Annales de l'institut Fourier

BJörn E. J. DAHLBERG Approximation of harmonic functions

Annales de l'institut Fourier, tome 30, nº 2 (1980), p. 97-107

http://www.numdam.org/item?id=AIF_1980__30_2_97_0
© Annales de l'institut Fourier, 1980, tous droits réservés.
L'accès aux archives de la revue «Annales de l'institut Fourier» (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

APPROXIMATION OF HARMONIC FUNCTIONS

by Björn E. J. DAHLBERG

1. Introduction.

In this note we shall study the following approximation problem : Let u be harmonic in a domain D that has a regular boundary. When is it possible to find functions f_{j} of bounded variation in D (that is functions whose gradients are bounded in D) such that $\sup _{\mathrm{D}}\left|f-f_{j}\right| \rightarrow 0$ as $j \rightarrow+\infty$? The main result of this paper is that this approximation is always possible if u is the Poisson integral of a function $f \in \mathrm{~L}^{p}(\sigma), p \geqslant 2$, where σ denotes the surface measure of $\partial \mathrm{D}$ and is not always possible if $f \in \mathrm{~L}^{p}(\sigma), p<2$.

This type of approximation appears implicity in the main step of the proof of the Corona theorem, see Carleson [1,2], for the case when u is a bounded and holomorphic function. For the case when u is the Poisson integral of a function of bounded mean oscillation BMO this type of approximation has been carried out by Varopoulos [9] and Garnett [5]. In these cases it is required that the approximands f_{j} have gradients that are Carleson measures:

Theorem 1. - Suppose u is harmonic in a bounded Lipschitz domain $\mathrm{D} \subset \mathbf{R}^{n}, n \geqslant 2$. Then for every $\varepsilon>0$ there is a function φ such that $|u-\varphi|<\varepsilon$ in D and for all $\mathrm{P} \in \partial \mathrm{D}$ we have that

$$
\int_{\beta(r)}|\nabla \varphi| d \mathrm{Q} \leqslant \mathrm{C}\left[\varepsilon^{-1} \int_{\beta\left(C_{r}\right)}|\nabla u|^{2} \operatorname{dist}\{\mathrm{Q}, \partial \mathrm{D}\} d \mathrm{Q}+\varepsilon r^{n-1}\right] .
$$

Here $\beta(r)=\{\mathrm{Q} \in \mathrm{D}:|\mathrm{Q}-\mathrm{P}|<r\}$ and $\nabla \varphi$ denotes the gradient of φ. The constant C only depends on D .

We remark that this result means that φ is of bounded variation if $\int_{\mathbf{D}}|\nabla u|^{2}$ dist $\{\mathbf{Q}, \partial \mathbf{D}\} d \mathbf{Q}<\infty$. It's known that this happens if and only if u
is the Poisson integral of a function $f \in \mathrm{~L}^{2}(\sigma)$, see Stein [8] for the case of domains with smooth boundaries and Dahlberg [3] for the case of Lipschitz domains.

We recall that a measure μ is called a Carleson measure if $|\mu|(\beta(\mathrm{P}, r)) \leqslant \mathrm{Cr}^{n-1}$ for all $\mathrm{P} \in \partial \mathrm{D}$. It's known that a harmonic function u is the Poisson integral of a function of bounded mean oscillation if and only if $|\nabla u|^{2}$ dist $\{\mathbf{Q}, \partial\}$ is a Carleson measure, see Fefferman-Stein [4] for the case of smooth domains and this has recently been shown to hold for Lipschitz domains by E. Fabes and U. Neri (unpublished). Therefore $|\nabla \varphi| d \mathbf{Q}$ is a Carleson measure if and only if u is the Poisson integral of BMO-function, see Varopoulos [9].

Theorem 2. - Let U denote the unit disk in \mathbf{R}^{2}. If $p<2$ then there is an $f \in \mathrm{~L}^{p}(\sigma, \partial \mathrm{U})$ such that if $u=\mathrm{Pf}$ then

$$
\sup _{\mathrm{U}}|\mathbf{u}-\varphi|=\infty
$$

for all φ that are of bounded variation in U .
In addition to this exemple it's known that there are bounded holomorphic functions that are not of bounded variation, see Rudin [7].

2. The method of approximation.

We start by recalling that a bounded domain $\mathrm{D} \subset \mathbf{R}^{\boldsymbol{n}}$ is called a Lipschitz domain if $\partial \mathrm{D}$ can be covered by finitely many open right circular cylinders whose bases have a positive distance from $\partial \mathrm{D}$ and corresponding to each cylinder L there is a coordinate system (x, y) with $x \in \mathbf{R}^{n-1}, y \in \mathbf{R}$, with the y-axis parallel to the axis of L and a function $\varphi: \mathbf{R}^{n-1} \rightarrow \mathbf{R}$ satisfying a Lipschitz condition (i.e. $|\varphi(x)-\varphi(z)| \leqslant M|x-z|)$ such that

$$
\mathrm{L} \cap \mathrm{D}=\{(x, y): y>\varphi(x)\} \cap \mathrm{L}
$$

and

$$
\mathbf{D} \cap \mathbf{L}=\{(x, y): y=\varphi(x)\} \cap \mathbf{L}
$$

We recall that a Lipschitz domain D is starshaped with star center P^{*} and with standard inner cone Γ if $\mathrm{P}^{*} \in \Gamma(\mathrm{P}) \subset \mathrm{D}$ for all $\mathrm{P} \in \partial \mathrm{D}$, where $\Gamma(\mathrm{P})$ denotes the cone with vertex P having its axis along the line through P and P^{*} and being congruent to Γ. (With a cone we mean an open, non empty,
convex and possibly truncated cone). If u is harmonic in D and $u\left(\mathrm{P}^{*}\right)=0$ we have the following result from Dahlberg [4] : Let γ be a cone with the same vertex P_{0} as Γ and assume that $\bar{\gamma}-\left\{\mathrm{P}_{0}\right\} \subset \Gamma$. Let $\gamma(\mathrm{P})$ be constructed as $\Gamma(\mathrm{P})$ and put

$$
\mathrm{M}(\mathrm{P})=\sup \{|u(\mathrm{Q})|: \mathrm{Q} \in \gamma(\mathrm{P})\}
$$

Then

$$
\begin{equation*}
\mathbf{C}^{-1} \int_{\partial \mathbf{D}} \mathbf{M}^{2} d \sigma \leqslant \int_{\mathbf{D}}|\nabla u|^{2} \operatorname{dist}\{\mathbf{Q}, \partial \mathbf{D}\} d \mathbf{Q} \leqslant \mathbf{C} \int_{\partial \mathbf{D}} \mathbf{M}^{2} d \sigma \tag{2.1}
\end{equation*}
$$

where C only depends on γ and Γ.
We shall first suppose that u is a function in the cube

$$
\mathrm{U}=\left\{(x, y): 0<x_{i}<1, i=1,2 \ldots, n-1,0<y<1\right\} .
$$

We let Ω_{m} denote the collection of all dyadic cubes of side 2^{-m} in $\left\{x \in \mathbf{R}^{n-1}: 0<x_{i}<1\right\}$. If $\mathrm{Q} \in \Omega_{m}$ we put $\mathrm{T}(\mathrm{Q})=\{(x, y): x \in \mathrm{Q}$, $\left.2^{-m-1} \leqslant y<2^{-m}\right\}$. The collection of all $\mathrm{T}(\mathrm{Q})$, when Q runs over $\bigcup_{m \geqslant 0} \Omega_{m}$ is denoted by Λ. If $T_{1}, T_{2} \in \Lambda$ and $T_{i}=T\left(Q_{i}\right)$ we say that $T_{1}<T_{2}$ if $Q_{1} \subset Q_{2}$ and the side of Q_{2} is twice the side of Q_{1}. We shall fix the number $a>0$ and put $\Gamma=\{(x, y):|x|<a y\}$. For $\mathrm{P} \in \mathbf{R}^{n}$ we set $\Gamma_{p}=\mathbf{P}+\Gamma=\{\mathrm{P}+\mathrm{Q}: \mathrm{Q} \in \Gamma\}$. For $\mathrm{T} \in \Lambda$ we put

$$
\mathrm{L}(\mathrm{~T})=\left\{\mathrm{V} \in \Lambda: \mathrm{V} \cap\left[\bigcup_{p \in \mathrm{~T}} \Gamma_{p}\right] \neq \varnothing\right] .
$$

We observe that if $T_{1}<T_{2}$ and $T_{1} \in L(T)$ then $T_{2} \in L(T)$ also.
We shall next describe the method for approximating u. We say that a $\mathrm{T} \in \Lambda$ is red if $\operatorname{diam}(\mathrm{T}) \sup |\mathcal{O} u| \geqslant k \varepsilon$. Otherwise it's called blue. (Here k is a small number to be chosen later.) The main step now is to put together the blue intervals into domains of Lipschitz character, where the oscillation of u is $\leqslant \varepsilon$.

Let $S=\left\{(x, y): 0<x_{i}<1, \frac{1}{2}<y<1\right\}$ and suppose that S is blue. We shall now define $K(S) \subset \Lambda$ inductively as follows : First $S \in K(S)$ and a $T \in \Lambda$ is added to $K(S)$ provided there is a $T^{\prime} \in K(S)$ such that $T<T^{\prime}$, all elements of $\mathrm{L}(\mathrm{T})$ are blue and $\left|u\left(\mathrm{P}_{\mathrm{S}}\right)-u\left(\mathrm{P}_{\mathrm{T}}\right)\right| \leqslant m \varepsilon$, where P_{T} is the center of T. Put $H(S)=\underset{T \in K(S)}{L}(T)$ and let $\mathrm{D}(S)$ denote the interior of the closure of $\bigcup_{\mathrm{T} \in \mathrm{H}(\mathrm{S})} \mathrm{T}$. Suppose now that $\mathrm{T} \in \Lambda, \mathrm{T} \subset \mathrm{U}-\mathrm{D}(\mathbf{S})$, and $\partial \mathrm{T} \cap d(\mathbf{S}) \neq \varnothing$,
where $d(\mathrm{~S})=\mathrm{U} \cap \partial \mathrm{D}(\mathrm{S})$. Let $\mathrm{T}_{i}, \quad 0 \leqslant i \leqslant \mathrm{~N}$, be such that $\mathrm{T}=\mathrm{T}_{0}<\mathrm{T}_{1}<\ldots<\mathrm{T}_{\mathrm{N}}=\mathrm{S}$ and let j be the smallest integer such that $\mathrm{T}_{j} \in \mathrm{~K}(\mathrm{~S})$. Since $\mathrm{T}_{j-1} \notin \mathrm{~K}(\mathbf{S})$ there are two cases to consider. If $\mathrm{L}\left(\mathrm{T}_{j-1}\right)$ contains a red interval R we say that $T \in A(S)$ and if this is not the case we say that $T \in B(S)$. Also, we define $\alpha(S)$ and $\beta(S)$ as $U(\partial T \cap \partial D(S))$ where T runs over $A(S)$ and $B(S)$ respectively. We observe that there is a number $\mathrm{M}>0$ only depending on Γ such that the projection T^{\prime} of T into \mathbf{R}^{n-1} is contained in R^{*}, where $\mathrm{R}^{*} \subset \mathbf{R}^{n-1}$ is the cube with the same center as R^{1} but with a side that is M times the side of R^{\prime}. (Here R is the red interval contained in $\mathrm{L}\left(\mathrm{T}_{j-1}\right)$.) Also there is a $v \in \mathrm{H}(\mathrm{S})$ such that$\operatorname{diam} R \leqslant \operatorname{diam} V \leqslant 2 \operatorname{diam} R$ and $\left|P_{R}-P_{V}\right| \leqslant M \operatorname{diam} R$ (we'll say that R touches $\mathrm{D}(\mathrm{S})$). Let $|\mathrm{E}|$ denote the $(n-1)$-dimensional Hausdorff measure of a set $\mathrm{E} \subset \mathbf{R}^{n}$. The Lipschitz character of $\mathrm{D}(\mathbf{S})$ implies that $|\alpha(S)| \leqslant C\left|\bigcup_{T \in A(S)} T^{\prime}\right|$, which together with the above observations show that

$$
\begin{equation*}
|\alpha(\mathbf{S})| \leqslant \mathrm{C} \Sigma|\partial \mathrm{R}|, \tag{2.2}
\end{equation*}
$$

where the sum is taken over all red intervals that touch $\mathrm{D}(\mathrm{S})$. Let $b>a$ be sufficiently large and put $\gamma=\{(x, y):|x|<-b y\}$. If $\Omega=\bigcup_{P \in d(S)} \gamma_{p}$, then $\mathrm{D}_{1}=\mathrm{D}(\mathrm{S})-\bar{\Omega}$ is again a Lipschitz domain. It's easily seen that if $a>0$ has been chosen sufficiently small then b can be chosen so that D_{1} is a starshaped Lipschitz domain with starcenter P_{S} and a standard inner cone P^{\prime} that only depends on a and b. We have also that

$$
\left|\bigcup_{\mathbf{T} \in \mathbf{B}(\mathbf{S})} \partial \mathrm{T} \cap d(\mathbf{S}) \cap \partial \mathrm{D}_{1}\right| \geqslant \mathrm{C}|\beta(\mathbf{S})|
$$

where $c>0$ only depends on a and b.
For $\mathrm{P} \in \partial \mathrm{D}_{1}$ we put $\mathrm{M}_{\mathrm{S}}(\mathrm{P})=\sup \left|u(\mathrm{Q})-u\left(\mathrm{P}_{\mathrm{s}}\right)\right|$, where Q runs over all points on the line segment between P and P_{S}. Suppose now that $\mathrm{T} \in \mathrm{B}(\mathrm{S})$ and $\mathrm{T}=\mathrm{T}_{0}<\mathrm{T}_{1}<\ldots<\mathrm{T}_{\mathrm{N}}=\mathrm{S}$. If j is the smallest index for which $\mathrm{T}_{j} \in \mathrm{~K}(\mathbf{S})$ it follows that $\mathrm{L}\left(\mathrm{T}_{j-1}\right)$ does not contain any red cube. If P_{j-1} denotes the center of T_{j-1} it follows that $\left|u\left(\mathrm{P}_{j-1}\right)-u\left(\mathrm{P}_{\mathrm{S}}\right)\right| \geqslant m \varepsilon$.

If $j=1$ it follows that $\left|u(\mathrm{P})-u\left(\mathrm{P}_{\mathrm{S}}\right)\right| \geqslant(m-k) \varepsilon$ for all $\mathrm{P} \in \mathrm{T}=\mathrm{T}_{0}$ and hence $\mathrm{M}_{\mathrm{s}}(\mathrm{P}) \geqslant(m-k) \varepsilon$ for all $\mathrm{P} \in \partial \mathrm{T} \cap \partial \mathrm{D}_{1}$. Suppose now that $j>1$ and $\mathrm{P} \in \partial \mathrm{T} \cap d(\mathrm{~S}) \cap \partial \mathrm{D}_{1}$. Let Q denote the point on the line segment between P and P_{S} that has the same y-coordinate as P_{j-1}. Since the line segment between P_{j-1} and Q is contained in $D(S)$ it follows that

$$
\left|u\left(\mathrm{P}_{j-1}\right)-u(\mathrm{Q})\right| \leqslant k \varepsilon\left|\mathrm{P}_{j-1}-\mathrm{Q}\right|\left(\operatorname{diam} \mathrm{T}_{j-1}\right)^{-1}<m \varepsilon / 2
$$

if k has been chosen sufficiently small. Hence we have in all cases that

$$
\begin{equation*}
|\beta(\mathrm{S})| \leqslant \mathrm{C}\left|\left\{\mathrm{P} \in \partial \mathrm{D}_{1}: \mathrm{M}(\mathrm{P})>m \varepsilon / 2\right\}\right| \tag{2.3}
\end{equation*}
$$

If there is an interval in $\Lambda-H(S)$ that's not red let S_{1} denote one with maximal diameter. After making a change of scale we construct $\mathrm{H}\left(\mathrm{S}_{1}\right)$ as above and in this way we get a decomposition $\Lambda=\Lambda_{R} \cup\left[\bigcup_{j} \mathrm{H}(\mathrm{S} j)\right]$ into pairwise disjoint sets, where Λ_{R} denotes the collection of all red intervals in Λ. We claim that if u is harmonic and $\mathrm{L}_{j}=\left|\partial \mathrm{D}\left(\mathrm{S}_{j}\right)\right|$ then

$$
\begin{equation*}
\Sigma \mathrm{L}_{j} \leqslant \mathrm{C}\left[1+\varepsilon^{-2} \iint_{\tilde{\mathrm{U}}} y|\nabla u|^{2} \mathrm{~d} x \mathrm{~d} y\right] \tag{2.4}
\end{equation*}
$$

where C is independent of u and $\varepsilon, \tilde{\mathrm{U}}=\left\{(x, y):-1<x_{i}<2\right.$, $0<y<2\}$. Following Garnett [5] we first observe that if $\mathrm{R} \in \Lambda$ is red then

$$
\begin{equation*}
|\partial \mathrm{R}| \leqslant \mathrm{C}^{-2} \iint_{\mathbf{R}^{*}} y|\nabla u|^{2} d x d y \tag{2.5}
\end{equation*}
$$

where

$$
\mathbf{R}^{*}=\bigcup_{P \in R} \mathrm{~B}(\mathrm{P}, \delta / 2), \quad \delta=\operatorname{dist}\left\{\mathbf{R}, \mathbf{R}^{n-1}\right\}
$$

and

$$
\mathrm{B}(\mathrm{P}, r)=\{\mathrm{Q}:|\mathrm{P}-\mathrm{Q}|<r\} .
$$

To see (2.5), we first observe that there is a number c_{n} only depending on n such that there is $\mathrm{P} \in \overline{\mathbf{R}}$ with $|\nabla u(\mathrm{P})| \geqslant c_{n} k \varepsilon \delta^{-1}$. Since $|\nabla u|^{2}$ is subharmonic it follows that

$$
\left.\iint_{\mathbf{R}^{*}}|\nabla u|^{2} y d x d y \geqslant \frac{1}{2} \delta \iint_{\mathrm{B}(\mathbf{P}, \delta / 2)}|\nabla u|^{2} d x d y \geqslant c \varepsilon^{2} \right\rvert\, \partial \mathbf{R}
$$

which gives (2.5). We also observe that from Cauchy's inequality follows that $\left(\iint_{\mathrm{R}}|\nabla u| d x d y\right)^{2} \leqslant \mathrm{C}|\partial \mathrm{R}| \iint_{\mathrm{R}}|\nabla u|^{2} y d x d y$ which together with (2.5) gives

$$
\begin{equation*}
\iint_{\mathrm{R}}|\nabla u| d x d y \leqslant \mathrm{C}^{-1} \iint_{\mathrm{R}^{*}}|\nabla u|^{2} y d x d y \tag{2.6}
\end{equation*}
$$

Let $\theta>0$ be a small fixed number and let I denote those $j: s$ for which $\left|\partial \mathrm{D}\left(\mathrm{S}_{j}\right) \cap \mathbf{R}^{n-1}\right| \geqslant \theta \mathrm{L}_{j}$. Since the domains $\mathrm{D}\left(\mathrm{S}_{j}\right)$ are pairwise disjoint it follows that

$$
\begin{equation*}
\sum_{I} L_{j} \leqslant \theta^{-1} \tag{2.7}
\end{equation*}
$$

Let II denote those $j: s$ for which $\left|\alpha\left(\mathbf{S}_{j}\right)\right| \geqslant \theta \mathrm{L}_{j}$. Since the domains $\left\{R^{*}\right\}_{R \in \Lambda_{R}}$ have uniformly bounded overlap and there is a fixed number N such that no red interval $R \in \Lambda_{R}$ touches more than N of the domains $D\left(S_{j}\right)$ it follows from (2.2) and (2.5) that

$$
\begin{equation*}
\sum_{\mathrm{II}} \mathrm{~L}_{j} \leqslant \theta^{-1} \Sigma\left|\alpha\left(\mathbf{S}_{j}\right)\right| \leqslant \mathrm{C}^{-2} \iint_{0} y|\nabla u|^{2} d x d y \tag{2.8}
\end{equation*}
$$

Finally let III be those $j: s$ for which $\left|\beta\left(\mathrm{S}_{j}\right)\right| \geqslant \theta \mathrm{L}_{j}$. From (2.1) and (2.3) follows that

$$
\left|\beta\left(\mathbf{S}_{j}\right)\right| \leqslant \mathrm{C}^{-2} \int_{\mathrm{D}_{j}} \operatorname{dist}\left\{\mathrm{Q}, \partial \mathrm{D}_{j}\right\}|\nabla u|^{2} d \mathrm{Q} \leqslant \mathrm{C}^{-2} \iint_{\mathrm{D}_{j}} y|\nabla u|^{2} d x d y
$$

so we have that

$$
\begin{equation*}
\sum_{\mathrm{III}} \mathrm{~L}_{j} \leqslant \mathrm{C} \varepsilon^{-2} \iint_{\mathrm{U}} y|\nabla u|^{2} d x d y \tag{2.9}
\end{equation*}
$$

If the constant θ has been chosen small enough then each $\mathrm{D}\left(\mathrm{S}_{j}\right)$ belongs to one of the categories I, II or III. Hence (2.4) follows from (2.7-9).

We now define $\varphi=u h+\Sigma u\left(\mathrm{P}_{j}\right) h_{i}$, where h is the characteristic function of $\bigcup_{R \in \Lambda_{R}} \bar{R}, h_{j}$ is the characteristic function of $D\left(S_{j}\right)$ and P_{j} is the center of S_{j}. Clearly $|u-\varphi| \leqslant \varepsilon$. It remains to estimate $|\nabla \varphi|$. To this end let λ_{j} be the surface measure of $\partial \mathrm{D}\left(\mathrm{S}_{j}\right)$ and if $\left\{\mathrm{R}_{j}\right\}_{=1}^{\infty}=\Lambda_{\mathrm{R}}$ we let σ_{j} denote the surface measure of $\partial \mathbf{R}_{j}$. With this notation we have that $|\nabla \varphi| \leqslant C\left[|\nabla u| h+\varepsilon \Sigma\left(\sigma_{j}+\lambda_{j}\right)\right]$, where the ε in front of the sum appears because the jump of φ at a common boundary point of domains of the form $D\left(S_{j}\right)$ or R_{k} is less than ε.

Let $\mathrm{Q} \subset \mathbf{R}^{n-1}$ be a cube and put

$$
\mathbf{S}(\mathbf{Q})=\{(x, y): x \in \mathbf{Q}, 0<y<\text { side of } \mathbf{Q}\} .
$$

We shall now estimate $\iint_{\mathrm{S}(\mathrm{Q})}|\nabla \varphi| d x d y$. Let M be a large positive number and let $\mathrm{V} \subset \mathbf{R}^{n-1}$ be the largest dyadic cube that contains Q for which $|\mathrm{V}| \leqslant 6^{n} \mathrm{M}|\mathrm{Q}|$. If M is large enough, then it follows from (2.5) and (2.6) that

$$
\iint_{\mathrm{S}_{(\mathrm{Q})}}|\nabla u| h d x d y+\varepsilon \Sigma \sigma_{j}(\mathrm{~S}(\mathrm{Q})) \leqslant \mathrm{C} \varepsilon^{-1} \iint_{\mathrm{S}(\mathrm{~V})}|\nabla u|^{2} d x d y
$$

From (2.4) and possibly a change of scale we see that

$$
\Sigma^{\prime} \lambda_{j}(\mathrm{~S}(\mathrm{Q})) \leqslant \mathrm{C}\left[\varepsilon^{-2} \iint_{\mathrm{S}(\mathrm{~V})}|\nabla u|^{2} y d x d y+|\mathrm{Q}|\right]
$$

where the prime denotes summation over those $j: s$ for which $S_{j} \subset S\left(V_{1}\right)$, where V_{1} is the largest dyadic cube that contains Q for which $\left|\mathrm{V}_{1}\right| \leqslant \mathrm{M}|\mathrm{Q}|$. If $\lambda_{j}(\mathrm{~S}(\mathrm{Q}))>0$ and if S_{j} is not contained in $\mathrm{S}\left(\mathrm{V}_{1}\right)$ then $\mathrm{D}\left(\mathrm{S}_{j}\right)$ contains ($\left.x_{\mathrm{Q}}, \mathrm{L} y_{\mathrm{Q}}\right)$ where $\left(x_{\mathrm{Q}}, y_{\mathrm{Q}}\right)$ is the center of $\mathrm{S}(\mathrm{Q})$ and the constant L only depends on M and the choice of the cone Γ for the construction of $\mathbf{D}\left(\mathrm{S}_{j}\right)$. Since the domains $\mathrm{D}\left(\mathrm{S}_{k}\right)$ are pairwise disjoint there is at most one j with this property and from the Lipschitz character of $D\left(S_{j}\right)$ it follows that $\left.\lambda_{j}(\mathrm{SQ})\right) \leqslant \mathrm{C}|\mathrm{Q}|$ which concludes the proof of theorem 1 for the case of smooth domains.

The case when u is harmonic in a Lipschitz domain is easily reduced to the case when u is defined in

$$
\mathrm{U}^{\prime}=\left\{(x, y): 0<x_{i}<1, f(x)<y<f(x)+1\right\}
$$

where f is a Lipschitz function. Letting $\mathrm{T}(x, y)=(x, y-f(x))$ we see that T maps U^{\prime} onto

$$
\mathrm{U}=\left\{(x, y): 0<x_{i}<1,0<y<1\right\} .
$$

Let $u_{1}=u \circ \mathrm{~T}^{-1}$ and construct φ_{1} in U as above, this time approximating u_{1}. Letting $\varphi=\varphi_{1} \circ \mathrm{~T}$, it's easily seen that the methods for estimating $\nabla \varphi$ work in this case too, which yields theorem 1.

3. An example.

In this section we shall identify \mathbf{R}^{2} with the complex plane \mathbf{C} and we'll denote points in \mathbf{C} by $z=x+i y, \quad x, y \in \mathbf{R}$. We'll put $\mathbf{J}=\{x:-1<x<1\}$ and $\mathbf{Q}=\{z:|x|<2,0<y<4\}$. If $f \in \mathrm{~L}^{p}(\mathbf{R})$ we let $\mathrm{P} f$ denote the Poisson integral of f. We shall establish the following result.

Theorem 3. - For all $p<2$ there is an $f \in \mathrm{~L}^{p}(\mathbf{R})$ with support in \mathbf{J} such that $\sup _{\mathrm{Q}}|\mathrm{P} f-\varphi|=\infty$ for all φ such that $\iint_{\mathrm{Q}}|\nabla \varphi| d x d y<\infty$.

We shall deduce theorem 3 from the following lemma, the proof of which is given later.

Lemma 1. - For $\theta \in(0,1)$ there is a function $g_{\theta} \in \mathbf{L}^{2}(\mathbf{R})$ with support in J such that if $0<\varepsilon<1$ and $|u-\varphi| \leqslant \varepsilon$ in Q, then $\iint_{Q}|\nabla \varphi| d x d y \geqslant c \varepsilon^{-\theta}$, where $c>0$ is independent of ε.

Proof of theorem 3. - We shall first define a sequence of intervals $\mathrm{I}_{j} \subset \mathbf{R}$ by putting $I_{1}=[0,1]$ and requiring that I_{j+1} is to the right of I_{j}, $\left|\mathbf{I}_{j}\right|=2^{-j}$ and dist $\left\{\mathbf{I}_{j}, \mathrm{I}_{j+1}\right\}=j^{-2}$. Let c_{j} denote the center of \mathbf{I}_{j} and put

$$
\begin{equation*}
g_{j}(x)=g_{\theta}\left(2^{j+1}\left(x-c_{j}\right)\right) \tag{3.1}
\end{equation*}
$$

where g_{θ} is as in lemma 1. It's easily seen that

$$
\left|\nabla \mathrm{P} g_{j}(z)\right| \leqslant \mathrm{C} 2^{-\mathrm{j}}\left|z-c_{j}\right|^{-2}
$$

whenever $\left|z-c_{j}\right|>2^{-j}$. If $\mathrm{Q}_{j}=\left\{z:\left|x-\mathrm{c}_{j}\right|<2^{-j}, 0<y<2^{1-j}\right\}$ we therefore have

$$
\begin{equation*}
\sup \left\{\left|\nabla \mathrm{P} g_{k}(z)\right|: z \in \mathrm{Q}_{j}\right\} \leqslant \mathrm{C} 2^{-k} k^{2}(k \neq j) \tag{3.2}
\end{equation*}
$$

Let $b_{j}>0$ be defined by $b_{j}^{p_{2}-j}=j^{-2}$ and put $f=\Sigma b_{j} g_{j}$. Clearly $f \in \mathrm{~L}^{p}(\mathbf{R})$ and the support of f is bounded. From (3.2) follows $u=b_{j} \mathrm{P} f_{j}+\mathrm{R}_{j}$, where $u=\mathrm{P} f$ and

$$
\begin{equation*}
\sup \left\{\mid \nabla \mathrm{R}_{j}(z): z \in \mathrm{Q}_{j}\right\} \leqslant \mathrm{C}_{k} b_{k} k^{2} 2^{-k}=\mathrm{M}<\infty \tag{3.3}
\end{equation*}
$$

Suppose now that $|u-\varphi| \leqslant \mathrm{L}<\infty$ in $\bigcup_{j \geqslant 1} \mathrm{Q}_{j}$. We shall next show that this implies that $\sum_{j} \iint_{\mathrm{Q}_{j}}|\nabla \varphi| d x d y=\infty$ whenever $\theta>p-1$.

If z_{j} denotes the center of Q_{j} it follows from (3.3) that

$$
\sup \left\{\left|m_{j}-\mathrm{R}_{j}(z)\right|: z \in \mathrm{Q}_{j}\right\} \leqslant \mathrm{M} \operatorname{diam}\left(\mathrm{Q}_{j}\right) \rightarrow 0 \text { as } j+\infty
$$

where $m_{j}=\mathrm{R}_{j}\left(z_{j}\right)$. Therefore there is a j_{0} such that if $j \geqslant j_{0}$ then $\left|\mathrm{P}_{j}-\varphi_{j}\right| \leqslant 2 \mathrm{~L} b_{j}^{-1}$ in Q_{j}, where $\varphi_{j}=\left(\varphi-m_{j}\right) b_{j}^{-1}$. From lemma 1 follows now that

$$
\sum_{j} \iint_{\mathrm{Q}_{j}}|\nabla \varphi| d x d y \geqslant \mathrm{C} \sum_{j \geqslant j_{0}} 2^{-j} b_{j}^{i+\theta}=\infty \text { if } \theta>p-1
$$

which yields the theorem.
We remark that by using a suitable conformal mapping it's easily seen that theorem 2 follows from theorem 3.

We'll need the following lemma for the proof of lemma 1.
Lemma 2. - Suppose u is harmonic in $\mathrm{B}=\mathrm{B}\left(z_{0}, 5 r\right) \subset \mathbf{C}$. If $|u-\varphi| \leqslant \varepsilon$ in B and if $\sup \left\{\left|u\left(z_{1}\right)-u\left(z_{2}\right)\right|: z_{1}, z_{2} \in \mathrm{~B}\left(z_{0}, r\right)\right\}$ then $\iint_{\mathrm{B}}|\nabla \varphi| d x d y \geqslant c \varepsilon r$, where $c>0$ is a universal constant.

Proof. - Pick $z_{1}, z_{2} \in \mathrm{~B}\left(z_{0}, r\right)$ such that $\left|u\left(z_{1}\right)-u\left(z_{2}\right)\right| \geqslant 7 \varepsilon$. Since the function $z \rightarrow\left|u(z)-u\left(z_{2}\right)\right|^{2}$ is subharmonic it follows that

$$
\int_{\mathrm{B}\left(z_{1}, r\right)}\left|u(z)-u\left(z_{2}\right)\right|^{2} d x d y \geqslant 7^{2} \pi \varepsilon^{2} r^{2}
$$

Since $\mathrm{B}\left(z_{1}, r\right) \subset \widetilde{\mathrm{B}}=\mathrm{B}\left(z_{2}, 3 r\right)$ we therefore have that

$$
\int_{\tilde{\mathbb{}}}|\varphi-\tilde{\varphi}|^{2} d x d y \geqslant \pi \varepsilon^{2} r^{2}
$$

where $\tilde{\varphi}=\int_{\tilde{B}} \varphi d x d y \int_{\tilde{B}} d x d y$. The Poincaré-Soboev inequality (see Meyers and Ziemer [6] for general versions) says that there is a constant C such that for all balls

$$
\tilde{\mathbf{B}}\left(\int_{\tilde{B}}|\varphi-\tilde{\varphi}|^{2} d x d y\right)^{1 / 2} \leqslant \mathrm{C} \int_{\tilde{\mathrm{B}}}|\nabla \varphi| d x d y
$$

which yields lemma 2.
We shall next prove lemma1. Let $\alpha>0$ be defined by $(1-2 \alpha)=\theta(1+2 \alpha)$ and put $a_{k}=k^{-1 / 2-\alpha}$ for $k=1,2 \ldots$ Let $\delta>0$ be a given number. We claim that there is a sequence of positive integers $n_{k}+\infty$ such that if $f(z)=\sum^{\infty} a_{k} z^{n_{k}}$ and if

$$
\mathrm{S}_{k}=\left\{z: n_{k}^{-1} \leqslant 1-|z| \leqslant 4 n_{k}^{-1}\right\}
$$

then $f^{\prime}(z)=a_{k} n_{k} z^{n_{k}-1}+\mathrm{R}_{k}(z)$, where

$$
\sup \left\{\left|\mathbf{R}_{k}(z)\right|: z \in \mathrm{~S}_{k}\right\} \leqslant \delta a_{k} n_{k}
$$

To see this choose $n_{1}=100$ and if n_{1}, \ldots, n_{k-1} have been chosen then

$$
\left|\sum_{j<k} a_{j} n_{j} z^{n_{j}-1}\right| \leqslant k n_{k-1}<\delta / 2 a_{k} n_{k}
$$

if n_{k} has been chosen large enough. If we also require that $n_{j+1} \geqslant n_{j}+2$ and

$$
\left(1-n_{j}^{-1}\right)^{\frac{1}{2} n} j+1^{-1} n_{j+1} \leqslant \min \left(1, a_{j} \delta / 2\right)
$$

we have for $z \in S_{k}$ that

$$
\begin{aligned}
&\left|\sum_{j>k} a_{j} n_{j} z^{n_{j}-1}\right| \leqslant \sum_{j>k} a_{j} n_{j}\left(1-n_{k}^{-1}\right)^{n_{j}-1} \\
& \leqslant \sum_{j>k}\left(1-n_{k}^{-1}\right)^{\frac{1}{2}}{ }^{\frac{1}{n}} \leqslant \sum_{s=1}^{\infty}\left(1-n_{k}^{-1}\right)^{\frac{1}{2} n_{k}+s} \leqslant \frac{1}{2} \delta n_{k} a_{k}
\end{aligned}
$$

and adding these extimates yields the claim.
Hence if δ has been chosen sufficiently small then whenever $B \subset S_{k}$ is disk of radius $\left(10 n_{k}\right)^{-1}$ we have that

$$
\begin{equation*}
\sup \left\{\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right|: z_{1}, z_{2} \in \mathrm{~B}\right\}>c a_{k} \tag{3.4}
\end{equation*}
$$

where $c>0$ is independent of k.
Let $u=\mathrm{P}(f h)$, where h is the characteristic function of

$$
\{z:|z|=1, \operatorname{Re} z>0\}=\mathrm{L}
$$

Since $u-f$ has boundary values zero on L it follows that $u-f$ has a harmonic extension to all of $\{z: \operatorname{Re} z>0\}$. We therefore have that if B is a disk of radius $\left(10 n_{k}\right)^{-1}$ such that

$$
\mathrm{B} \subset \mathrm{~S}_{k} \cap\{z:|\arg z| \leqslant \pi / 3\}=\mathrm{S}_{k}^{*}
$$

then it follows from (3.4) that

$$
\begin{equation*}
\sup \left\{\left|u\left(z_{1}\right)-u\left(z_{2}\right)\right|: z_{1}, z_{2} \in \mathrm{~B}\right\} \geqslant d a_{k} \tag{3.5}
\end{equation*}
$$

for $k \geqslant k_{0}$, where $d>0$ is independent of k.
Suppose now that $\varepsilon>0$ is a small number and that

$$
|u-\varphi| \leqslant \varepsilon \text { in } \Omega=\{z:|z|<1, \operatorname{Re} z>-1 / 2\}
$$

There is a number $\lambda 0$ such that we can find more than λn_{k} disks $\mathrm{B}(j, k)$ of radius $\left(10 n_{k}\right)^{-1}$ such that $10 \mathrm{~B}(j, k) \subset \mathrm{S}_{k}^{*}$ whenever $1 \leqslant j \leqslant \lambda n_{k}$ and the disks $\mathrm{B}(j, k)$ are pairwise disjoint. It's easily seen from (3.5) that there is an $m>0$ such that if $0<\varepsilon<\varepsilon_{0}$ then

$$
\sup \left\{\left|u\left(z_{1}\right)-u\left(z_{2}\right)\right|: z_{1}, z_{2} \in \mathrm{~B}(j . k)\right\}>10 \varepsilon
$$

whenever $\quad 1 \leqslant j \leqslant \lambda n_{k}, \quad k o<k<\mathrm{L}(\varepsilon), \quad$ where $\quad \mathrm{L}(\varepsilon)=m \varepsilon^{-\beta}$, $\beta=2(1+2 \alpha)^{-1}$. From lemma 2 follows now that

$$
\iint_{\Omega}|\nabla \varphi| d x d y \geqslant \sum_{k=k_{0}}^{\mathrm{L} \mathrm{\varepsilon}} \sum_{j=1}^{\lambda n k} \iint_{10 \mathrm{~B}(, k)}|\nabla \varphi| d x d y \geqslant c^{\prime} \mathrm{L}(\varepsilon) \varepsilon=c \varepsilon^{-\theta} .
$$

Finally, mapping the unit disk conformally onto the upper half plane yields lemma 1.

BIBLIOGRAPHY

[1] L. Carleson, Interpolation by bounded analytic functions and the Corona problem, Ann. Math., 76 (1962), 547-559.
[2] L. Carleson, The Corona Problem, in Lecture Notes in Mathematics, vol 118, Springer Verlag, Berlin, 1969.
[3] B. E. J. Dahlberg, Weighted norm inequalities for the Lusin area integral and the non tangential maximal functions for functions harmonic in a Lipschitz domain, to appear in Studia Math.
[4] C. Fefferman and E. M. Stein, H p-spaces of several variables, Acta Math., 129 (1972), 137-193.
[5] J. Garnett, to appear.
[6] N. G. Meyers and W. P. Ziemer, Integral inequalities of Poincaré and Wirtinger type for BV functions, Amer. J. of Math., 99 (1977), 1345-1360.
[7] W. Rudin, The radial variation of analytic functions, Duke Math. J., 22 (1955), 235-242.
[8] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, New Jersey, 1970.
[9] N. Th. Varopoulos, BMO functions and the $\bar{\delta}$-equation, Pacific J. Math., 71 (1977), 221-273.

Manuscrit reçu le 12 novembre 1979.
Björn E. J. Dahlberg .
Chalmers University of Technology
and University of Göteborg
Department of Mathematics
Sven Multins gata 6
S-402 20 Göteborg.

