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PURE FIELDS OF DEGREE 9
WITH CLASS NUMBER PRIME TO 3

by Colin D. WALTER

In a well-known paper, Honda [5] found the precise rational conditions
on n e Z which determine when Q(-^n) has class number divisible by 3.
More recently, Endo [3] has tackled this problem for Q(^n) using the same
techniques : a class number relation and the calculation of an ambiguous
class number by norm residue symbols. His results are incomplete, although
most of the residue symbols required to solve the problem are given by him.
Here the main theorem (5.5) extends his work so that with only a few possible
exceptions the necessary and sufficient rational conditions are now known for
Q(^n) to have class number prime to 3.

1. Class number relations.

Let M^/KO be a normal extension of number fields whose Galois'group is

G = ^.TJCT^T^-^l.CTT^CT^

where ^ is an odd prime and r is an integer of order < f ( < f — l ) modulo <f 2 . R.
Brauer [2] has shown that a class number relation can be obtained from any
relation between the characters of G induced from the unit characters of its
subgroups. To find all such relationships it is necessary to specify the
conjugacy classes of subgroups.

A Sylow ^-subgroup of any subgroup of G is contained in the normal
Sylow ^-subgroup G^ = (a,^~1) of G. The cyclic subgroups of G^ with
order <f2 are<<j> o G and ^T^"^1) for 0 < i < f. The latter subgroups
are conjugate under powers of T . The <f2 elements of G{ which are not of
order <f2 form the unique non-cyclic subgroup of G with order <^2, viz.
(a^^~1) o G. Hence the subgroups of order ^ lie in ^o^T^"1) and are
<o^><iG and '̂Y-1) for 0 ^ i < < f . The latter subgroups are
conjugate under powers of T. Because the image of a subgroup in G/G^ is
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cyclic, the subgroup is generated from one of the above ^-groups together
with an element of order dividing f — 1 which normalises the <f-group. The
only such elements have the form a1^ for 0 < d < f — 1 or 1 itself.
Replacing a1^ by a suitable power and a conjugate ensures that all
subgroups are obtained by adjoining T^ where d\(^—l) and taking all
conjugates of the resulting subgroups.

So for d\£ — 1 the unique subgroup of order ^ 3 ( ^ — l ) / d is
(a/c^^G; the subgroups of order ^(^-l)/^ are <a,T^>oG, the
< f — l conjugates of <<7T<f-l> when ^ = < f — l and the 1 or ^ conjugates of
<a^Td> ; the subgroups of order ^<y—l)/rf are the 1 or <f conjugates of
(CT^T^) and the f or <f2 conjugates of ^^ ; and the subgroups of order
(f — l)/d are the £ or <f2 conjugates of <T^> . Each conjugacy class is
represented in the following diagram as d varies over proper divisors of
( - 1 :

The corresponding subfields can be named thus :
^M,

and the subscript d will be omitted when d = 1.



PURE FIELDS OF DEGREE 9 WITH CLASS NUMBER PRIME TO 3 3

The total number of classes is 6t + 1 where t is the number of divisors of
{ — 1, and of these 2t + 3 are cyclic. This means there are 4t — 2
independent relations between the induced unit characters x(^) from the
subgroup fixing 0. They can be expressed in the following way and are easily
verified :

(1.1)
(1.2)
(1.3)
(1.4)

^'X(Ki,)
d't^)
Wi.) -
dW^) -

- ^'X(K(J
- rf'Z(Ki,)
- Woo)
- WJ

X(L,) - x(Lo)
X(L;) - x(Li)
X(Mi) - 3c(Mo)
X(M,) - x(Mi).

Here d' is defined by dd' = { - 1 and d is a proper divisor of { — 1.
The remaining two independent relations are :

(1.5) ^x(L2) - Wi) = x(M,) - x(Mi)
(1.6) (,f- l)x(N) - {£- l)x(Lo) = x(Mi) - x(Mo).

Each of these relations is of standard type for which the corresponding
class number relation is known. The first four are of Frobenius type (see [8])
and the last two are ofKuroda type (see [9]), whilst equations (1.3) and (1.4)
add to give a further Frobenius type relation.

Suppose n e Z is such that K, = 0(^7") nas degree t1 over Q. Then
the normal extension M^/K-o = Q(^/n, ̂ /l)/Q has G as its Galois group
and its subfields for d = 1 are :

K, -Q(<7")
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Let h^ be the class number and Un the unit group of a field Q. If

l(k,/k,) = (U,/U,^

for an extension fe^/^ and (fe^ : ky) = <f then I^i/fe^) ^ 1 implies
^i = ^(v^) ^or some ^ e U^ (see [9] § 4). There is no such extension of Q
and so I(Ki/Q) =1. If K:2 = KJ^) for ee\J^ then ^n = e^ for
some a e K i and i prime to <f. Hence n = (± NK/QOC/, which is absurd.
So UK^/K^) = 1 also. This simplifies the relations given in [8], theorem 4.4,
which correspond to the equations (1.1) and (1.2) :

(L7) 1?'̂  = Q1^2-5)/4 for QI=^,:U,^IK,UK;I.LQ KI

(1-8) f^^ = Q^-^^-w for Q, = [U^ : U^n^U^
LI ^2

where the products extend over the conjugates of Ki and K^ over Q and
KI respectively.

Bounds are given in [8] theorem 3.6 for the indices Q^ and Q^. In the
two cases the given indices I divide I(Li/Lo) and I (I^/L^) respectively. If
Li = Lo(^^) for ^ e U^ then n = e1^ for some a e L() and f prime to ̂ .
Hence n^-1 = (±NL^Qa/ which is not possible. Thus I(Li/Lo) =1. Also,
ifL^ = L^(^/e) for ee\J^ then ^n = ^a^ for some a e L ^ and f prime
to ^. Hence n^~1 = (±N^/Qay which again is not possible. Therefore
I(L2/Li) = 1. These remarks and [8] yield that :

(1.9) Qi divides ^-^-w

(1.10) Q^ 1̂̂ 5 ^-1^-2)/2.

The first of these bounds has already been obtained by Parry for <f = 5 in
[7]. The second sharpens and generalises that given by Endo in [3] Lemma 3.
Formula (1.8) for £ = 3 is due to Endo (op. cit. Lemma 2).

2. Prime ideals.

Take ^ = 3 in Section 1. The aim is to establish which n give rise to a
field K.2 = Q(^/n) whose class number is prime to 3. Every subextension of
M^/Q is composed of extensions containing a totally ramified prime : either a
divisor of (3) or a divisor of (n). Hence the class number of any field divides
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that of its extensions in M^ (see [6]). In particular, h^ divides h^ and so it
is necessary that 3 )( h^. For the rest of this article the assumption is
therefore made that n is such that 3 does not divide the class number of
Q(^n). If n = non^ where no and n^ are cube free then K^ = Q(^no)
and Honda [5] has described precisely the allowable integers no. Without
loss of generality, it is assumed that no is one of the following :

(2.1i) no = 3
(2.1ii) HO = p "where p = — 1 mod 9.
(2.2i) MQ = y? ^here p = 2 or 5 mod 9 and i = 0,1 or 2.
(2.2ii) no = p'q \vhere i = 1 or 2 and

p,q = 2 or 5 mod 9 satisfy HQ = ± 1 mod 9.

Here p and ^ denote distinct rational primes.

In (2.1) there is just one prime ramified in K^/Q and ^ = ^/T is a norm
in LI/LQ. However, in (2.2) there are two primes ramified in K^/Q but ^ is
no longer a norm in L^/LQ. It will be convenient to assume that K^ is
contained in R under an embedding of M^ into C which is fixed from now
on; and K^ will be the conjugate contained in K^. With this convention T3

represents complex conjugacy on M^ and T induces complex conjugacy on
L,.

Because h^h^, and fe^i are all prime to 3 the class number relation (1.7)
and the bound (1.9) show that ft, is prime to 3 and that Qi = 3. From
(1.8) the 3-components /in of h^ satisfy

(2.3) h'L^2 = Q23-2

with Q^ dividing 33 by (1.10). Thus :

(2.4) LEMMA. - // y\h^ then 3\h^.

The main technique used to discard unsuitable n is the calculation of the
ambiguous class number ^ of L^/L^. From (2.4) and [6] one has :

(2.5) LEMMA. - i) If y\^ then 3\h^.
ii) If 3 | ^ and L^/K^ contains just one ramified prime then 3 | h^ .
in) If 3^ then 3^ and 3 )( h^.

The 3-component of the ambiguous class number will be denoted by ^ '
and its value is well-known to be

(2.6) ' ^ ' = 3d-1-1
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because h. is prime to 3. Here d is the number of prime ideals of L^
which are ramified in L^ and

(2.7) 3^1:1 :̂ U^nN^LJ.

So the bound t < 3 immediately places a restriction on ri for which 3/^/1^ ?
ufz.

(2.8) r f ^ r + 2 ^ 5 .

The factorization of prime ideals in L^ and L^ is as follows :
If p \ HQ with p ^ 3 then (p) = p3 in L^ since p = — 1 mod 3. Let r

be the number of such primes. Then r ^ 2 by (2.1) and (2.2) and r is the
number of their divisors ramified in L^/L^.

If p )(riQ with p = 1 mod 3 and (-° ) = 1 then (p) has six prime
\P /3

divisors in L ^ . These are all ramified in L^ i f p | n and this would contradict
(2.8). So no such primes divide n.

If p^rio with p = 1 mod 3 and (-° ) 7^ 1 then (p) = ̂  in L ^ . Let
\P /3

a be the number of such primes dividing n so that 2a is the number of their
prime divisors ramified in L^/L^.

If P ^ H Q with p = — 1 mod 3 then (p) = pp0?02 in L^ . Let fc be the
number of such primes dividing n so that 3b is the number of their prime
divisors ramified in L^/L^.

Finally (3) = ((I0!02)2 or I6 in L^ according as HO = ± lmod9 or
not. If HQ ^ ± lmod9 then (3) has one ramified prime divisor in L2/Li. If
n = ± 1 mod 27 then UQ = ± 1 mod 9 and (3) has two ramified prime
divisors in L^/L^, viz. 1° and I02 if ( is the divisor satisfying P = ( . If
n ^ ± 1 mod 27 but HO = ± 1 "^d 9 then (3) has three ramified prime
divisors in L^/L^. Let c be the number of divisors of (3) ramified in L^/L^.

Then (2.8) becomes

(2.9) r f = r + 2 f l + 3 f c + c ^ r + 2 ^ 5 .

3. The units of L^.

Let e^ be a fundamental unit of K^ so chosen that ^ > 0. Then — ^,
^i, and ^ generate U^nU^. Since Qi = 3 there is a unit e^ e UL such
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that U^ = <- ̂ i,^> and

(3.1) ei = ̂ +2

for some integer a mod 3. It is easy to deduce that

(3.2) e^02 = ̂

and further manipulation (see [1] corollary 15.4.1) shows that

(3.3) e, =e\-° =e^\

(3.4) LEMMA. — The number a in (3.1) satisfies a = Omod 3 if, and only
if, ^ is not a norm in L^/LQ, i.e. HQ is of type (2.2).

Proof. — From (3.2) ^ is a norm in L^/LQ if a ^ 0 mod 3. However, if
a = 0 mod 3, then ^ is not the norm of a unit because ^l+a+a2 = 1 for
a = ^,^, and e^. If ^ is not the norm of a unit but is yet a norm from L^
then KI has a weakly ambiguous ideal class of order 3 by [10] lemma 1.11.
This contradicts the class number of K^ being prime to 3. Thus if ^ is a
norm in L^/LQ then it is the norm of a unit.

(3.5) LEMMA. — Let m be a cube-free product of rational primes which are
totally ramified in K^ and suppose m is not the product of a power of HQ and
the cube of a rational number. Then there is an integer a e K^ satisfying

(3.6) mef1 = a3 and m = ̂ +a+a2

and such that e\ = a1"0 is a unit for which UL = (—^i,^)-

Proof. — Suppose m = Tip^1 is the prime decomposition of m. Then
(Pi) = P? for a prime divisor p, of (p,) in K^ . Since Ki has class number
prime to 3 the ideal p^ is principal, say p^ = (o^). Put a =^~la^. Then
o^m"1 = rUa3^"1)0' which is a unit of K^. So o^m"1 = ± ^ for
some integer b. Without loss of generality the sign is positive and
b = ± 1 because ^m^K,. Clearly (p,) = p^0-^2 = (^+a+a2) so that
m = a l + o + < T by the earlier choice of sign. Now

(^a1-0)1-0 = ^a^^^a-30 = 1

shows that ^a^eLo. Thus a^0 = ^ = ± e^0^ = ± ̂ ^c for
some integer c, so that <-^i,^> = <-^i^2> = U^.

Notice that such integers m exist if and only if no is of type (2.2). The
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lemma itself generalises to pure cubic fields with class number divisible by 3
under the extra hypothesis that (m) must be the cube of a principal ideal of
Ki.

4. Norm residue symbols.

In most cases the value of t in (2.7) can be found exactly using the norm
residue symbols which Endo has calculated for a basis of UL . The symbols
are powers of ^, which satisfies i;""'̂  ^ and ^ = £;. Hence

(4.1)

and

(^\ ̂  (^n\ ̂  (^n>
I P ) \ P° ) \ ̂  )

(e^\(e,,^n\-1

\ P / \ V } '

So for primes p which decompose as (p) = pi^0-^2 in L^ the convention is
that p is the divisor fixed by T, i.e. p' = p, and p0' = p02. Endo [3]
proves the following lemmas using the properties of the norm residue symbol
as described by Hasse in [4] and the relations in section 3.

(4.2) LEMMA. - If p\rio, p + 3 and (p) = p3 in L^ then

? " ) = 1 <=> p = - lmod9.
\ P /

w -1.
\ P /

(e 3/n\ '
In case (2.,2) (^/-) = 1 if p = - 1 mod 9; and

\ P /

/,' 3,e^n
= 1 o p ^ m if p ^ - 1 mod 9.
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/M \
(4.3) LEMMA. — If p^nQ,p\n, p = lmod3, (-0) ^ 1, and(p) = ppT

m Li t^n v p / 3

/^ _ /^\

= 1.

,^ (̂ H )̂-.
(4.4) LEMMA. — If p^rio, p\n, p = - 1 mod 3, and (p) = pp0?02 m

Li then

(^-H")-^)^\ p 7 \ P° 7 \ p02 7
/U"\ = i ^ p s _ i mod 9.

f^^i^f^^^y1; w\ p 7 \ p" 7 \ p02 7
(e^^
\ p" 7

i/, and wify i/, HO ls Qf^ps (2.2) orp= — 1 mod 9.

fe^ = ̂ 2 \̂ ^ ̂ 2 \̂

\ P / V P° / \ P-2 /

(/, and only if, HQ is of type (2.2) or p = — 1 mod 9.

(4.5) LEMMA. - If no = ± 1 mod 9, n = 3V with 3^n\ anrf
(3) = (ll°l^2)2 in Li whese I is fixed by T then

and

f^n\ _ (^n\ _ (^n\
[-rJ-U^)-^)'

fc& = 1 o n' = ± 1 mod
.̂-T^

l ,„, (^\.W.(-Ty")- - (^)-(^
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/nc^d^n^^^^r^i.

Proof. - The result for ^ is as given by Endo, and the first claim about e^
is immediate from (4.1). For ^ in case (2.2) Endo has shown that

n2 ^2^\ (m,t,\iso\~~^)=[~r)•
Now ^\~(^^) = n {. 'ra- ] = l and so e2 can be ̂ "g^ by powers of
C, and ^i to give

n,M") = f^r1
Y (<Ii / \l }

where, by the proof of (3.5), the sign is minus the undefined sign in (3.6). Also
from (3.6) with the same ambiguity of sign,

/W"\ <W»Y^i^V2

\ i " ) lr )\~^~)
_(m,^n\^(m,^n\±^

~\ (a I y^l
^ (m^^Y2/jn^n\±2 _ /m,^±i

'< t ) \ l ) ~[~T) •
Finally, (3) is not totally ramified in Ki as MO = ± 1 mod 9 and so 3 is

not a factor of m. Thus, m is a product of divisors of n^, and, by (2.2),
w = ± 1 mod 9 if, and only if, m is a cube times a power of «o • However,'
such an m does not satisfy the hypotheses of (3.5), and therefore m ̂  + 1
mod 9. Hence

(mf\ ,
( s ) = (;(m2-l)/3 ^ l

(4.6) LEMMA. - If no ^ ± lmod9, n = 3"n' with 3^n', and (3) = I6

in Li t/ien

/Z^n\ ,
1—M = 1 <^> " = ± 1 mod 9.

(^\ ,
^ ( /



PURE FIELDS OF DEGREE 9 WITH CLASS NUMBER PRIME TO 3 11

In case (2.2),
(e'^

m' = ± 1 mod 9 "where m = 3fmfwith 3 ) ( m ' .

(4.7) LEMMA. — In case (2.2) with n^ = ± 1 mod 9 th^ on?^ umTs of L^
which are norms are the cubes.

Proof. — Suppose e = ^e{e^ is a norm. Then

by (4.5). Hence k == 0 mod 3 by (4.5). So

. _ (e,^nye,^n\-1 _ (e^Y3

\ I A 1° / \ 1° 7

by (4.5). Hence 7 = 0 mod 3 by (4.5). So

^ _ (e^n\ _ (^

for a prime divisor p of p \ HQ . Hence i = 0 mod 3 by (4.2) as
p ^ ± 1 mod 9.

(4.8) LEMMA. — In case (2.2) with HQ ^= ± 1 mod 9 suppose n has no

prime factor p = 1 mod 3 wiT/i ( -° ) = 1. Let e^ correspond to m == 3.1f
\P /3

e\ is a norm then the units of L^ which are norms are cubes times powers ofe^
and e\. If e\ is not a norm, the units of L^ which are norms are cubes times
powers of e^. In particular, the former case holds, i.e. e\ is a norm, when n has
no factor p = — 1 mod 3.

Proof. — It is readily seen that e^ is a norm and that when n has no

factor p = — 1 mod 3 then e\ is also a norm. Since ( j 7^ 1 in (4.6) it

is clear that no linear combination of e\ and £; can be a norm except possibly
cubes times powers of e'^.

(4.9) LEMMA. — Incase (2.1) if ^ is not a norm in L^/L^ then the only units
of Li which are norms are the cubes.
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Proof. - From (3.1) and (3.4) e\ = ̂ +2. Hence ^ not a norm
=^> ^+2 not a norm => (^e,)^2 not a norm => ̂  not a norm, for any
integer i. _

Choose a prime p in L^ for which (^v-1)^ i. By (4.1) certainly

P' ^ p . Let e = C;1^ be a general unit of L^. Then

f^^l = ̂ i-^Y^'^Y- /^VYfi^Y'< P ^ v p A p / v p A p /
by (3.1) and (3.3), and

(e^A = f^YY^Y - ̂ VY^^V
V P- ^ V P- )\ P- Y ~ V~T/ W"^

by (4.1). These expressions are distinct and so they cannot both be equal to 1
if k ^ Omod3. Thus e anorm => e1'0 anorm =?> fe = Omod3 => %a
norm => f =7 = Omod3 by the initial remarks. Therefore e is a cube if it is
a norm.

(4.10) LEMMA. - In case (2.1) if ^ is a norm in L^/L^ but ^ is not a norm,
then the only units of L^ w^nc^i are norms are cubes times a po\ver of ^.

Proof. - Choose a prime p in L^ for which ( l ? v ) ^ l Then for
. . , \ P /

^ = %^ the proof of (4.9) yields k = Omod3 if e is a norm. So ^e{ is a
norm in that case and consequently e{ is a norm because £; is. Thus 7 = 0
mod 3 also, which proves the statement.

5. The class number of K^.

Recall from § 2 the definitions of r, a, fc, and c as the numbers of certain
primes which ramify in L^/L,. The value of c (= 1, 2 or 3) places certain
congruence conditions on n. and HQ which restrict the values of r. In
particular,

(5.1) If c = 1 then r + 2;
(5.2) If c ^ 1 then r + 0;

because HQ has to be of type (2.1) or (2.2).
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(5.3) THEOREM. — If h^ has class number prime to 3 then n has no prime
factor p = 1 mod 3.

Proof. — The case of n divisible by p = 1 mod 3 with (-° ) = 1 has
\P /3

already been excluded in § 2 by (2.8) since such a prime has six ramified divisors
in Li. Otherwise suppose a > 0. The possible values of r, a, fc, and c
satisfying r ^ 2 and (2.9) are listed below with the reason why 3 | h^ . In
each case b = 0 for otherwise 2a + 3fc + c ^ 2.1 +3 .1 4- 1 would
contradict (2.9). When c = 1 the extension L^/K^ has a unique ramified
prime and so (2.5ii) can be applied.

a c r

1 1 0

1 2 0
1 3 0
1 1 1
1 2 1

1 1 2
2 1 0

Type of no

(2.1i)

none
none
(2.2i)
(2.1ii)

none
(2.1i)

d

3

4
5

5

t
<£ 1

< 2
< 2

s£3

^-M

^ 1

^ 1
^ 2

^ 1

Reason

C,, 6i norms by (4.3) and (4.6);
(2.5ii)
(5.2)
(5.2)

e^ norm by (4.8); (2.5ii)
(, norm by (4.2), (4.3), and (4.5);

(2.5i)
(5.1)

(2.5ii)

(5.4) THEOREM. — // h^ has class number prime to 3 and n has a prime
factor p = — 1 mod 3 which does not divide HQ then, without loss of
generality, n = 3p3 or 9p3 where p = 2 or 5 mod 9. For such n the class
number h^ is prime to 3.

Proof. — As observed in the previous proof, a = 0 if b -^ 0. So the
possible values of r, b, and c satisfying r ^ 2 and (2.9) are the following :

b c r

1 1 0
1 2 0
1 1 1

Type of no

(2.1i)
none
(2.2i)

d

4

5

(

*

< 3

d-t-1

*

^ 1

Reason

see below
(5.2)

(2.5ii)

The outstanding case of f c = l , c = l , r = = 0 corresponds to n of the
form 3p3 or 9p3 with p = — 1 mod 3. If p ^ — 1 mod 9 then ^ is not a
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norm by (4.4) or (4.6). Hence t = 3 by (4.9) and d-t-1 = 0. Thus 3^^ by
(2.5iii). On the other hand, if p = - 1 mod 9 then ^ is a norm by (4.4) ̂ and
(4.6). Hence t < 2 and ^-M ^ 1. Thus 3 | h^ by (2.5ii).

From (5.3) and (5.4) the only n containing prime divisors other than those
of 3no and for which h^ is prime to 3 are those described in (5.4).
Otherwise a == b = 0 and there are the following possibilities :

c r

1 0

1 1

1 2
2 0
2 1
2 2
3 0
3 1
3 2

Type of ng

(2.1i)

(2.2i)

none
none
(2.1ii)
(2.2ii)
none
(2.1ii)
(2.2ii)

d

1

2

3
4

4
5

r

0

1

^ 2
3

3

rf-M

0

0

7
0

?
1

Reason

Only one prime is ramified.
So every unit is a norm
by the product formula.

^2 is a norm by (4.2)
and (4.6) for m = 3; (4.8)

(5.1)
(5.2)

^ is a norm by (4.5)
(4.7)
(5.2)

(4.7)

This table gives three cases for which 3^^ ^ee cases which are
impossible, and three cases which are undecided. When c = 3 and r = 1,
then n = 33^p where p = - 1 mod 9 and either i ^ Omod3 or p ^ - 1
mod 27. If p ^ - 1 mod 27 then £, is not a norm by (4.5) and so t = 3 by
(4.9). So d-t-1 = 0 and 3^h^ by (2.5iii). The following theorem has now
been proved :

(5.5) MAIN THEOREM.-i) The class number of Q(^n) is prime to 3 when
n is one of the following :

n = 3,
n = 3'p where p = 2 or 5 mod 9 and i is any integer,
n = 31;?3 where p = 2 or 5 mod 9 and i = 1 or 2,
n = 331? wft^ p = 8 or 17 mod 27 and i is any integer,
n = pjq where p,q=2 or 5 mod 9 and j satisfies n = ± 1 mod 27.
In each case p and q denote distinct primes.
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ii) It may be possible that the class number ofQ(^n) is prime to 3 when
n is one of the following :

n = 331? where p = — 1 mod 27 and i is any integer,
n = 33ipjq where p, q = 2 or 5 mod 9, 7 satisfies p^q •= ± 1 mod 9 anrf f

satisfies n ^ ± 1 mod 27.

^er^ p an^ ^ denote distinct primes again.

iii) // Q(y^) <s nc^ ^fi^n by taking one of the above values of n then the
class number of Q(-^/n) is divisible by 3.

Remark. — The case of n = 3 is well-known and Endo proves the result
for n = 3p3 or 9p3 where p = 2 or 5 mod 9.
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