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APPROXIMATION OF HARMONIC FUNCTIONS

by Bjorn E. J. DAHLBERG

1. Introduction.

In this note we shall study the following approximation problem : Let u
be harmonic in a domain D that has a regular boundary. When is it possible
to find functions fj of bounded variation in D (that is functions whose
gradients are bounded in D) such that sup [/ — f.\ ->• 0 as / -> + oo ? The

D
main result of this paper is that this approximation is always possible if u is
the Poisson integral of a function fe L^a), p ^ 2, where a denotes the
surface measure of 3D and is not always possible if f e L^a), p < 2.

This type of approximation appears implicity in the main step of the proof
of the Corona theorem, see Carleson [1, 2], for the case when u is a bounded
and holomorphic function. For the case when u is the Poisson integral of a
function of bounded mean oscillation BMO this type of approximation has
been carried out by Varopoulos [9] and Garnett [5]. In these cases it is
required that the approximands fj have gradients that are Carleson
measures.

THEOREM 1. — Suppose u is harmonic in a bounded Lipschitz domain
D c R", n ^ 2. Then for every e > 0 there is a function (p such that
\u — (p| < s in D and for all P e 3D \ve have that

|V(p| dQ ^ C[e-1 |V^|2 dist {Q,3D} ^Q+er"-1].
Jp(r) Jp(Cr)

Here P(r) = {Q e D : |Q-P|<r} and V(p denotes the gradient of (p. The
constant C only depends on D.

We remark that this result means that (p is of bounded variation if

|Vu[2 dist {Q,3D} dQ < oo. It's known that this happens if and only if u
JD
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is the Poisson integral of a function fe L^a), see Stein [8] for the case of
domains with smooth boundaries and Dahlberg [3] for the case of Lipschitz
domains.

We recall that a measure n is called a Carleson measure if
|H|(P(P,r)) ^ Cr"~1 for all P e 8D. It's known that a harmonic function u
is the Poisson integral of a function of bounded mean oscillation if and only if
|VM|2 dist {Q,3} is a Carleson measure, see Fefferman-Stein [4] for the case of
smooth domains and this has recently been shown to hold for Lipschitz
domains by E. Fabes and U. Neri (unpublished). Therefore |Vq>| dQ is a
Carleson measure if and only if u is the Poisson integral of a BMO-function,
see Varopoulos [9].

THEOREM 2. — Let U denote the unit disk in R2. If p < 2 then there is
an fe LP(a,8\J) such that if u = Pf then

sup |u—(p| = oo
u

for all (p that are of bounded variation in U.

In addition to this exemple it's known that there are bounded holomor-
phic functions that are not of bounded variation, see Rudin [7].

2. The method of approximation.

We start by recalling that a bounded domain D c: R" is called a
Lipschitz domain if 8D can be covered by finitely many open right circular
cylinders whose bases have a positive distance from 8D and corresponding
to each cylinder L there is a coordinate system (x,y) with xeR"" 1 , y e R ,
with the y-axis parallel to the axis of L and a function (p : R""1 -> R
satisfying a Lipschitz condition (i.e. |(p(x)—(p(z)|^M|x-z[) such that

L n D = {(x,y) : y > (p(x)} n L

and

D n L = {(x,y) : y=(p(x)} nL.

We recall that a Lipschitz domain D is starshaped with star center P* and
with standard inner cone F if P* e F(P) c: D for all P e 8D, where F(P)
denotes the cone with vertex P having its axis along the line through P and
P* and being congruent to F. (With a cone we mean an open, non empty,
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convex and possibly truncated cone). If u is harmonic in D and u{P*) = 0
we have the following result from Dahlberg [4] : Let y be a cone with the
same vertex PQ as F and assume that y — {Po} c: r. Let y(P) be
constructed as F(P) and put

M(P) = sup {|u(Q)| : Qey(P)}.

Then

(2.1) C-1 M^CT^ |Vu|2 dist {Q,3D} dQ ^ C \ M^CT,
JBD JD JSD

where C only depends on y and F.
We shall first suppose that u is a function in the cube

U = {(x,y) : 0<x,<l, f = l , 2 . . . , n - l , 0<^<1}.

We let 0^ denote the collection of all dyadic cubes of side 2""* in
{ x e R " - 1 : 0<x,<l}. If Qeft^ we put T(Q) = {(x,y) : x e Q ,
2~m~l^y<2~m}. The collection of all T(Q), when Q runs over (J 0^

w^O

is denoted by A. I fT^ , T ^ e A and T, = T(Q^) we say that T^ < T2 if
Qi c Q2 an^ ^e side of Q^ is twice the side of Qi. We shall fix the
number a > 0 and put F = {(x,y) : \x\<ay}. For PeR" we set
Fp = P + r = {P+Q : Q e r}. For T e A we put

L(T:)=^VeA: V nrurj^0l.

We observe that if T^ < T2 and Ti e L(T) then T^ e L(T) also.
We shall next describe the method for approximating u. We say that a

T e A is red if diam (T) sup \(Pu\ ^ fee. Otherwise its called blue. (Here k is
T

a small number to be chosen later.) The main step now is to put together the
blue intervals into domains of Lipschitz character, where the oscillation of u
is ^ e.

Let S = ^(x,y) : 0<Xi<l,-<y<l> and suppose that S is blue. We

shall now define K(S) c A inductively as follows : First S e K(S) and a
T e A is added to K(S) provided there is a T€K(S) such that T < T, all
elements of L(T) are blue and \u(Ps)-u(P^)\ < me, where PT is the center
of T. Put H(S) = L (T) and let D(S) denote the interior of the closure of

TeK(S)

U T. Suppose now that T e A , T c U - D(S), and 8T n d(S) ^ 0,
T ,S)
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where d(S) = U n 3D(S). Let T,, 0 < i ^ N, be such that
T = To < TI < . . . < T N = S and let j be the smallest integer such that
Ty e K(S). Since T^.i t K(S) there are two cases to consider. If L(T^_i)
contains a red interval R we say that TeA(S) and if this is not the case we
say that TeB(S). Also, we define a(S) and P(S) as U(5T n<9D(S)) whereT
runs over A(S) and B(S) respectively. We observe that there is a number
M > 0 only depending on T such that the projection T of T into R""1

is contained in R*, where R* c: R"~1 is the cube with the same center as
R1 but with a side that is M times the side of R'. (Here R is the red
interval contained in L(T^_i).) Also there is a v e H(S) such that-
diam R ^ diam V ^ 2 diam R and [Pp-PyI ^ M diam R (we'll say that
R touches D(S)). Let |E| denote the (n-l)-dimensional Hausdorff
measure of a set E <= R". The Lipschitz character of D(S) implies that

U T'
TeA(S)

|oc(S)| ^ C which together with the above observations show that

(2.2) |oc(S)| ^C£|aR|,

where the sum is taken over all red intervals that touch D(S). Let b > a be
sufficiently large and put y = {(x,y) : \x\<—by}. If Q = (J y , then

P^(S)

DI = D(S) — Q is again a Lipschitz domain. It's easily seen that if a > 0
has been chosen sufficiently small then b can be chosen so that D^ is a
starshaped Lipschitz domain with starcenter P§ and a standard inner cone P'
that only depends on a and b. We have also that

| (J 8T n d(S) n aDJ ^ C|P(S)|
TeB(S)

where c > 0 only depends on a and b.
For P e <9Di we put M§(P) = sup \u(Q) — «(Ps)|, where Q runs over

all points on the line segment between P and Pg. Suppose now that
Te B(S) and T = To < T\ < . . . < T N = S . I f 7 is the smallest index for
which Tj e K(S) it follows that L(Tj_i) does not contain any red cube. If
P^_i denotes the center of Ty_ i it follows that \u(Pj,^)-u(Ps)\ ^ we-

lt 7 = 1 it follows that \u(P)-u(Ps)\ > (m-k)s for all PeT = To and
hence Mg(P) ^ (m—k)e for all P e 5T n 8D^. Suppose now that j > 1
and P e 5T n d(S) n 8D^. Let Q denote the point on the line segment
between P and P§ that has the same ^-coordinate as P^-i. Since the line
segment between Pj-^ and Q is contained in D(S) it follows that

^(P.-O-^tQ^NP.-i-QKdiamT^i)'^^^
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if k has been chosen sufficiently small. Hence we have in all cases that

(2.3) |P(S)| ^ C\{PeSD, : M(P)>me/2}|.

If there is an interval in A — H(S) that's not red let S^ denote one with
maximal diameter. After making a change of scale we construct H(S^) as

above and in this way we get a decomposition A = AR u NJ H(S/) into
L j J

pairwise disjoint sets, where AR denotes the collection of all red intervals in
A. We claim that if u is harmonic and Lj = \8D(Sj)\ then

(2.4) ZL, ^ c|l +£ -2 [f y\Vu\2 dx dy\
L JJu J

where C is independent of u and e, U = {(xjQ : - 1 < ^ < 2 ,
0 < y < 2}. Following Garnett [5] we first observe that if R e A is red then

(2.5) \SR\ ^Ce-2 [[ y ^ d x d y ,
JJR*

where R* = (J B(P,5/2), 8 = dist {R,R"-1}
PeR

and B(P,r) = {Q : |P-Q|<r}.

To see (2.5), we first observe that there is a number c^ only depending on n
such that there is P e R with |Vu(P)| ^ c^e8~1. Since |Vu|2 is sub-
harmonic it follows that

[[ |VM|2^ dx dy ^ 1- 8 |VM|2 dx dy ^ c^\8R,
JJR* z JJB(P,5/2)

which gives (2.5). We also observe that from Cauchy's inequality follows that
\2 rr\Vu\dx dy j < C|5R| |VM|2}7 dx dy which together with (2.5) gives

R / JjR

(2.6) |Vu| dx dy ^ Ce"1 {Vu^y dx d y .

Let 9 > 0 be a small fixed number and let I denote those j : s for which
|3D(S^) n R""1! ^ QLj. Since the domains D(S^) are pairwise disjoint it
follows that

(2.7) ^L,^ e-1 .
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Let II denote those j : s for which |a(S^)| ^ OLj. Since the domains
{R*}ReAn have uniformly bounded overlap and there is a fixed number N
such that no red interval R e A p touches more than N of the domains D(Sj)
it follows from (2.2) and (2.5) that

(2.8) ^ L, ^ O-^latS,)! ^ Ce-2 ff yW dx d y .
n JJo

Finally let III be those j : s for which |(i(S^)| ^ OL,. From (2.1) and (2.3)
follows that

|P(S,)| ^ Ce-2 dist {Q,8Dj} |Vu|2 dQ < Cs-2 y|Vu|2 dx dy
J D . JJD.

so we have that cc
(2.9) ^L.^Ce-2 yWdxdy.

in JJu

If the constant 9 has been chosen small enough then each D(Sy) belongs
to one of the categories I, II or III. Hence (2.4) follows from (2.7-9).

We now define (p = uh + SM(P^)/^, where h is the characteristic
function of (J R, fcj is the characteristic function of D(Sj) and Pj is the

REAR

center of S^. Clearly |M—(p| ^ £. It remains to estimate |V<p|. To this end
let 'kj be the surface measure of 5D(S^-) and if {R^-}2i = AR we let Oj
denote the surface measure of 8Rj. With this notation we have that
|V(p| ^ C[|VM|/I + ££(<7^+^)], where the e in front of the sum appears
because the jump of (p at a common boundary point of domains of the form
D(Sj) or Rfc is less than e.

Let Q c: R"~1 be a cube and put

S(Q) = {(x,y) : x e Q, 0<y< side of Q}.

We shall now estimate \^^\dxdy. Let M be a large positive number
JJs(Q)

and let V <= R"~1 be the largest dyadic cube that contains Q for which
|V| ^ 6"M|Q|. If M is large enough, then it follows from (2.5) and (2.6) that

|VM|/I dx dy + e£a,(S(Q)) ^ Ce-1 |VM|2 dx dy.
JJS(Q) JJs(V)

From (2.4) and possibly a change of scale we see that

rX,(S(Q)) < c|"£-2 ff Wydxdy+\Q\\,
L JJs(v) J
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where the prime denotes summation over those j : s for which S. c S(V\),
where V\ is the largest dyadic cube that contains Q for which
|VJ < M|Q|. If X,(S(Q)) > 0 and if S, is not contained in S(Vi) then
D(S^) contains (x^Lyp) where (x^y^) is the center of S(Q) and the
constant L only depends on M and the choice of the cone F for the
construction of D(S^). Since the domains D(S^) are pairwise disjoint there is
at most one j with this property and from the Lipschitz character of D(S^) it
follows that ^(SQ)) ^ C|Q| which concludes the proof of theorem 1 for the
case of smooth domains.

The case when u is harmonic in a Lipschitz domain is easily reduced to
the case when u is defined in

U' = {(x,y) : Q<x,<l,f(x)<y<f(x)-^-l},

where / is a Lipschitz function. Letting T(x,^) = (x,y—f{x)) we see that T
maps U' onto

U = {(xjQ: 0<x,<l , 0<y<l}.

Let MI = u o T ~ 1 and construct (pi in U as above, this time
approximating u^. Letting (p = (pi o T, it's easily seen that the methods for
estimating V(p work in this case too, which yields theorem 1.

3. An example.

In this section we shall identify R2 with the complex plane C and we'll
denote points in C by z = x + iy, x, y e R. We'll put
J = {x : - 1 < x < 1} and Q = [z : |x|<2, 0<3;<4}. If/eL^R) we
let P/ denote the Poisson integral of /. We shall establish the following
result.

THEOREMS. — For all p < 2 there is an /e L^R) with support in J such

that sup |P/—(p| = oo for all (p such that |V(p| dx dy < oo.
Q JJQ

We shall deduce theorem 3 from the following lemma, the proof of which
is given later.

LEMMA 1. — For 9e(0,l) there is a function ^eL^R) with support in
3 such that if 0 < e < 1 and | M — ( p | ^ e in Q, then

" f *1. |V(p| dx dy ^ ce"9, where c > 0 is independent of £.
Q
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Proofoftheorem 3. - We shall first define a sequence of intervals I, c R
by putting I, = [0,1] and requiring that I^i is to the right of I.,
|L-| = 2 ] and dist {I,,I,+i} = j - 2 . Let c, denote the center of I. and
put J

(11) ^A) = rf^Cc-c,)),
where ^e is as in lemma 1. It's easily seen that

|VP0,(z)| <: C2-^|z-c,|-2

whenever |z-c,| > 2-^. If Q, = {z : |x-c,|<2-^, 0<3.<21-^} we there-
fore have

(3.2) sup {|VP^(z)| : z e Q,} ^ C2-tfe2(fe^•).

Let .̂ > 0 be defined by b^~'= j-2 and put /= S ,̂. Clearly
/eL^R) and the support of / is bounded. From (3.2) follows
u = bjPfj + R^ where M = P/ and

(3.3) . sup {|VR,(z) : z e Q,} < C^ b^k2!-" = M < oo.
fc

Suppose now that |^-(p| ^ L < a) in U Q,. We shall next show that this
7^1

implies that ^ |V(p| dx ̂  = oo whenever 6 > p - 1.
7 JJQj

If ẑ . denotes the center of Q .̂ it follows from (3.3) that

sup {|w,-R,(z)| : z e Q,} ̂ M diam (Q .̂) -> 0 as 7 + oo,

where m, = R,(z,.). Therefore there is a 7-0 such that if j ̂  then
l^-^l ^ 2L^. x in Q,., where ^ = ((p-^.)^-1. From lemma 1 fol-
lows now that

S |V(p| rfx dy ^ C ^ 2-^.+e = oo if 9 > p - 1
7 •^Q, Wo

which yields the theorem.
We remark that by using a suitable conformal mapping it's easily seen that

theorem 2 follows from theorem 3.
We'll need the following lemma for the proof of lemma 1.

LEMMA 2. - Suppose u is harmonic in «B = B(zo,5r) c C. If\u-^\ ^ e

in B andifsup{\u(z,)-u(z,)\ : z^eB(z^r)} then ff |V(p[ dx dy ^ cer,
where c > 0 is a universal constant. VVB
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Proof. — Pick Zi, z^ e B(zo,r) such that \u(z^)—u(z^)\ ^ 7s. Since the
function z -> |M(z)—u(z2)|2 is subharmonic it follows that

\u(z) - u(z^dxdy ^ l^r2.
JB(zi,r)

Since B(zi,r) <= 8 = B(z2,3r) we therefore have that

|(p — (p|2 dx dy ^ Tie^2,
Jfi

- f fwhere (p = ^ dx dy \ dx d y . The Poincare-Soboev inequality (see
Je Jfi

Meyers and Ziemer [6] for general versions) says that there is a constant C
such that for all balls

^ N 1 / 2 r
B ^ - ^ d x d y ] ^C \^^\dxdy,

5 / Jfi

which yields lemma 2.
We shall next prove lemma 1. Let a > 0 be defined by

(l-2a) = 9(1+2a) and put ^ = k-112-" for k = 1, 2 . . . Let § > 0 be
a given number. We claim that there is a sequence of positive integers n^ + oo

00

such that if f(z) = ̂ a^ and if

S, = {z : n^l-lzl^^-1}

then f(z) = flfcHfcZ^"1 + R^z), where

sup{|RJz)| : zeSj^Ba^.

To see this choose n^ = 100 and if n^ . . . , n^_^ have been chosen then

^a,n,z^-1 ^^-i <8/2a^
|/<k

if ^ has been chosen large enough. If we also require that n^.+i ^ ^ + 2
and

(l-n^h + l-ln^l ̂  min (l,a,8/2)
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we have for z e Sĵ  that

^W^-1 ^ ^a.n/l-n,-1)^1

\J>k j>k

< E (l-^1)^ < £ (l-n,.-1)̂  ^ ̂ "A
j>k s=l z

and adding these extimates yields the claim.
Hence if 8 has been chosen sufficiently small then whenever B c S^ is

disk of radius (lOn^)"1 we have that

(3.4) sup {\f{z,) - f(z^)\ : zi, Z2 e B} > ca,

where c > 0 is independent of k.
Let u = PC/ft), where h is the characteristic function of

{z : [z|=l, Rez>0} = L.

Since M — / has boundary values zero on L it follows that u — f has a
harmonic extension to all of {z : Re z >0}. We therefore have that if B is a
disk of radius (10^)~1 such that

B c: Sfc n {z : |arg z\^n/3} = Sf

then it follows from (3.4) that

(3.5) sup {\u(z,)-u(z^\ : zi^ 6 B} ^ d^

for k ^ feo, where ri > 0 is independent of k.
Suppose now that s > 0 is a small number and that

[u-(p| ^ e in Q = {z : [z[<l , Rez>-l/2}.

There is a number X 0 such that we can find more than Xn^ disks B(j,k) of
radius (10n^)~1 such that 10B(/,fe) c: Sj* whenever 1 ^ 7 ^ ̂  and the
disks B(/,fe) are pairwise disjoint. It's easily seen from (3.5) that there is an
m > 0 such that if 0 < e < £o then

sup {\u(z^-u(z^)\ : z^,Z2 € BQ'.fe)} > 10e

whenever 1^7 '^ ̂ , ko < k < L(e), where L(e) = me"^,
P = 2(1 +2a)~1. From lemma 2 follows now that

f| |V(p| dx dy ^ f '§ [[ |V(p| dx dy > c'LO^ce-8.
JJft k=kQJ=l JJlQB{j,k)

Finally, mapping the unit disk conformally onto the upper half plane yields
lemma 1.
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