BJÖRN E. J. DAHLBERG Approximation of harmonic functions

Annales de l'institut Fourier, tome 30, nº 2 (1980), p. 97-107 <http://www.numdam.org/item?id=AIF_1980__30_2_97_0>

© Annales de l'institut Fourier, 1980, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Fourier, Grenoble **30**, 2 (1980), 97-107.

APPROXIMATION OF HARMONIC FUNCTIONS

by Björn E. J. DAHLBERG

1. Introduction.

In this note we shall study the following approximation problem : Let u be harmonic in a domain D that has a regular boundary. When is it possible to find functions f_j of bounded variation in D (that is functions whose gradients are bounded in D) such that $\sup_{D} |f - f_j| \to 0$ as $j \to +\infty$? The main result of this paper is that this approximation is always possible if u is the Poisson integral of a function $f \in L^p(\sigma)$, $p \ge 2$, where σ denotes the surface measure of ∂D and is not always possible if $f \in L^p(\sigma)$, p < 2.

This type of approximation appears implicity in the main step of the proof of the Corona theorem, see Carleson [1, 2], for the case when u is a bounded and holomorphic function. For the case when u is the Poisson integral of a function of bounded mean oscillation BMO this type of approximation has been carried out by Varopoulos [9] and Garnett [5]. In these cases it is required that the approximands f_j have gradients that are Carleson measures:

THEOREM 1. – Suppose u is harmonic in a bounded Lipschitz domain $D \subset \mathbb{R}^n$, $n \ge 2$. Then for every $\varepsilon > 0$ there is a function φ such that $|u - \varphi| < \varepsilon$ in D and for all $P \in \partial D$ we have that

$$\int_{\beta(r)} |\nabla \varphi| \, d\mathbf{Q} \leq \mathbf{C} [\varepsilon^{-1} \int_{\beta(\mathbf{C}r)} |\nabla u|^2 \, \mathrm{dist} \{\mathbf{Q}, \partial \mathbf{D}\} \, d\mathbf{Q} + \varepsilon r^{n-1}].$$

Here $\beta(r) = \{Q \in D : |Q - P| < r\}$ and $\nabla \phi$ denotes the gradient of ϕ . The constant C only depends on D.

We remark that this result means that φ is of bounded variation if $\int_{D} |\nabla u|^2 \operatorname{dist} \{Q, \partial D\} \, dQ < \infty.$ It's known that this happens if and only if u is the Poisson integral of a function $f \in L^2(\sigma)$, see Stein [8] for the case of domains with smooth boundaries and Dahlberg [3] for the case of Lipschitz domains.

We recall that a measure μ is called a Carleson measure if $|\mu|(\beta(\mathbf{P},r)) \leq \mathbf{C}r^{n-1}$ for all $\mathbf{P} \in \partial \mathbf{D}$. It's known that a harmonic function u is the Poisson integral of a function of bounded mean oscillation if and only if $|\nabla u|^2 \operatorname{dist} \{Q, \partial\}$ is a Carleson measure, see Fefferman-Stein [4] for the case of smooth domains and this has recently been shown to hold for Lipschitz domains by E. Fabes and U. Neri (unpublished). Therefore $|\nabla \varphi| dQ$ is a Carleson measure if and only if u is the Poisson integral of a BMO-function, see Varopoulos [9].

THEOREM 2. – Let U denote the unit disk in \mathbb{R}^2 . If p < 2 then there is an $f \in L^p(\sigma, \partial U)$ such that if u = Pf then

$$\sup_{U} |u-\phi| = \infty$$

for all φ that are of bounded variation in U.

In addition to this exemple it's known that there are bounded holomorphic functions that are not of bounded variation, see Rudin [7].

2. The method of approximation.

We start by recalling that a bounded domain $D \subset \mathbb{R}^n$ is called a Lipschitz domain if ∂D can be covered by finitely many open right circular cylinders whose bases have a positive distance from ∂D and corresponding to each cylinder L there is a coordinate system (x,y) with $x \in \mathbb{R}^{n-1}$, $y \in \mathbb{R}$, with the y-axis parallel to the axis of L and a function $\varphi : \mathbb{R}^{n-1} \to \mathbb{R}$ satisfying a Lipschitz condition (i.e. $|\varphi(x) - \varphi(z)| \leq M|x-z|$) such that

$$L \cap D = \{(x,y) : y > \varphi(x)\} \cap L$$

and

$$D \cap L = \{(x,y) : y = \phi(x)\} \cap L$$

We recall that a Lipschitz domain D is starshaped with star center P^{*} and with standard inner cone Γ if P^{*} $\in \Gamma(P) \subset D$ for all $P \in \partial D$, where $\Gamma(P)$ denotes the cone with vertex P having its axis along the line through P and P^{*} and being congruent to Γ . (With a cone we mean an open, non empty, convex and possibly truncated cone). If u is harmonic in D and $u(P^*) = 0$ we have the following result from Dahlberg [4]: Let γ be a cone with the same vertex P_0 as Γ and assume that $\overline{\gamma} - \{P_0\} \subset \Gamma$. Let $\gamma(P)$ be constructed as $\Gamma(P)$ and put

$$\mathbf{M}(\mathbf{P}) = \sup \left\{ |u(\mathbf{Q})| : \mathbf{Q} \in \gamma(\mathbf{P}) \right\}.$$

Then

(2.1)
$$C^{-1} \int_{\partial D} M^2 d\sigma \leq \int_{D} |\nabla u|^2 \operatorname{dist} \{Q, \partial D\} dQ \leq C \int_{\partial D} M^2 d\sigma$$
,

where C only depends on γ and Γ .

We shall first suppose that u is a function in the cube

$$U = \{(x,y) : 0 < x_i < 1, i = 1, 2 \dots, n-1, 0 < y < 1\}.$$

We let Ω_m denote the collection of all dyadic cubes of side 2^{-m} in $\{x \in \mathbb{R}^{n-1}: 0 < x_i < 1\}$. If $Q \in \Omega_m$ we put $T(Q) = \{(x,y): x \in Q, 2^{-m-1} \leq y < 2^{-m}\}$. The collection of all T(Q), when Q runs over $\bigcup_{m \ge 0} \Omega_m$ is denoted by Λ . If T_1 , $T_2 \in \Lambda$ and $T_i = T(Q_i)$ we say that $T_1 < T_2$ if $Q_1 \subset Q_2$ and the side of Q_2 is twice the side of Q_1 . We shall fix the number a > 0 and put $\Gamma = \{(x,y): |x| < ay\}$. For $P \in \mathbb{R}^n$ we set

$$\mathcal{L}(\mathcal{T}) = \left\{ \mathcal{V} \in \Lambda : \mathcal{V} \cap \left[\bigcup_{p \in \mathcal{T}} \Gamma_p \right] \neq \emptyset \right].$$

We observe that if $T_1 < T_2$ and $T_1 \in L(T)$ then $T_2 \in L(T)$ also.

 $\Gamma_p = P + \Gamma = \{P + Q : Q \in \Gamma\}$. For $T \in \Lambda$ we put

We shall next describe the method for approximating u. We say that a $T \in \Lambda$ is red if diam (T) $\sup_{T} |\mathcal{O}u| \ge k\varepsilon$. Otherwise it's called blue. (Here k is a small number to be chosen later.) The main step now is to put together the

a small number to be chosen later.) The main step now is to put together the blue intervals into domains of Lipschitz character, where the oscillation of u is $\leq \varepsilon$.

Let S =
$$\left\{ (x,y) : 0 < x_i < 1, \frac{1}{2} < y < 1 \right\}$$
 and suppose that S is blue. We

shall now define $K(S) \subset \Lambda$ inductively as follows : First $S \in K(S)$ and a $T \in \Lambda$ is added to K(S) provided there is a $T' \in K(S)$ such that T < T', all elements of L(T) are blue and $|u(P_S)-u(P_T)| \leq m\epsilon$, where P_T is the center of T. Put $H(S) = \underset{T \in K(S)}{L} (T)$ and let D(S) denote the interior of the closure of $\bigcup_{T \in H(S)} T$. Suppose now that $T \in \Lambda$, $T \subset U - D(S)$, and $\partial T \cap d(S) \neq \emptyset$,

where $d(S) = U \cap \partial D(S)$. Let T_i , $0 \le i \le N$, be such that $T = T_0 < T_1 < \ldots < T_N = S$ and let *j* be the smallest integer such that $T_j \in K(S)$. Since $T_{j-1} \notin K(S)$ there are two cases to consider. If $L(T_{j-1})$ contains a red interval R we say that $T \in A(S)$ and if this is not the case we say that $T \in B(S)$. Also, we define $\alpha(S)$ and $\beta(S)$ as $U(\partial T \cap \partial D(S))$ where T runs over A(S) and B(S) respectively. We observe that there is a number M > 0 only depending on Γ such that the projection T' of T into \mathbb{R}^{n-1} is contained in \mathbb{R}^* , where $\mathbb{R}^* \subset \mathbb{R}^{n-1}$ is the cube with the same center as \mathbb{R}^1 but with a side that is M times the side of \mathbb{R}' . (Here R is the red interval contained in $L(T_{j-1})$.) Also there is a $v \in H(S)$ such that diam $\mathbb{R} \leq \text{diam } \mathbb{V} \leq 2 \text{ diam } \mathbb{R}$ and $|\mathbb{P}_{\mathbb{R}} - \mathbb{P}_{\mathbb{V}}| \leq M \text{ diam } \mathbb{R}$ (we'll say that R touches D(S)). Let $|\mathbb{E}|$ denote the (n-1)-dimensional Hausdorff measure of a set $\mathbb{E} \subset \mathbb{R}^n$. The Lipschitz character of D(S) implies that $|\alpha(S)| \leq C \left| \bigcup_{T \in A(S)} T' \right|$, which together with the above observations show that

$$|\alpha(\mathbf{S})| \leq \mathbf{C} \boldsymbol{\Sigma} |\partial \mathbf{R}|,$$

where the sum is taken over all red intervals that touch D(S). Let b > a be sufficiently large and put $\gamma = \{(x,y) : |x| < -by\}$. If $\Omega = \bigcup_{P \in d(S)} \gamma_p$, then $D_1 = D(S) - \overline{\Omega}$ is again a Lipschitz domain. It's easily seen that if a > 0has been chosen sufficiently small then b can be chosen so that D_1 is a starshaped Lipschitz domain with starcenter P_S and a standard inner cone P' that only depends on a and b. We have also that

$$|\bigcup_{\mathbf{T}\in\mathbf{B}(\mathbf{S})}\partial\mathbf{T}\cap d(\mathbf{S})\cap\partial\mathbf{D}_1|\geq \mathbf{C}|\boldsymbol{\beta}(\mathbf{S})|$$

where c > 0 only depends on a and b.

For $P \in \partial D_1$ we put $M_S(P) = \sup |u(Q) - u(P_S)|$, where Q runs over all points on the line segment between P and P_S. Suppose now that $T \in B(S)$ and $T = T_0 < T_1 < \ldots < T_N = S$. If j is the smallest index for which $T_j \in K(S)$ it follows that $L(T_{j-1})$ does not contain any red cube. If P_{j-1} denotes the center of T_{j-1} it follows that $|u(P_{j-1}) - u(P_S)| \ge m\epsilon$.

If j = 1 it follows that $|u(P) - u(P_S)| \ge (m - k)\varepsilon$ for all $P \in T = T_0$ and hence $M_S(P) \ge (m - k)\varepsilon$ for all $P \in \partial T \cap \partial D_1$. Suppose now that j > 1and $P \in \partial T \cap d(S) \cap \partial D_1$. Let Q denote the point on the line segment between P and P_S that has the same y-coordinate as P_{j-1} . Since the line segment between P_{j-1} and Q is contained in D(S) it follows that

$$|u(\mathbf{P}_{i-1}) - u(\mathbf{Q})| \leq k\epsilon |\mathbf{P}_{i-1} - \mathbf{Q}| (\text{diam } \mathbf{T}_{i-1})^{-1} < m\epsilon/2$$

if k has been chosen sufficiently small. Hence we have in all cases that

$$|\beta(\mathbf{S})| \leq \mathbf{C}|\{\mathbf{P} \in \partial \mathbf{D}_1 : \mathbf{M}(\mathbf{P}) > m\varepsilon/2\}|.$$

If there is an interval in $\Lambda - H(S)$ that's not red let S_1 denote one with maximal diameter. After making a change of scale we construct $H(S_1)$ as above and in this way we get a decomposition $\Lambda = \Lambda_R \cup \left[\bigcup_j H(S_j)\right]$ into pairwise disjoint sets, where Λ_R denotes the collection of all red intervals in Λ . We claim that if u is harmonic and $L_j = |\partial D(S_j)|$ then

(2.4)
$$\Sigma L_{j} \leq C \left[1 + \varepsilon^{-2} \iint_{\mathbb{C}} y |\nabla u|^{2} dx dy \right]$$

where C is independent of u and ε , $\tilde{U} = \{(x,y) : -1 < x_i < 2, 0 < y < 2\}$. Following Garnett [5] we first observe that if $R \in \Lambda$ is red then

(2.5)
$$|\partial \mathbf{R}| \leq C \varepsilon^{-2} \iint_{\mathbf{R}^*} y |\nabla u|^2 dx dy,$$

where

$$\mathbf{R}^* = \bigcup_{\mathbf{P} \in \mathbf{R}} \mathbf{B}(\mathbf{P}, \delta/2), \qquad \delta = \text{dist} \{\mathbf{R}, \mathbf{R}^{n-1}\}$$
$$\mathbf{B}(\mathbf{P}, \mathbf{r}) = \{\mathbf{O} : |\mathbf{P} - \mathbf{O}| < \mathbf{r}\}.$$

and

To see (2.5), we first observe that there is a number c_n only depending on n such that there is $\mathbf{P} \in \overline{\mathbf{R}}$ with $|\nabla u(\mathbf{P})| \ge c_n k \varepsilon \delta^{-1}$. Since $|\nabla u|^2$ is sub-harmonic it follows that

$$\iint_{\mathbf{R}^*} |\nabla u|^2 y \, dx \, dy \ge \frac{1}{2} \, \delta \, \iint_{\mathbf{B}(\mathbf{P}, \delta/2)} |\nabla u|^2 \, dx \, dy \ge c \varepsilon^2 |\partial \mathbf{R} \, ,$$

which gives (2.5). We also observe that from Cauchy's inequality follows that $\left(\iint_{\mathbb{R}} |\nabla u| dx \, dy\right)^2 \leq C |\partial \mathbb{R}| \iint_{\mathbb{R}} |\nabla u|^2 y \, dx \, dy$ which together with (2.5) gives

(2.6)
$$\iint_{\mathbb{R}} |\nabla u| \, dx \, dy \leq C \varepsilon^{-1} \iint_{\mathbb{R}^*} |\nabla u|^2 y \, dx \, dy.$$

Let $\theta > 0$ be a small fixed number and let I denote those j : s for which $|\partial D(S_j) \cap \mathbb{R}^{n-1}| \ge \theta L_j$. Since the domains $D(S_j)$ are pairwise disjoint it follows that

(2.7)
$$\sum_{I} L_{j} \leqslant \theta^{-1}.$$

BJÖRN E. J. DAHLBERG

Let II denote those j:s for which $|\alpha(S_j)| \ge \theta L_j$. Since the domains $\{R^*\}_{R \in \Lambda_R}$ have uniformly bounded overlap and there is a fixed number N such that no red interval $R \in \Lambda_R$ touches more than N of the domains $D(S_j)$ it follows from (2.2) and (2.5) that

(2.8)
$$\sum_{\Pi} \mathbf{L}_j \leq \theta^{-1} \Sigma |\alpha(\mathbf{S}_j)| \leq C \varepsilon^{-2} \iint_{\mathbf{C}} y |\nabla u|^2 \, dx \, dy.$$

Finally let III be those j:s for which $|\beta(S_j)| \ge \theta L_j$. From (2.1) and (2.3) follows that

$$\begin{aligned} |\beta(\mathbf{S}_j)| &\leq C\varepsilon^{-2} \int_{\mathbf{D}_j} \operatorname{dist} \{\mathbf{Q}, \partial \mathbf{D}_j\} |\nabla u|^2 \, d\mathbf{Q} \leq C\varepsilon^{-2} \iint_{\mathbf{D}_j} y |\nabla u|^2 \, dx \, dy \\ \text{so we have that} \\ (2.9) \qquad \sum_{\mathrm{III}} \mathbf{L}_j \leq C\varepsilon^{-2} \iint_{\mathbf{U}} y |\nabla u|^2 \, dx \, dy. \end{aligned}$$

If the constant θ has been chosen small enough then each $D(S_j)$ belongs to one of the categories I, II or III. Hence (2.4) follows from (2.7-9).

We now define $\varphi = uh + \Sigma u(\mathbf{P}_j)h_i$, where *h* is the characteristic function of $\bigcup_{\mathbf{R}\in\Lambda_{\mathbf{R}}} \bar{\mathbf{R}}$, h_j is the characteristic function of $\mathbf{D}(\mathbf{S}_j)$ and \mathbf{P}_j is the center of \mathbf{S}_j . Clearly $|u-\varphi| \leq \varepsilon$. It remains to estimate $|\nabla\varphi|$. To this end let λ_j be the surface measure of $\partial \mathbf{D}(\mathbf{S}_j)$ and if $\{\mathbf{R}_j\}_{=1}^{\infty} = \Lambda_{\mathbf{R}}$ we let σ_j denote the surface measure of $\partial \mathbf{R}_j$. With this notation we have that $|\nabla\varphi| \leq C[|\nabla u|h + \varepsilon \Sigma(\sigma_j + \lambda_j)]$, where the ε in front of the sum appears because the jump of φ at a common boundary point of domains of the form $\mathbf{D}(\mathbf{S}_j)$ or \mathbf{R}_k is less than ε .

Let $Q \subset \mathbb{R}^{n-1}$ be a cube and put

$$S(Q) = \{(x,y) : x \in Q, 0 < y < \text{side of } Q\}.$$

We shall now estimate $\iint_{S(Q)} |\nabla \varphi| dx dy$. Let M be a large positive number and let $V \subset \mathbb{R}^{n-1}$ be the largest dyadic cube that contains Q for which $|V| \leq 6^n M |Q|$. If M is large enough, then it follows from (2.5) and (2.6) that

$$\iint_{\mathbf{S}(\mathbf{Q})} |\nabla u| h \, dx \, dy \, + \, \varepsilon \Sigma \sigma_j(\mathbf{S}(\mathbf{Q})) \, \leqslant \, \mathbf{C} \varepsilon^{-1} \, \iint_{\mathbf{S}(\mathbf{V})} |\nabla u|^2 \, dx \, dy \, .$$

From (2.4) and possibly a change of scale we see that

$$\Sigma'\lambda_j(\mathcal{S}(\mathcal{Q})) \leqslant \mathbb{C}\bigg[\varepsilon^{-2}\iint_{\mathcal{S}(\mathcal{V})}|\nabla u|^2 y\,dx\,dy+|\mathcal{Q}|\bigg],$$

where the prime denotes summation over those j:s for which $S_j \subset S(V_1)$, where V_1 is the largest dyadic cube that contains Q for which $|V_1| \leq M|Q|$. If $\lambda_j(S(Q)) > 0$ and if S_j is not contained in $S(V_1)$ then $D(S_j)$ contains (x_Q, Ly_Q) where (x_Q, y_Q) is the center of S(Q) and the constant L only depends on M and the choice of the cone Γ for the construction of $D(S_j)$. Since the domains $D(S_k)$ are pairwise disjoint there is at most one j with this property and from the Lipschitz character of $D(S_j)$ it follows that $\lambda_j(SQ) \leq C|Q|$ which concludes the proof of theorem 1 for the case of smooth domains.

The case when u is harmonic in a Lipschitz domain is easily reduced to the case when u is defined in

$$U' = \{(x,y) : 0 < x_i < 1, f(x) < y < f(x) + 1\},\$$

where f is a Lipschitz function. Letting T(x,y) = (x,y-f(x)) we see that T maps U' onto

$$\mathbf{U} = \{(x,y) : 0 < x_i < 1, 0 < y < 1\}.$$

Let $u_1 = u \circ T^{-1}$ and construct φ_1 in U as above, this time approximating u_1 . Letting $\varphi = \varphi_1 \circ T$, it's easily seen that the methods for estimating $\nabla \varphi$ work in this case too, which yields theorem 1.

3. An example.

In this section we shall identify \mathbb{R}^2 with the complex plane C and we'll denote points in C by z = x + iy, $x, y \in \mathbb{R}$. We'll put $J = \{x : -1 < x < 1\}$ and $Q = \{z : |x| < 2, 0 < y < 4\}$. If $f \in L^p(\mathbb{R})$ we let Pf denote the Poisson integral of f. We shall establish the following result.

THEOREM 3. – For all p < 2 there is an $f \in L^p(\mathbb{R})$ with support in J such that $\sup_{Q} |\mathbf{P}f - \varphi| = \infty$ for all φ such that $\iint_{Q} |\nabla \varphi| \, dx \, dy < \infty$.

We shall deduce theorem 3 from the following lemma, the proof of which is given later.

LEMMA 1. - For $\theta \in (0,1)$ there is a function $g_{\theta} \in L^{2}(\mathbb{R})$ with support in J such that if $0 < \varepsilon < 1$ and $|u - \varphi| \leq \varepsilon$ in Q, then $\iint_{Q} |\nabla \varphi| \, dx \, dy \ge c\varepsilon^{-\theta}, \text{ where } c > 0 \text{ is independent of } \varepsilon.$

BJÖRN E. J. DAHLBERG

Proof of theorem 3. – We shall first define a sequence of intervals $I_j \subset \mathbf{R}$ by putting $I_1 = [0,1]$ and requiring that I_{j+1} is to the right of I_j , $|I_j| = 2^{-j}$ and dist $\{I_j, I_{j+1}\} = j^{-2}$. Let c_j denote the center of I_j and put

(3.1)
$$g_j(x) = g_{\theta}(2^{j+1}(x-c_j)),$$

where g_{θ} is as in lemma 1. It's easily seen that

$$|\nabla Pg_{i}(z)| \leq C2^{-j}|z-c_{i}|^{-2}$$

whenever $|z - c_j| > 2^{-j}$. If $Q_j = \{z : |x - c_j| < 2^{-j}, 0 < y < 2^{1-j}\}$ we therefore have

(3.2)
$$\sup \{ |\nabla \mathbf{P}g_k(z)| : z \in \mathbf{Q}_j \} \leq \mathbf{C} 2^{-k} k^2 (k \neq j).$$

Let $b_j > 0$ be defined by $b_j^{p_2-j} = j^{-2}$ and put $f = \sum b_j g_j$. Clearly $f \in L^p(\mathbf{R})$ and the support of f is bounded. From (3.2) follows $u = b_j P f_j + R_j$, where u = P f and

(3.3)
$$\sup \left\{ |\nabla \mathbf{R}_j(z) : z \in \mathbf{Q}_j \right\} \leq C \sum_k b_k k^2 2^{-k} = \mathbf{M} < \infty.$$

Suppose now that $|u-\phi| \leq L < \infty$ in $\bigcup_{j \geq 1} Q_j$. We shall next show that this

implies that $\sum_{j} \iint_{Q_{j}} |\nabla \varphi| \, dx \, dy = \infty$ whenever $\theta > p - 1$.

If z_j denotes the center of Q_j it follows from (3.3) that

 $\sup \{ |m_j - \mathbf{R}_j(z)| : z \in \mathbf{Q}_j \} \leq \mathbf{M} \operatorname{diam} (\mathbf{Q}_j) \to 0 \text{ as } j + \infty,$

where $m_j = R_j(z_j)$. Therefore there is a j_0 such that if $j \ge j_0$ then $|Pf_j - \varphi_j| \le 2Lb_j^{-1}$ in Q_j , where $\varphi_j = (\varphi - m_j)b_j^{-1}$. From lemma 1 follows now that

$$\sum_{j} \iint_{Q_{j}} |\nabla \varphi| \, dx \, dy \ge C \sum_{j \ge j_{0}} 2^{-j} b_{j}^{i+\theta} = \infty \text{ if } \theta > p - 1$$

which yields the theorem.

We remark that by using a suitable conformal mapping it's easily seen that theorem 2 follows from theorem 3.

We'll need the following lemma for the proof of lemma 1.

LEMMA 2. – Suppose u is harmonic in $B = B(z_0,5r) \subset C$. If $|u-\phi| \leq \varepsilon$ in B and if sup $\{|u(z_1)-u(z_2)| : z_1,z_2 \in B(z_0,r)\}$ then $\iint_B |\nabla \phi| \, dx \, dy \ge c\varepsilon r$, where c > 0 is a universal constant. *Proof.* – Pick $z_1, z_2 \in B(z_0, r)$ such that $|u(z_1) - u(z_2)| \ge 7\varepsilon$. Since the function $z \to |u(z) - u(z_2)|^2$ is subharmonic it follows that

$$\int_{B(z_1,r)} |u(z) - u(z_2)|^2 \, dx \, dy \ge 7^2 \pi \varepsilon^2 r^2 \, .$$

Since $B(z_1,r) \subset \tilde{B} = B(z_2,3r)$ we therefore have that

$$\int_{\mathfrak{B}} |\varphi - \widetilde{\varphi}|^2 \, dx \, dy \ge \pi \varepsilon^2 r^2 \, ,$$

where $\tilde{\varphi} = \int_{B} \varphi \, dx \, dy \int_{B} dx \, dy$. The Poincaré-Soboev inequality (see Meyers and Ziemer [6] for general versions) says that there is a constant C such that for all balls

$$\widetilde{B}\left(\int_{\widetilde{B}} |\varphi - \widetilde{\varphi}|^2 \, dx \, dy\right)^{1/2} \leq C \int_{\widetilde{B}} |\nabla \varphi| \, dx \, dy,$$

which yields lemma 2.

We shall next prove lemma 1. Let $\alpha > 0$ be defined by $(1-2\alpha) = \theta(1+2\alpha)$ and put $a_k = k^{-1/2-\alpha}$ for k = 1, 2... Let $\delta > 0$ be a given number. We claim that there is a sequence of positive integers $n_k + \infty$ such that if $f(z) = \sum_{k=1}^{\infty} a_k z^{n_k}$ and if

$$\mathbf{S}_{k} = \{ z : n_{k}^{-1} \leq 1 - |z| \leq 4n_{k}^{-1} \}$$

then $f'(z) = a_k n_k z^{n_k - 1} + R_k(z)$, where

$$\sup \{ |\mathbf{R}_k(z)| : z \in \mathbf{S}_k \} \leq \delta a_k n_k.$$

To see this choose $n_1 = 100$ and if n_1, \ldots, n_{k-1} have been chosen then

$$\left|\sum_{j< k} a_j n_j z^{n_j - 1}\right| \leq k n_{k-1} < \delta/2 a_k n_k$$

if n_k has been chosen large enough. If we also require that $n_{j+1} \ge n_j + 2$ and

$$(1-n_j^{-1})^{\frac{1}{2}n}j + 1^{-1}n_{j+1} \leq \min(1,a_j\delta/2)$$

we have for $z \in S_k$ that

$$\begin{aligned} \left| \sum_{j>k} a_j n_j z^{n_j - 1} \right| &\leq \sum_{j>k} a_j n_j (1 - n_k^{-1})^{n_j - 1} \\ &\leq \sum_{j>k} (1 - n_k^{-1})^{\frac{1}{2}n_j} j \leq \sum_{s=1}^{\infty} (1 - n_k^{-1})^{\frac{1}{2}n_k + s} \leq \frac{1}{2} \,\delta n_k a_k \end{aligned}$$

and adding these extimates yields the claim.

Hence if δ has been chosen sufficiently small then whenever $B \subset S_k$ is disk of radius $(10n_k)^{-1}$ we have that

(3.4)
$$\sup \{ |f(z_1) - f(z_2)| : z_1, z_2 \in \mathbf{B} \} > ca_k$$

where c > 0 is independent of k.

Let u = P(fh), where h is the characteristic function of

 $\{z : |z| = 1, \text{ Re } z > 0\} = L.$

Since u - f has boundary values zero on L it follows that u - f has a harmonic extension to all of $\{z : \text{Re } z > 0\}$. We therefore have that if B is a disk of radius $(10n_k)^{-1}$ such that

$$\mathbf{B} \subset \mathbf{S}_k \cap \{z : |\arg z| \leq \pi/3\} = \mathbf{S}_k^*$$

then it follows from (3.4) that

(3.5)
$$\sup \{|u(z_1) - u(z_2)| : z_1, z_2 \in \mathbf{B}\} \ge da_k$$

for $k \ge k_0$, where d > 0 is independent of k.

Suppose now that $\varepsilon > 0$ is a small number and that

$$|u-\phi| \leq \varepsilon$$
 in $\Omega = \{z : |z| < 1, \operatorname{Re} z > -1/2\}.$

There is a number $\lambda 0$ such that we can find more than λn_k disks B(j,k) of radius $(10n_k)^{-1}$ such that $10B(j,k) \subset S_k^*$ whenever $1 \leq j \leq \lambda n_k$ and the disks B(j,k) are pairwise disjoint. It's easily seen from (3.5) that there is an m > 0 such that if $0 < \varepsilon < \varepsilon_0$ then

$$\sup \{ |u(z_1) - u(z_2)| : z_1, z_2 \in \mathbf{B}(j,k) \} > 10\varepsilon$$

whenever $1 \le j \le \lambda n_k$, $ko < k < L(\varepsilon)$, where $L(\varepsilon) = m\varepsilon^{-\beta}$, $\beta = 2(1+2\alpha)^{-1}$. From lemma 2 follows now that

$$\iint_{\Omega} |\nabla \varphi| \, dx \, dy \geq \sum_{k=k_0}^{L(\varepsilon)} \sum_{j=1}^{\lambda n_k} \iint_{10 \operatorname{B}(j,k)} |\nabla \varphi| \, dx \, dy \geq c' L(\varepsilon) \varepsilon = c \varepsilon^{-\theta}.$$

Finally, mapping the unit disk conformally onto the upper half plane yields lemma 1.

APPROXIMATION OF HARMONIC FUNCTIONS

BIBLIOGRAPHY

- [1] L. CARLESON, Interpolation by bounded analytic functions and the Corona problem, Ann. Math., 76 (1962), 547-559.
- [2] L. CARLESON, The Corona Problem, in Lecture Notes in Mathematics, vol 118, Springer Verlag, Berlin, 1969.
- [3] B. E. J. DAHLBERG, Weighted norm inequalities for the Lusin area integral and the non tangential maximal functions for functions harmonic in a Lipschitz domain, to appear in *Studia Math.*
- [4] C. FEFFERMAN and E. M. STEIN, H^p-spaces of several variables, Acta Math., 129 (1972), 137-193.
- [5] J. GARNETT, to appear.
- [6] N. G. MEYERS and W. P. ZIEMER, Integral inequalities of Poincaré and Wirtinger type for BV functions, Amer. J. of Math., 99 (1977), 1345-1360.
- [7] W. RUDIN, The radial variation of analytic functions, Duke Math. J., 22 (1955), 235-242.
- [8] E. M. STEIN, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, New Jersey, 1970.
- [9] N. Th. VAROPOULOS, BMO functions and the ∂-equation, Pacific J. Math., 71 (1977), 221-273.

Manuscrit reçu le 12 novembre 1979.

Björn E. J. DAHLBERG .

Chalmers University of Technology and University of Göteborg Department of Mathematics Sven Multins gata 6 S-402 20 Göteborg.