left(\mathrm{Y}_{2}\right)^{0}\right)^{0}$. We are reduced to consider $f \in \mathcal{O}\left(\mathrm{Y}_{1}\right)^{*}$ of the form $1+h$ with $h \in \mathcal{O}\left(\mathrm{Y}_{1}\right),\|h\|<1$. We want to write f as $\left(1+h_{1}\right)\left(1+h_{2}\right)^{-1}$ with $h_{1} \in \mathcal{O}(\mathrm{Y}), \quad h_{2} \in \mathcal{O}\left(\mathrm{Y}_{2}\right)$ and $\left\|h_{1}\right\|<1$, $\left\|h_{2}\right\|<1$. This amounts to showing that $\beta: \mathcal{O}(\mathrm{Y})^{0} \oplus \mathcal{O}\left(\mathrm{Y}_{2}\right)^{0} \longmapsto \mathcal{O}\left(\mathrm{Y}_{1}\right)^{0}$, given by (h_{1}, h_{2}) $\mapsto h_{1}-h_{2}$, is surjective. By [2], ch. IV (2.2), we know that the cokernel of β is a finitely generated k^{0}-module M . Moreover $\mathrm{M} \otimes \bar{k}=0$ since $\mathcal{O}(\overline{\mathrm{Y}}) \oplus \mathcal{O}\left(\overline{\mathrm{Y}}_{2}\right) \longrightarrow \mathcal{O}\left(\overline{\mathrm{Y}}_{1}\right)$ is surjective. So $\mathrm{M}=0, \beta$ is surjective and the Lemma is proved.
2.7. - Corollary. - Let X be a complete non-singular curve over k. Then X is a Mumford curve (i.e. can be parametrized by a Schottky group) if and only if X is locally a U.F.D.

Proof. - Locally a U.F.D. means that X has an affinoid covering $\left(\mathrm{X}_{\mathrm{i}}\right)_{i=1}^{S_{i}}$ such that each $\mathcal{O}\left(X_{i}\right)$ is a unique factorization domain. According to (2.1) this implies $\mathbf{X}_{i} \subset \mathbf{P}^{1}(\mathbf{k})$. According to [2], ch. IV (5.1), this is equivalent with \mathbf{X} is a Mumford curve.

3. Class groups.

X will denote a normal, connected, 1 -dimensional affinoid space. The class group of X (i.e. the group of isomorphy-classes of projective, rank 1 , $\mathcal{O}(\mathrm{X})$-modules $)$ is equal to the analytic cohomology group $\mathrm{H}^{1}\left(\mathrm{X}, \mathcal{O}_{x}^{*}\right)$. This follows from the bijective correspondance between projective, rank 1, $\mathcal{O}(\mathbf{X})$ modules and invertible sheaves on X .
3.1. - Proposition. - Let X be embedded in a complete non-singular curve C . Then $\mathrm{H}^{1}\left(\mathrm{X}, \mathcal{O}_{\mathrm{x}}^{*}\right) \simeq \mathrm{J}(\mathrm{C}) / \mathrm{H}$ where $\mathrm{J}(\mathrm{C})$ is the Jacobi-variety of C and H is the subgroup consisting of the images of the divisors of degree zero on C with support in $\mathrm{C}-\mathrm{X}$. The group H is an open subgroup in the topology of $\mathrm{J}(\mathrm{C})$ induced by the topology of k.

Proof. - The restriction map $\operatorname{Div}_{0}(\mathrm{C}) \longrightarrow \operatorname{Div}(\mathbf{X})$ induces a surjective homomorphism $\operatorname{Div}_{0}(\mathrm{C}) / \mathrm{P}(\mathrm{C}) \longrightarrow \operatorname{Div}(\mathbf{X}) / \mathrm{P}(\mathrm{X})$ where $\mathrm{P}(\mathrm{C})$ denotes the principal divisors on C and $\mathrm{P}(\mathrm{X})=\{(f)$ on $\mathrm{X} \mid f$
meromorphic on X$\}$. It is easily seen that $H^{1}\left(\mathbf{X}, \mathcal{O}_{\mathrm{X}}^{*}\right)=\operatorname{Div}(\mathrm{X}) / \mathbf{P}(\mathbf{X})$. Let $\mathrm{D} \in \mathrm{Div}_{0}(\mathrm{C})$ have image 0 in $\mathrm{H}^{1}\left(\mathrm{X}, \mathcal{O}_{\mathrm{X}}^{*}\right)$, then there exists a meromorphic function f on X with $(f)=\mathrm{D}$ on X . As one can calculate (see [2], ch. III (1.18.5) and on) any divisor of a holomorphic (or meromorphic) function on X is the divisor of a rational function on C restricted to X . So there is a rational function g on C with $(g)=\mathbf{D}$ on X . Then $\mathbf{D}-(g)$ is a divisor of degree 0 with support in $C-X$. This proves the first assertion. The map $\mathrm{C} \times \ldots \times \mathrm{C} \longrightarrow \mathrm{J}(\mathrm{C})$ given by $\left(x_{1}, \ldots, x_{g}\right) \longmapsto \sum_{i=1}^{g} x_{i}-g x_{0} \quad$ (where $x_{0} \in \mathrm{C}-\mathrm{X}$ is fixed) is surjective and induces the algebraic structure and topology on $\mathrm{J}(\mathrm{C})$. The map is almost bijective and open. So the image of $(\mathrm{C}-\mathrm{X}) \times \ldots \times(\mathrm{C}-\mathrm{X})$ is open and H is open.

Remark. - In general it seems to be rather difficult to calculate explicitely $H^{1}\left(X, \mathcal{O}_{X}^{*}\right)$. However using (3.1) one can work out the following special cases.
3.2. - Example. - Let the curve \mathbf{C} have a reduction $\mathrm{R}: \mathrm{C} \longrightarrow \overline{\mathbf{C}}$ such that $\overline{\mathrm{C}}$ is rational and has one ordinary double point p. Take p_{1}, \ldots, p_{s} points in $\overline{\mathrm{C}}-\{p\}$ and put $\mathrm{X}=\mathrm{R}^{-1}\left(\overline{\mathrm{C}}-\left\{p_{1}, \ldots, p_{s}\right\}\right)$. Then X is affinoid and its canonical reduction is $\mathrm{C}-\left\{p_{1}, \ldots, p_{s}\right\}$. The curve C is a Tate-curve and $\simeq k^{*} /\langle q\rangle$ with $0<|q|<1$. The points p_{1}, \ldots, p_{s} correspond to open discs of radii 1 around points $1=a_{1}, a_{2}, \ldots, a_{s} \in k$ with all $\left|a_{i}\right|=1$ and $\left|a_{i}-a_{j}\right|=1$ if $i \neq j$. Using (3.1) one finds an exact sequence :

$$
1 \longrightarrow \bar{k}^{*} /\left\langle\overline{a_{2}}, \ldots, \overline{a_{s}}\right\rangle \longrightarrow \mathbf{H}^{1}\left(\mathbf{X}, \mathcal{O}_{\mathbf{x}}^{*}\right) \longrightarrow\left|k^{*}\right| /\langle | q| \rangle \longrightarrow 1
$$

where $\left\langle\overline{a_{2}}, \ldots, \overline{a_{s}}\right\rangle$ is the subgroup of \bar{k}^{*} generated by $\overline{a_{2}}, \ldots, \overline{a_{s}} ;\left|k^{*}\right|$ is the value group of k and $\langle | q\rangle$ its subgroup generated by $| q \mid$. Note further that $\bar{k}^{*} /\left\langle\overline{a_{2}}, \ldots, \overline{a_{s}}\right\rangle=\mathrm{H}^{1}\left(\overline{\mathrm{X}}, \mathcal{O}_{\mathrm{X}}^{*}\right)$.
3.3. - Example. - Let C be a Mumford curve of genus $g \geqslant 1$ and let $\mathrm{R}: \mathbf{C} \longrightarrow \overline{\mathbf{C}}$ be its stable reduction. (The components of C are rational, the only singularities are ordinary double points.) The Jacobi-variety of C is a holomorphic torus $\left(k^{*}\right)^{g} / \Lambda$ where Λ is a lattice in $\left(k^{*}\right)^{g}$. Take ordinary points $p_{1}, \ldots, p_{s} \in \overline{\mathrm{C}}$ and put $\mathrm{X}=\mathrm{R}^{\mathbf{- 1}}\left(\overline{\mathrm{C}}-\left\{p_{1}, \ldots, p_{s}\right\}\right)$. Then X is affinoid and using (3.1) one calculates an exact sequence :

$$
1 \longrightarrow\left(\bar{k}^{*}\right)^{g} / \mathbf{S} \longrightarrow \mathbf{H}^{1}\left(\mathbf{X}, \mathcal{O}_{\mathbf{x}}^{*}\right) \longrightarrow\left|k^{*}\right|^{g} /|\Lambda| \longrightarrow 1
$$

where

$$
|\Lambda|=\left\{\left(\left|\lambda_{1}\right|,\left|\lambda_{2}\right|, \ldots, \mid \lambda_{g}\right) \mid\left(\lambda_{1}, \ldots, \lambda_{g}\right) \in \Lambda\right\}
$$

and S is a finitely generated subgroup of $\left(\bar{k}^{*}\right)^{g}$. The group $\left(\bar{k}^{*}\right)^{g}$ is in fact the Jacobi-variety of $\overline{\mathrm{C}}$ and the subgroup S is the subgroup of the divisors of degree 0 on $\overline{\mathbf{C}}$ with support in $\left\{p_{1}, \ldots, p_{s}\right\}$. So $\left(\bar{k}^{*}\right)^{g} / \mathrm{S}$ is again $\mathbf{H}^{1}\left(\overline{\mathbf{X}}_{s}, \mathcal{O}^{*}\right)$ where $\overline{\mathbf{X}}_{\mathbf{s}}$ denotes the stable reduction of X .

BIBLIOGRAPHY

[1] A. Escassur, Éléments spectralement injectifs et générateurs universels dans une algèbre de Tate, Memoria publicada en Collectanea Mathematica vol. XXVIII, fasc. 2 (1977), 131-148.
[2] L. Gerritzen, M. van der Put, p-adic Schottky groups and Mumford curves, forthcoming in Lecture Notes in Math.
[3] M. van der Put, Schottky groups and Schottky curves, Algebraic Geometry, 1978, Lecture Notes in Math., 732, 518-526.

Manuscrit reçu le 4 février 1980.
Marius van der Put,
Mathematisch Instituut
Universiteit van Groningen
WSN-Gebouw, Postbns 800
Groningen (Pays-Bas).
\&
U.E.R. de Mathématiques
et d'Informatique
Université de Bordeaux I
F-33405 Talence Cedex.

