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CLASSIFICATION
OF CONNECTED UNIMODULAR LIE GROUPS

WITH DISCRETE SERIES

by NGUYEN HUU ANH

Let G be a separable locally compact group with center Z.
An irreducible representation^) of G is said to be a member of
the discrete series if it has some non zero matrix coefficient which
is square integrable modulo Z. In this article we introduce the
notion of H-groups and prove that the discrete series exist for these
groups. Moreover, apart from some technical requirements, it will
be proved that a connected unimodular Lie group G with center Z
such that the center of G/Rad G is finite has discrete series if and
only if G may be written as G == HS, H H S = Z° , where H
is a H-group with center Z° and S is a connected reductive Lie
group with discrete series such that Cent(S)/Z is compact.

In particular, if G is the semidirect product of a simply
connected solvable Lie group and a connected semisimple Lie group
with finite center, then the subgroup S may be chosen so that
it is the direct product of a vector group T such that T/T Fl Z is
compact and a connected semisimple Lie group with discrete series.
Thus in view of the results of Harish-Chandra on the discrete series
of semisimple Lie groups (cf. [6]), the problem of classifying connected
unimodular Lie groups with discrete series is completely solved.
Finally it should be noted that the results in this article contain
our previous result on algebraic groups (cf. [2]) as a special case,
for H will be proved to be nilpotent if G is locally algebraic
(see Lemma 2.2).

(1) Warning: "representation" means "continuous unitary representation"
in a Hilbert Space.
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Mackey's machinery on group extensions plays again a very
important role. The strictly ergodic case may be avoided thanks to
Theorem 1.1 which is interesting in its own right. The notion of
H-groups is introduced in section 2. Theorem 2.9 is essential for
carrying out the theory of Pfaffian polynomial exactly as in [15].
Theorem 2.12 contains the most important results in the theory
of representations of H-groups. In section 3 we treat the most
general case. Theorems 3.4 and 3.6 are the main results of the article.
Finally in section 4. we give another characterization of connected
unimodular Lie groups with discrete series. In particular Theorem
4.4 gives the solution of a conjecture stated in [ 15].

In the following we continue to use the notations of [1] and
[2]. In particular ^ , 5 , . . . are the Lie algebras of the Lie groups
H , Z , . . . ; (0/5)* is identified with the annihilator of 5 in ^* ,
and similarly (H/ZV is identified with the annihilator of Z in H.
The neutral component of a Lie group G is denoted by G° , and
the simply connected groups are always supposed to be connected.

1. Some preliminary results,

Recall that if G is a separable locally compact group, Z a
closed normal subgroup of G, \ a character of Z , then a repre-
sentation TT of G is said to be a x-representation if 7r |Z ^ mult x -
If moreover TT has a non zero matrix coefficient which is square
integrable modulo Z with respect to the right Haar measure of
G/Z, then we say that TT is square integrable mod Z. In this case
we have Schur's orthogonality relation and can define the formal
degree dW of TT (cf. [ I ] , [9], [13]).

THEOREM 1 . 1 . — Let G be a separable locally compact uni-
modular group. Let Z C K be closed normal abelian subgroups of
G. Let x be a character of Z , and TT be a square integrable mod Z
irreducible -^-representation of G. Then the quasi orbit of G/K
in K defined by it \ K is transitive.

Proof. — Since K is smooth and of type I, we may assume
that the system of imprimitivity for TT is the canonical one associated
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to a measure ^ belonging to the quasi orbit defined by 7r |K (cf.
[8], Theorems 7.6 and 5.6). In particular the projection valued
measure P belonging to TT|K is just the multiplication by charac-
teristic functions on K . Moreover there is a measurable cocycle
c on G x K taking values in the unitary group of a Hilbert space
9€ such that for all g in G and all functions / in L^K, d^) ® 9€
we have:

^(8)fW=c(g,\)p(g,\)l/2f(\g) j^-a.e.X (1.1)

where p is a Borel function such that for each g , p ( g , . ) is the
Radon-Nikodym derivative of the translate ^ of jix with respect
to JLI.

Now the action of K on K is trivial. Therefore it follows
from (1.1) that for all k in K and for all / we have:

^W/(X)=cO,X)/(X) a.e.X

this together with the fact that P is precisely the projection-valued
measure associated to the direct integral decomposition of TT | K into
the characters X show that c ( k , \) = \(k) ld^ for all A: in K ,
and for almost all X in K.

On the other hand by the same argument as in [ 1 ] we see that
p. -viewed as a measure on the G-invariant subset Xo(K/Z)' - is
absolutely continuous with respect to the translate of the Haar
measure d\ of (K/Z)' by \, where \ is some fixed extension
of x to K . Furthermore d\ is relatively invariant in the sense of
[14]. Hence we may replace jn by the restriction to its support of
the translate of d\ by \. This being done, we have

(Tr(kg)f,, ̂ ) = F p(g , X)1/2 (c(k , X) c(g , X) f,(\g) , f^\)) rf^(X)
K

=W) I \(k)F (\) d\ (1.2)
"(K/zr

where F^(X) = p^X^X)1/2 (c(g , \\) f,(\\g) , f,(\\)) if
XQ X G supp fi and is 0 otherwise.

Note that Fg is integrable with respect to r fX . Therefore,
if we denote by F^(^) its Fourier transform, then

f^ lOrQrtA^)!2^ f^ f^\Wg)f,,f^dkdg

== f f i^W^dkdg (1.3)
^G/K ^K /Z ° '
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where dg and dg are Haar measures of G/Z and G/K respec-
tively.

Now it follows from (1.3) that F^(-) is square integrable for
almost all g in G. Therefore, if the Haar measure of K/Z is pro-
perly normalized, then we have by the Plancherel formula on K/Z:

f Wg)f,.f^dg = f f |F,(X)|2 d\ dg (i 4)
G/Z "G/K ^(K/Z)* ° \l••rf

= [ C p(g , X) I (c(g, \)ft(\g), /2(\)) |2 dju(X) dg.
"G/K " K

On the other hand by Schur's orthogonality relation:

fo/z ̂ 8)fz,Wdg = dW-1 ||/,||2 H/JI2 . (1.5)

Let us apply (1.4) and (1.5) for /i = y ® u, /, = ^ ® v , where
<p and )A belong to L2 (K, cf^Lt), and u, v are in 9€ such that
H M | I = l l v l l = 1. We have:

f \^Wd{i(\) f p(g,\)\y(W \(c(g,\)u,v)\2 dg
K v G/K

=d(ir)-1 11^ II2 11^ I I 2 .
In particular, we have, for /i almost all X in K:

f p(g,\)W\g)\2 [(c(g,\)u,v)\^d?=d(^^)-l ||^||2.
VJ/i\.

Substituting successively for (^ in the above equality the charac-
teristic functions of a countable separating family of Borel subsets
of K , we see that for all u, v belonging to a fixed orthonormal
basis (B of 9€ and for almost all X in K:

f P(g^) ̂ ) \(c(g, \)u, v)?dg= rf(7r)-1 r ̂ ) dfJL(v) (1.6)VJ/—- i/1^

where ^ is an arbitrary non negative measurable function on K .

Assume that ^ is not concentrated in the orbit XG, where
X satisfies (1.6). Then the characteristic function of XG is JLI-
negligible, and hence we have according to (1.6):

P(g^)\(c(g,\)u,v)\2 = 0

for all u, v in (J3 and for almost all g in G. This is a contra-
diction. QED
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Remark. - Apparently the only assumption needed on TT is
that all of its matrix coefficients are square integrable mod Z and
satisfy Schur's orthogonality relation. However, as proved in [3],
this condition is equivalent to the fact that TT is a square integrable
mod Z irreducible representation.

LEMMA 1.2. - Let p be a representation of a connected Lie
group G in a finite-dimensional real vector space V. Let \ be a
\-valued cocycle of G with respect to p. Assume that there is
Co€Cent(G) such that p(co) = a(Co). Idy , a(Co) ̂  1. Then X
is a coboundary. In fact we have:

X(i r )=(pQr) - Idv) x(co) ^ •
a(Co) - 1

Proof. - We have:

W + P(g) ^(Co) = X(^o) = \(cQg) = X(co) 4- p(Co)X(^).

Therefore

XO?)=(pQr) - ldv) x(co) .
a(Co) - 1 QED

PROPOSITION 1.3. -Let G , p , V , X be as above. Assume also
that G is reductive and p is irreducible. Then either ( i ) p is trivial
and X(G) = V, dim V = 1, or(ii) \ is a coboundary.

Proof. - If X = 0 , then it is a coboundary and (i) does not
hold. Thus suppose that X ^ 0. First assume that p is trivial so
that dim V = 1. Then X(G) is plainly a linear subspace of V
because G is connected and hence X(G) = V. Note that X is not
a coboundary in this case.

Now assume that p is non trivial. Put N = ker p. Then X
is a homomorphism from N into the abelian group V. Therefore
if X(N) =^ 0, we may find an element n^ in N H Cent(G) such
that X(^ )^0 . We have

^(8) + P(^)X(^) = X(^o) = X(^) = X(^) + \(g)

i-e. P(^)X(^)=X(^) V ^ G G .



164 NGUYEN HUU ANH

This however contradicts the fact that p is a non trivial irre-
ducible representation of G. Therefore \(N) = 0, and X may
be viewed as a cocycle with respect to the representation of G/N
induced from p, i.e. we may assume that p is faithful. Recall
that p is irreducible so that p(G) is the neutral component of
a real algebraic subgroup of GL(V). By Lemma 1.2 it is sufficient
to consider the case when this algebraic group contains no R-split
torus in its center, i.e. when the center of p(G) is compact. Since
every finite dimensional representation of such a group is completely
reducible, X is a coboundary (cf. [12], Theoreme 2, expose 4).

QED

2. Representation theory of H-groups.

DEFINITION 2.1. - Let H be a connected Lie group, and Z
a central subgroup of H. Then H is said to be a H-group if there
exists a linear form 9. in &* such that the orbit of 9. in f)* via
the coadjoint representation of H is the hyperplane £ + ( 0 / d ) * -

Remark. — It follows immediately from the above definition
that the symplectic form associated to S.: Bg({ , 17) = £( [{ ; , T?]) is
non degenerate on t ) / ^ , i.e. ^ is the Lie algebra of the centralizer
Gg of £ in G. Since the orbit £ + (Wa)* is simply connected
we must have Z = Gg = Cent(H). In particular Z is connected.
Moreover H is simply connected if and only if Z is simply connected.

LEMMA 2.2. - Let H be a H'group mth center Z. Then H
is solvable. If we assume further that H is locally algebraic, then
H is nilpotent.

Proof. — Let ^ be a maximal semisimple subalgebra of ^ so
that ^ contains an ^-invariant subspace § complementing 3 . Let
£ E f ) * be such that the H-orbit of H in O* is £ 4- ( W a ) * . Then
there exists £^ in this orbit such that £^ = 0 on ^ . Since the
symplectic form B^ is also non degenerate on ^/^ and ^ is
orthogonal to f) with respect to Bg^ we see that ^ = 0, i.e. f)
is solvable. In case H is locally algebraic we may take ^ to be
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the reductive subalgebra in a fixed Levi's decomposition of I; . Then
the above argument shows that § = 0, i.e. 1) is nilpotent. QED

LEMMA 2.3. - Let G be a Lie group, Z a central subgroup
of G. Assume that G has a normal subgroup H which is a H-
group with center Z . Then there exists a closed subgroup S such that

G = H S , H H S = = Z . (2.1)

Moreover S may be chosen so that S° = S H G° .

Proof. - Let £ E § * be such that the H-orbit of £ in I;* is
precisely S. + (^3)* . Put S = {x G G|£ o Ad^(x) = £} . Then S
clearly satisfies (2.1)., Note that S 0 G° is the centralizer of S. in
G° and hence SO G° is connected since the G°-orbit £ + 0/3)*
is simply connected. Hence S H G° = S° . QED

LEMMA 2.4. - Let G , H, S , Z , C be as above. Assume also that
G is connected and that there is an extension Jt^ of C to Q such
that the S-orbit of J^| x> is CJ^ + (^ /a )* . Then the G-orbit of
S.^ in g* is C^ + ( g / a ) * . /^ particular G is a H-group with
center Z .

Proof. - Let J^ E g* be such that £3 1 5 = CJ 5 . We have
to prove that i^ belongs to the same G-orbit as J^ . By the assump-
tion, there exist x^ in H and x^ in S such that

(^ o Ad^)i ^ = C o Adjc^ = CJI)

and (J^o Adx^)|5 = (^ o A d ; ^ ) l & .

Then we have J^ = ĵ  o Ad(x^). QED

Example 2.5. - In view of the results in [10] and [15] we see
that the class of simply connected H-groups contains that of uni-
modular exponential groups with discrete series and hence that of
simply connected nilpotent Lie groups with discrete series. On the
other hand using Lemma 2.4 we may construct non-type I H-groups.
In particular these groups are not of exponential type. Let indeed
I) be the five dimensional Heisenberg algebra with basis ^, ^., -^
O ' = l , 2 ) such that the only non zero brackets satisfied by the
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members of this basis are:
[^,]=^, f = 1 , 2 .

Let ^ be the three dimensional Heisenberg algebra with basis
?2 » ^3» ^3 such that [^3 ̂ 3] = ?2 • Let ? be the semi direct
product of f) and ^ such that ^ and $3 commute with the ele-
ments of I) and:

h3^J ==^1 . [^3^l]=-f l , [^3^2]=0^ ^3^2]=--^

hs^J-o
where 0 is a fixed irrational number. Let g be the quotient algebra
of ^ by the ideal R(^-^) . Let G be the simply connected
Lie group with Lie algebra Q . Let H, S be the analytic subgroups
of G corresponding to ^ , § respectively, where f) , § are identified
with Lie subalgebras of g so that ^ and ^ are identified with
the same element ? in the center 3 of g . We have G = HS,
H 0 S = Z, where Z is the analytic subgroup of G corresponding
to 5 . Thus G is a H-group by Lemma 2.4. However G is not of
type I since it is the central extension of the group G/Z which is
isomorphic to the direct product of R and the five dimensional
Mautner's group.

LEMMA 2.6. - Let f) be a Lie algebra and ^ an ideal of 1) .
Assume that there exists £ in !)* such that the symplectic form
Bg is non degenerate on I ) / 3 . Let T be an automorphism of f)
leaving 3 invariant such that T splits over R , and that ^ has a
r-invariant subspace ^ complementing 3 such that C ("^ )=0 .
Finally assume that T\ 3 has at most two eigenvalues: a and —a .
Then [det r| = |a|'7, where q = — dim l)/^ + dim 3 .

Proof. — Let {^.} be a basis of ^ consisting of eigenvectors
of T corresponding to the eigenvalues {c^}. We have:

r[^, ^ ] = [T$, , T^.] = a, a, [^, ^.].

Hence |aJ |a,| = |a| if [S,,^i.

It follows that | a, | |c^| = |a| if Bg(^, $,) ^ 0 i.e. |r| Bg = |a| Bg,
where | T| is the linear transformation of I) such that | r\ ̂ / ^ |aJ ^.,
V/ , and the action of |r| on Bg as a symplectic form on t) is
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induced from that of |r| on ~t). Thus

det | r | = p f ( | r | B g ) ( P f ( B e ) = lal^1"1 l ) / )

where Pf is the Pfaffian of Bg with respect to a fixed volume on
F) . Finally

I d e t r ] = d e t | r | |det(r| 3)! = |a|9 . p^p

LEMMA 2.7. - Z^r I) , 3 , r &6? a5 a6oi^. Assume that there
exists a ̂  ± 1 ^cA rAar spec(r| 3) C { 1 , - 1, a, - a} and
s p e c ( T | 3 ) n { a , - a } = ^ 0 . Then | d e t r | ^ l .

Proof. - Let |r| be as above. It is sufficient to prove that
det |r | is not equal to any negative integral power of |a| . Let
IT-F = ^ l og lTI be the one parameter subgroup of GL(^) generated
by log | T |; then as in the proof of Lema 2.6 we have

l^r 10,1^=101^ if Be0,^,)^0

where /:„. = 0 or 1 .

Thus det I T ^ = Pfdrl^B^/PfCBg) is a polynomial in [a^.
Therefore by the unique factorization in the polynomial ring R[X] ,
det \r\t is not equal to any negative integral power of \0(.\t and
hence det |r| is not equal to any negative integral power of |a| .

QED

PROPOSITION 2.8. - Let H be a connected Lie group. Let 3
be an ideal in f) . Assume that there exists C in ^* such that the
H-crbit of K in ((* is £ + ( ^ 3 ) * . Let T be an automorphism
of 0 leaving 3 invariant.

i)If specCr^)61 C {X € C : |X | = 1}, where (r^ is the
complex if ication of (r| 3 ) , then \ det T| = 1 .

ii) // specMaV C { X E C: | X [ = 1} U [a,-a} and
specCThy H {a,-a} ^ 0 , where a G R \ { 1 ,- 1}, then
Idet T | ̂  1 .

Proof. - Let T be the neutral component of the smallest real
algebraic subgroup of Aut(^) containing r. Then T is the direct
product of a unipotent real algebraic group U and the neutral
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component S of a real algebraic toral subgroup of Aut(^) (cf. [5]).
Moreover S is the almost direct product of a connected R-split
subgroup S^ and a compact connected subgroup S^ (cf. [11]).
Since the elements of U and S^ clearly have determinant 1 , and
all of their eigenvalues corresponding to eigen vectors in ^c have
absolute values 1 , we may assume that r belongs to S ^ . In other
words we may assume that r is split over R . It follows then that
b has a r-invariant subspace f) complementing 3 . Since the H-

orbit of £ is £ + ( l ) / ^ ) * we may assume that C ( ^ ) = 0. Now
the statements i) and ii) follow immediately from Lemmas 2.6 and
2.7, for the symplectic form Bg is non degenerate on ^ .

QED
Now let us consider another characterization of H-groups

which is more convenient for later applications since it only involves
the Lie algebras in question.

THEOREM 2.9. — Let H be a connected solvable Lie group,
and Z a closed connected central subgroup of H. For every S.
in f) * , the following statements are equivalent:

i) The H-orbit of S. in ()* is C 4- ( f ) / ^ )*
ii) H is unimodular and the associated symplectic form Bg

is non degenerate on f) / 3 .

Proof. — We proceed by induction on dim H. First note that
if i) or ii) hold then Z is the neutral component of the center of H.
Hence we will assume that it is so in the following. Moreover by
factoring out exp(ker£ |5) if necessary, we may assume that
dim Z = 1 and C is non zero on 3 . Let N be the nilradical of H.

a) First assume that N is isomorphic to a Heisenberg group
with center Z. Since C l a = ^ 0 , the N-orbit of £ |n is £|n + ( n / g ) *
(cf. [15]). Hence by Lemma 2.3, H = N S , N H S = Z , where
S = [x GH: (£ o Adx) |n = £ |n} . Moreover by Proposition 2.8:
[de tAd (x)| = 1, \fx € S. On the other hand since N is unimo-
dular and S/Z ̂  H/N is abelian we see that H is already unimodular
in this case. Thus we have proved i) ==> ii). Now assume that Bg
is non degenerate on I ) / 3 . Then it is obvious that Bg^ is non
degenerate on ^ / 3 , i.e. s is a Heisenberg algebra with center 3 .
Therefore by Lemma 2.4 the H-orbit of £ in ^* is £ 4- ( f ) / a ) * .
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<3) Assume that the center of N is still equal to Z but N is
not isomorphic to any Heisenberg group. Then as in the proof of
Proposition 4.2 of [1] there is a closed connected normal abelian
subgroup K of H such that K/Z is contained in the center of
N/Z and the N-orbit of C | f is C | f 4- ( f / 3-)*. Put

Ho == { x e H : ( C o A d x ) | f = £ | f } .

Then H^ is connected. Moreover since f)o is the annihilator
of f with respect to Eg , ! ) /^ may be identified with the dual
f / 3 via Bg if the latter is assumed to be non degenerate on f) / 3 .
For all x in HQ , { in f and 77 in ^ , we have

Bg(Ad(xK,Ad(^)7?) = C o A d O c ) ([$, 77])

=C([^])

= B e O , 7 ? ) .

In particular the representation of Hg in I) / f )o induced by
the adjoint representation is contragredient to that induced in f / 3 .
This being set we have

det Ad x = det Ad, , ( x )
9/8

"^^/Do00 ^^o/tW detAd^(x).
Hence

det Adjc = det Ad^ ^ (;c) V;c G H^ . (2.3)

Thus let us assume i). Then it follows that the Ho-orbit of £ | ^ o
in ^ is £ | f ) o + (^o/O*- Hence HQ/K is unimodular by the induc-
tion hypothesis (strictly speaking we should factor out expker(6 | f)
before applying the induction hypothesis, and then go back to Hg
via the canonical homomorphism H^ ——> H^/exp ker(£ | f ) . However
this kind of argument is trivial and will be omitted in the following).
Now it follows from (2.3) that: | det Ad x \ = 1 \fx e Ho .

Moreover it is clear that H = NH() and det Ad x = 1 , Vx G N.
Therefore H is unimodular.

Conversely assume ii). Then it follows from (2.3) that Ho/K
is unimodular. Moreover Bg^ is plainly non degenerate on ^ o / f .
Therefore the H^-orbit of £|?o in ^ is C |^o + (^o/O* accord-
ing to the induction hypothesis. Let &i G ^ * be such that £J 5 = C 15 .
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We have to prove that J^ belongs to the same H-orbit as S.. Since
the H-orbit of £| f in f* is C| f 4- ( f / g )* we may assume that
£J f == £| f without loss of generality. Then there exists x^ in
Ho such that CJbo == (S ° Ad^)|()o . Finally since f / ^ is con-
tained in the center of n/^ and since ^ / ^ o ^ n / n H ^ o may be
identified with the dual of f / g via Bg we see that

{ £ o A d x / x E K } = J Z + ( ^ / ^ ) * .

Hence there exists x^ in K such that J^ oAd(x^1) == £ o Ad(x^),
i.e. Ci = £ o AdOcs^i).

7) Finally assume that Z is properly contained in the center
of N . Then (Cent N)/Z must be a vector group. Let us choose
K to be minimal among the connected normal subgroups of H lying
in the center of N and properly containing Z so that the
adjoint representation induces an irreducible representation p of
H in f / 5 . Note that K is closed in N since N/Z is simply
connected. Now ^(x) = (C o Adx) | f — £| f is a cocycle of H
with respect to the contragredient representation p of p . Since
both p and X are trivial on N , X may be viewed as a cocycle
of the abelian group H/N, and hence by Proposition 1.3 X must be
of the form \(x) == p(Jc)J?o — S.Q for some ^ ^ ( f / ^ ) * unless
P is the identity representation. In the latter case dim( f / 3) = 1
and \(H) == ( f / 3 ) * , i.e. C o Ad^ (H) = £| f + ( f / . ^ )* . In any
case put

Ho = { ^ E H : ( £ o AdJc) | f = £ | f }

and K = exp ker(£ | f ) .

Then HQ is a closed normal subgroup of H and Z = K/K
is a closed connected central subgroup of Ho = H^ /K .

Let us assume i). Then the H-orbit of £| f in f * is
C I f •+• ( f / 3 )*. In this case p and hence p must be the identity
representation of H. Note that H^ = H^. Now it is easy to see
that the H^-orbit of £|^ is C It^ + ( ^ o / f ) * . Moreover each
Ad^Oc) , x G H , is unipotent because p is trivial. Therefore we
have, according to Proposition 2.8

IdetAd,, Oc)| == 1, VxeH

i.e. H is unimodular since H/HQ is abelian.
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Conversely assume that ii) holds. Then the H-orbit of £|I)
in f * is clearly open in C| f + ( f / ^ ) * . Thus in case p is not
the identity representation we have p(H) = R"*^ or p(H) = R"^ x T.
Hence there exists XQ GH such that ( A d ^ o ) | f / 3 = a Id , a =^ ± 1 ,
a € R . On the other hand p(Ho) and hence p(Ho) reduces to
the identity. Therefore

detAd^Qc) = 1 , VxEHo
i.e.

detAd^x) = 1 , V x G H o .

This together with the fact that H^ is a closed normal subgroup
of the unimodular group H implies that H°/K is unimodular, i.e.
HO = H^/K is unimodular; Since the form Bg^ is plainly non
degenerate on ^ o / f , it follows from the induction hypothesis that
the H^-orbit of 6|^ is C l ^ o + (WO* . Recall that Ad^)
has exactly two eigenvalues: 1 and a. Therefore Proposition 2.8
implies: |det Ad(, .(^o)! ^ 1 ' Le- |detAd(Xo) | =^ 1 since
det Ad^0;o) == 1. This however contradicts the fact that H
is unimodular. Thus p and hence p is trivial and the H-orbit of
£ | f is £ | f + ( f / a ) * . Note that H^ = H() in this case. Now by
the same argument as above we see that the H^-orbit of £ [ ^ 0 !s
C l & o + (^/ f)* and the K-orbit of £ in f * is C + ( W ^ ) * -
These two facts together imply that the H-orbit of C in 0* is
C + (W 3 )* as in the last part of case j3). OED

Remark. — The notations being as above, assume that
dim Z = 1. It follows immediately from the proof of Theorem 2.9
that if the nilradical N of H is not isomorphic to a Heisenberg
group with center Z, then there is a closed normal abelian sub-
group K of H lying in N such that K/Z is contained in the center
of N/Z and the H-orbit of £ | f is £ | f + ( f / ^ )* . Moreover there
is a linear subspace V of ^ dual to f / g with respect to Bg such
that (x , $)»—> x exp { is a diffeomorphism of H^ x V onto H.
Assume indeed Cent(N) = Z. Then H = NHo , and the N-orbit
of £ | f is C | f 4- ( f / g ) * . In this case V may be chosen to be a
subspace of n complementing n H ^ . On the other hand if
Cent(N)=^Z then d i m f / 3 = l and Ad(H) reduces to the
identity on f / g and 5 respectively. In this case f)o is an ideal
of codimension 1 and V can be any one-dimensional subspace
complementing ^ o .
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COROLLARY 2.10. - Let G be a Lie group. H a closed normal
subgroup of G which is a H-group with center Z, and S a Lie
subgroup of G such that G = H S , H n s = Z . Assume that for
each x in S, the eigenvalues of Adx corresponding to eigen-
vectors in ^ have absolute values 1 . Then G is unimodular if
and only if S is unimodular.

Proof. - It follows from Theorem 2.9 and Proposition 2.8 that:

|detAd,,(;c)| == 1 V;c€G.

Moreover the last assumption implies that G (resp. S) is unimodular
iff G/Z (resp. S/Z) is unimodular. Finally G/Z is plainly the semi
direct product of H/Z and S/Z. Hence the Corollary follows from
the standard results in the integration theory of Lie groups, opp.

Example 2.11. -To see the necessity of the assumption that
H is unimodular in Theorem 2.9, let us take H = R"^ x R2 with
multiplication:

( x , , y ^ z ^ ) ( x ^ , y ^ , z ^ ) = (x^x^,x^y^ + ̂ ,
O^-Dy, +^ +^) .

Then H is a three-dimensional solvable Lie group with center
Z = { ( l , 0 , z ) : z e R } . Note that H is not unimodular. In fact
the modular function of H is A(x , y , z) = x . Now' let { $ , 7 7 , ? }
be the canonical basis of S = R3 so that {?} is a basis of 3
Let £€!)* be such that £($) = £(77) = 0 and £ (? )=! . Then
we have £([$, 7?]) = £(r? + ?) = 1, i.e. B^ is non degenerate on
Wa . However H is not a H-group as indicated by Theorem 2.9.
Of course one may prove this directly by observing that the projec-
tion on f * of the H-orbit of S. in ^ consists of those linear
forms £1 on f such that C,(?) = 1 and C . (7? )>-1 where
t = R T ? + R?.

We turn now to the representation theory of H-groups. It
turns out that it is very much similar to that of nilpotent Lie groups
with discrete series in [15]. First note that thanks to Theorem 2.9
we may define the Pfaffian polynomial on 3* exactly as in [15].
Let indeed P(t) denotes the Pfaffian of the two-form Bg asso-
ciated to » e t i * with respect to some fixed volume element da
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on 0/3 . More explicitely we have A^Bg = P(C)da, where n = —

dim l) /3 and A^Bg is the n-th exterior power of Bg . Now we may
prove as in [15] that P(£) depends only on the restriction of S. on
5 and hence P(£) may be viewed as a polynomial function on 5 * .
The only facts needed are that H is unimodular and that the two
statements i) and ii) in Theorem 2.9 are equivalent. This being set
let % = % H c 3* be the complement of the nullset of P(6) in
3*. We have:

THEOREM 2.12. — Let H be a simply connected H-group with
center Z. For every fi in % , put Xe = exp y^T S.. 77z^ H
has a unique (up to a unitary equivalence) irreducible ^^-representation
T6. Moreover every ^^-representation of H is equivalent to a
multiple of T8. In particular ind^^Xo ^ mult T8 and hence T12

is square integrable mod Z .

Pwo/ - First note that by Proposition 1.2 of [1] (see also [10]),
if ind^iH Xfi ^ mult T2 then T6 is square integrable mod Z. Hence
it remains to prove the existence of an irreducible Xg-representation
of H for each C G % such that every Xg-^P^sentation TT is equi-
valent to a multiple of T6 . Furthermore by using the central de-
composition of TT we may assume that TT is a factor. Let us proceed
by induction on d imH. As usual we suppose dim Z = 1 and £
is non zero on 5 .

a) First assume that the nilradical N of H is isomorphic to
a Heisenberg group with center Z. Then it follows from the proof of
Theorem 2.9 case a) that H = N S , N H S = Z where S is a
Heisenberg group with center Z. Consider the semi direct product
G = N (s) S . Let v : G —> H be the canonical homomorphism
so that v(n, s) = ns. Let T^ and T^ be the unique members of
the discrete series of N and S respectively such that T^ IZ^mul tXg
and T ^ I Z ^ m u l t X g (cf. [1]). Note that S is defined to be the set
of those elements of H leaving fixed an arbitrary but fixed exten-
sion £1 of C to n , or equivalently the set of those elements
leaving invariant a sub space TT of n complementing 3 . Thus the
function Jg in [1] which is defined and continuous on Sp(n ,Be )
has continuous square roots on S since S is simply connected. It
follows then from Lemma 3.1 of [1] that T^ may be extended to
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an irreducible representation of G denoted again by T^ . Moreover

TT o v(n, s) = T^n , s) ® a(s) \f(n , 5) € G

where a is some factor representation of S such that a | Z ^ m u l t X g .
But then a ̂  mult T^ and hence

TT o ^ ^ mult T6 o i/ (2.4)

where T2 is the irreducible Xg-representation of H defined by the
irreducible representation T^, s) ® T^(^) of G by factoring out
ker v . The factorization is possible since:

T f ( z , z - 1 ) ® T^-1) = Tf(z)® T^(z-1) == XgO) X^-1) Id = Id

i.e. T f ( w , 5) ® T^(^) is trivial on ker v . Now TT is equivalent to
a multiple of T8 as indicated by (2.4).

j3) Let us consider now the case in which N is not isomorphic
to a Heisenberg group with center Z . By the remark of Theorem 2.9
there is a closed connected normal abelian subgroup K of H lying
in N such that the H-orbit of an arbitrary extension £^ of £ to
f is EI + ( f / a ) * , i.e. the H-orbit of X^ = exp y^TCi in K
is \^(K/Zy . This implies in particular that the quasi orbit defined
by TT |K is concentrated in this orbit. Therefore according to
Theorem 8.1 of [8], TT is induced from a factor representation a
of the subgroup

Ho = {jceH^Ocfoc-1)^^) V f c G K }
= {xGH. -Ci o Ad^(x) == £1}.

Note that Ho/exp ker £^ is a H-group as indicated by the proof
of Theorem 2.9. Therefore it follows from the induction hypothesis
that a is equivalent to a multiple of the unique irreducible repre-
sentation T^ of Ho such that T^IK 9= mult \i . Finally this
representation together with the orbit X^K/Z)' determine the unique
irreducible representation T8 of H such that T ^ Z ^ m u l t X g -
More explicity T6 ^ ind^ ^ T61 . Hence

TT ^ ind^ -i-H (mu^ T 1) ̂  mult T^ . QED

PROPOSITION 2.13. - Let H, Z, £ be as above. Put dim H/Z = 2p.
Assume that the Hoar measure dh of H/Z is defined by a positive
invariant Ip'form (^ such that its value at the identity in H/Z , (a?)i
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is the volume element on 1) / ^ used in the definition of P(£). Then
the formal degree of the irreducible representation T6 is given by
d(rTfl)= |P(£)|.

Proof — The notations being as in Theorem 2.12, let us assume
first that case a) in the proof of that Theorem holds so that

^ov(n,s)==^(n,s)^T:^s).

By Theorem 4 of [15] the Haar measures dn and ds of N/Z
and S/Z respectively may be normalized so that

d(T?)= |P,(£)| ^ = 1 , 2

where Pi(C) and P^C) are the Pfaffian polynomial functions on
5 * defined by the structures of the Heisenberg groups N and S
respectively. Note that H/Z is the semi direct product of N/Z and
S/Z. This allows us to normalize dh so that dh==dnds. This
being done we have ^(T8) = d(T^) d(T^). Let a , j 8 denote the
invariant forms on N/Z, S/Z defining the Haar measures dn, ds
respectively. Put dim N/Z = 2q , dim S/Z = 2r. We_have p = q + r.
Let £1 be the extension of 9. to n so that C i ( n ) == 0 as in the
proof of Theorem 2.12 case a). Let J^ ^e an arbitrary extension
of £ to ^ , and £3 the unique extension of £ to ^ so that it
coincides with C^ and £^ on n and ^ respectively. Since n
is clearly orthogonal to ^ with respect to Bg we have

A^ = (A^B^ACA'B^)

i.e. P(£) (o;)i = Pi(£) P2(C) (a\ A (^

i.e. P ( £ ) = P ^ ( C ) P 2 ( C ) .

Hence d(^) = |P(£)|.

Now assume that case j3) in the proof of Theorem 2.12 holds
so that T6 = ind^ m T21 . Hence it follows from Theorem 1.3 of
[1] that: ° _

dCr^riCr81). (2.5)

Recall that the Haar measure dh^ of H()/K is so normalized
that _

dh = dh^dh dk (2.6)

where dk is a fixed Haar measure of K/Z and dh is the quasi
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invariant measure on HQ\H which is transported from the trans-
late ri(X^X) of the Haar measure dX of (K/Zy . Here we have
normalized the Haar measure d\ in such a way that the Plancherel
formula on (K/Z), (K/ZY holds for the pair of measures dk, d\.
Let o?o, 0 be the invariant forms defining dh^, dk respectively.
Let V be the subspace appeared in the remark of Theorem 2.9.
Recall that V is dual to f / g via Bg- where £ is a fixed extension
of £i to f) . Let us normalize the Lebesgue measure d^ of V
in such a way that the Plancherel formula on f / g , V holds for
the pair of measures (0)^ , d^ . This being set, we have according
to (2.6):

(o;)i =(ojo)i A ^ A ( @ ) , . (2.7)

On the other hand since J& o is orthogonal to f with respect to
B-g- we have

A^ = ± (A^,^) Ad{ A (6\ (2.8)

where dim H/Z = 2p , dim Ho/K = 2<7 . Now it follows from (2.7)
and (2.8) that

P(fi)=±P(£i). (2.9)

Finally we have by the induction hypothesis that d(T 1) = |P(£i)|.
This together with (2.5) and (2.9) show that d^) = |P(£)|.

QED

Remark. — The proof of Proposition 2.13 is somewhat more
complicated than that of Theorem 4 of [15] since we have to treat
separately case a). On the other hand it is shorter than the latter
because we do not have to use the Plancherel formula on K/Z which
has already been used in the proof of Theorem 1.3 of [ 1 ].

PROPOSITION 2.14. - The map 0 : £ i—^ T6 is a bijection of
% onto the set of (equivalent classes of) square integrable mod Z
irreducible representations of H. Moreover this map is a homeo-
morphism from the natural topology of % to the Fell topology
on representations.

Proof. — The proof is essentially the same as that of Theorem 2
of [15]. The only thing remaining to be checked is the fact that <f>
is surjective. Thus let TT be a square integrable mod Z irreducible
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Xg-representation of H. Then by Theorem 3.4 which will be proved
in the next section independently of Proposition 2.14, H may be
written as H = H^S, H^ H S = Z , where H^ is a H-group with
center Z, S is a reductive subgroup such that Cent(S)/Z is compact.
Moreover there exists an extension C^ of C to 01 such that the
H^-orbit of C^ in ^* is ^ + ( ^ 1 / 3 ) * . Since H is solvable, S
is in fact abelian. Thus S/Z is a simply connected compact abelian
Lie group and hence S/Z reduces to the identity, i.e. H = H^ .
Hence £ G % . QED

Remark. - In Theorem 2.12, Corollary 2.13 and Proposition 2.14
we have supposed that H is simply connected. In the case H is not
simply connected, then Z is identified via the map 9. '—> exp \/— 1 £
with an additive subgroup of 3 * of the form V x L, where V is
a vector subgroup of 5 * and L is a discrete finitely generated free
abelian subgroup of 3 * such that dim 3 * = dim V + rank L. It
is easy to see that the polynomial function P(£) is not identically
zero on V x L . Hence the intersection of % = % H wlt!1 V^L
is a non empty open set. Therefore the above results still hold for
a non simply connected H-group H, where the set % is to be
replaced by the intersection of itself with V x L .

3. The general case.

In this section we will consider the case of a general connected
unimodular Lie group. First of all, for technical reasons, we have
to consider non connected groups:

PROPOSITION 3.1. - Let G be a unimodular Lie group with
radical R. Assume that G is contained as a closed normal subgroup
in a connected Lie group F such that: ( i ) F/G° is abelian, ( i i ) G
contains a closed connected normal nilpotent subgroup N of F
such that F/N is a reductive Lie group, ( H i ) F/Rad F has finite
center.

Let Z be a closed central subgroup of F lying in G such
that Z H N = Z° and N/Z° is simply connected. Finally let x
be a character of Z . Put 9. = — \/— 1 d\.
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Under these conditions, if G has a square integrable mod Z
irreducible x-representation TT, then there exist a closed connected
normal subgroup H of F such that N C H C R , and a linear
form S.^ on I) extending K such that the H-orbit of S.^ in O*
is GI + ( W ^ ) * - ^n particular H is a H-group with center Z°.

Proof. — W e will proceed by induction on d imG. First of
all by restricting F a little we may assume that F/G° is generated
by the one-parameter subgroups passing by the elements of G/G°.
This being done F is clearly unimodular. On the other hand, by
replacing Z by some subgroup of finite index if necessary we may
assume that Z is the direct product of Z° and a discrete finitely
generated free abelian group D C Rad F. As usual we suppose that
dimZ < 1, and £ ^ 0 if 3 = ^ = 0 .

a) Assume that Cent(N) = Z°. If N is isomorphic to some
Heisenberg group we may take H = N . Otherwise let K^ be a
closed connected normal subgroup of F such that K^/Z° is the
center of N/Z°. In virtue of Proposition 2.3 of [1] the center K
of K^ contains Z° strictly. Of course K is a closed connected
normal abelian subgroup of F. Note that K ^ D and hence KD
are closed subgroups of G since they are inverse images via the
canonical projection G —^ G/D of closed subgroups of ND/D ^ N
which are defined in a similar manner. Note also that the expo-
nential map is a diffeomorphism of f / 5 onto K/Z° since the
latter is a simply connected abelian group. Now we may prove exactly
as in Proposition 4.2 of [1] that the N-orbit of an arbitrary ex-
tension J of £ to f is of the form £"+ ( f / ^ ) * , i.e. the N-orbit
and hence the G-orbit of x" in (KD)' is x(KD/Z°D)' where _x
is the unique character of KD extending x such that d\= ^/— 1 £.
Thus TT is induced from a square integrable mod KD irreducible
X-representation a of the subgroup Go = G H Fo where

Fo == { x € = F : x ? ~ l ) = X W , WGKD}
= { j c e F : C o A d ^ Q c ) == C} .

As before the subgroups FQ , No = N H FQ are connected,
and we have Rad FQ == (Rad F) H F^ , G^ =3 G° 0 Fo since the
orbit £ + ( f / g ) * is simply connected. In particular FQ/G° is
isomorphic to a subgroup of F/G° and is thus abelian. On the
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other hand one may choose £ so that it vanishes on the subspace
of f complementing 3 and left invariant by a fixed maximal connect-
ed semisimple subgroup S of F. This implies that FQ contains
S, and hence F^/N^ is reductive since F^/N^ ^ F^N/N C F/N .
Moreover since F/Rad F is semisimple, F^/Rad F^ is actually
isomorphic to F/Rad F. In particular F^/Rad F^ also has finite
center. Finally KD/exp ker S. = (K/exp ker £) D clearly satisfies
the requirements of the subgroup Z. Hence it follows from the
induction hypothesis that there exist a closed connected normal
subgroup H^ of F() such that N() C H^ C Rad G^ , and a linear
form £1 on ^ extending £ such that the H^-orbit of £^ in
^ is ?i + ( ^ / f ) * . Now as in the proof of Theorem 2.12 case
j8) there is an extension C^ of S.^ to t) = n 4- ̂  such that
theH-orbit of Ci in if is JZ^ 4- ( ^ / ^ )* where H = NH^ .

P) Now assume that the center of N contains Z° strictly.
Let us choose a closed connected normal subgroup K of F lying
in the center of N such that the adjoint representation of F
induces an irreducible representation p of F in f / g . Note as
above that KD is closed and the exponential map is a diffeomorphism
of f / a onto K/Z°. Thus Theorem 1.1 together with Theorem 1.3
of [1] imply that the quasi orbit defined by TT|KD is concentrated
in an orbit which is open in 'x(KD/Z°D)^ where "x is some extension
of x to KD, i.e. the G-orbit of C^ — v^T^x' in f* is an
open subset of £ 4- ( f / ^ )*. Moreover TT is induced from a square
integrable mod KD irreducible x-representation a of the subgroup
GQ = G n FQ where
Fo = { jcEFrxOcfcc -^XW, V ^ G K D }

= { x € F : S . o Ad^ (x ) == £ } .

Suppose that p is non trivial. Since p may be viewed as a
representation of the reductive group F/N, it follows from Lemma 1.3
that there is ^ in (f /a )* such that £"o Ad ^ (x) - I = p(x) J^ - C^,
V x € F , where p is the representation of F in ( f / g ) * contra-
gredient to p . Let F be the smallest real algebraic subgroup of
GL(( f /3 )*) containing ?(F) and F^ = {3?€ F:7Co = J?o}. Then<^^
FQ and hence p(Fo) has finitely many connected components.
Moreover the projection FQ of F^ in F/Rad F has finitely many
connected components and F°/Rad FQ has finite center. Therefore
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F, = (Rad F) Fo has finitely many_ connected components and
F^/Rad F^ has finite center. Now f o may be viewed as a sub-
algebra of a fixed maximal semisimple subalgebra » of f which may
be chosen to be in 9 so that dp induces an isomorphism of some
nilpotent ideal n ^ of f o such that To/ 1 1 ! is reductive onto the Lie
algebra u ^ of the unipotent radical U^ of F^ . In fact n ^ maybe
chosen to be in Q ^ H ^ since n ^ is clearly contained in the maximal
semisimple sub algebra dp ( ^ ) o f r f p ( f ) . Therefore if N^ denotes the
analytic subgroup of G^ corresponding to n ^ then (Rad F)N^ is a
closed normal subgroup of F^ . Moreover kerp n N^ == 0 since the
covering N^ —> U^ is trivial, for U^ is simply connected. In fact, we
have (Rad F) n N^ = 0 since ker p H N^ is easily seen to be of finite
index in (Rad F) H N^ . In particular we have N D H N ^ = 0 and
hence NN^ n D = 0 . Now NN^/N is a direct factor of the connect-
ed Lie group (RadF)N^N and hence a topological direct factor.
Thus NN^/N is closed in (RadF)N^N, i.e. NN^ is a closed normal
subgroup of Go. Note that [ f i , f J C n + [ f o , f o ] C g H f o == g^ .
Hence F^/GQ is abelian. Moreover

f i / ( " +" i ) = ( R a d r ) + r o / ( ^ + t i^) = ( R a d f ) +To/(^ + " i ) -
Therefore f i / ( n + n ^ ) is the direct product of the abelian central
ideal (Rad f ) 4 - n ^ / ( n + n ^ ) ^ (Rad f ) / n and the reductive sub-
algebra ( to + tO/O1 + "i) ^ f o / " i • Hence f i / ( n + "i) is reductive.
Note finally that the restriction of a to GQ H F^ splits into at most
finitely many irreducible components. Thus we are in a situation
to apply the induction hypothesis and get a closed connected normal
subgroup Hi of Go OF? containing NN^ , and a linear form
EI of ^ extending £ such that the H^-orbit of ^ in ^ is
^i + (^ i /O*. In particular J^ may be chosen to vanish on
(Si ^T) •+• (^ i n ^ ) where JF is a ^ -invariant subspace of r com-
plementing f . But then C^ °Ad^ (f) = 0 for all ^ in n ^ , i.e.
n ^ C f . Thus n ^ = 0 and hence u^ = r f p ( n ^ ) = 0, i.e. F^ is
reductive. This implies that F/FQ is a real affine algebraic variety.
Therefore, according to Lemma 1 of [2], the center of F has a non
trivial connected R-split subgroup. In particular there is x in
Rad F such that p ( x ) = c Id with c E R \ { 1 , - 1} . Thus it follows
from Proposition 2.8 that [det Ad;, (;c)| ^ 1 , i.e. |det Ad,^(x)| ̂  1
(note that Rad F/H^ is abelian). This however contradicts the fact
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that F is unimodular. Thus p is trivial. Then it is easily seen that
the R-orbit of £ in f * is ^ ( f / ^ ) * , and that there exists a
closed one-parameter subgroup T of R such that R is the semi
direct product of R H FQ_ and T. Put H = H i T , and let J^ be
an arbitrary extension of ^ to 1) . Then as in the proof of Theorem
2.9 case 7), we see that the H-orbit of S.^ in f?* is S.^ 4- ( h / ^ ) * .

QED

COROLLARY 3.2. - // N does not reduce to the identity then
neither does Z°.

Now let us apply the above Proposition for a connected non
semisimple Lie group G. It is clear that the nilradical N and the
center Z of G satisfy the conditions of Proposition 3.1 if we
take F = G. Hence there exist a closed connected normal sub-
group H such that N C H C R , and a linear form ^ on ()
extending S. such that the H-orbit of ^ in {}* is ^ 4- O / ^ ) * .
Put S == { x G G : ^ o A d ( , O c ) =J^} . Then G = HS, H 0 S = Z°
according to Lemma 2.2. Note that by Corollary 3.2, Z° does not
reduce to the identity since G is not semisimple. As usual we
assume that dim Z = 1 and £ is non zero on 5 . Let_J) = ker J^ .
Then S may be characterized as S = [x E G: Ad(x) f) C {j} .

Thus Bo is a non degenerate symplectic form on f) and
Ad^-(S) may be viewed as a subgroup of S p ( f ) , B c ) so that the
function Jg in [ 1 ] is defined and continuous on S . Let v : ? —> S
be the at most two sheeted covering of S on which Jg has con-
tinuous square roots. Let us denote again by v the covering
v : H ©? —> H ® S . Note finally that TT lifts to a square integrable
mod Z°©Z irreducible representation of H © S and hence to a
square integrable mod Z° (j)v~l(Z) irreducible representation T?
of H©IS. We have:

LEMMA 3.3. - The member T6 of the discrete series of H
extends to an irreducible representation of H © S denoted again
by T6 . Moreover Tr may be written in the form

7F(A,7)= T^A,?)®^) V( / ! ,7 )GH©S (3.1)

where o is a square integrable mod ^(Z) irreducible ^-represen-
tation of S, 5? = X ° ^I^ '^Z). In particular the discrete series
of S exist.
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Proof. - The proof is just a copy of Theorem 4.5 of [1]. The
only extra case to be considered is when N is isomorphic to a
Heisenberg group with center Z°. In this case, according to the
proof of Theorem 2.9, Hjnay be written as H = N H ^ , N H H^ = Z°,
and the representation T6 obtained from T2 by composing the
latter with the canonical homomorphism N©Hi——> NH == H
is determined by a relation similar to (3.1) in which T6 is replaced
by the member T^ of the discrete series of N , and a by the
member T^ of the discrete series of Hi which is also a Heisenberg
group with center Z°. Let Jg and Jg' be defined by the structures
of the Heisenberg groups N and H^ respectively in the same manner
as Jg . Then Jg = J^ on S . Let v : S —> S be the at most two
sheeted covering of S such that Jg and hence J^ have continuous
square roots on S. Then T^ and T^ extend to irreducible repre-
sentations of ( N © H i ) ® S ^ N©(Hi ©S) and H^ © S respec-
tively. Let us denote these representations again by T^ and T^
respectively. Put

T| (n, h,, s) = ̂ (n, h,, s) ® T^h,, s)
V ( 7 2 , ^ , 5 ) ( E ( N © H i ) © S .

If i>(s) = 1 we have

Tid. l .^Tfd, 1,^^(1,5)
==(J,o^)l /2(^) (J^ 0 ^ 0 ^ ) 1 / 2 (5). M

=-- ( J f i o ̂ o^.Id^d
and

T^z .z-^D^ T^z.z-1,!)®^-1,!)^ T^z.z-1) == I d ,
Vz E Z° .

Therefore T^ defmes, by passing to quotient, an irreducible
representation of H © S extending T^ . Let us denote this repre-
sentation again by T8. On the other hand Tf lifts to an irreducible
representation 7^ of (N©Hi) (s )S . Hence by Lemma 3 1 of
[ I ] , TTi may be written as

Tr^n, AI , s) = T^n, AI , s) ® ̂  (A^ , 5),

V ( ^ , / ? i , 5 ) E ( N © H i ) © S (3.2)
where TT^ is an irreducible representation of H^ © S such that
^2 I zo © 1 ^ mult x ® 1 . Thus TT^ may be written as
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^ (h,, s) == T^(h,, s ) ® a(s) , V(/^, s) G H^ © S (3.3)

where & is an irreducible representation of S such that
a\(vov)~^(Z) ̂  mult X, X = X ° ^ ° ^ 10° ^^(Z).

From (3.2) and (3.3) we get

TT^ , /^ , s ) = Tf(^ , A,, s) 0 T^/^ , s) ® a(5)
= T^^ , h,, 5) ® a(i) V(^ , ̂ , i) G (N © H,) © S .

Since both Tr^ and T^ are trivial on ker v so is a, and hence
a defines by passing to quotient an irreducible representation a
of S . Moreover

?(A,7) = T^/z,?)® a(7) V ( A , 7 ) E H ® ? .

From this and the fact that Tr is square integrable mod Z° (s) ̂ (Z)
it follows that a is square integrable mod^'^Z).

QED
Let the notations be as above so that G = HS, H H S = Z° .

By Lemma 3.3 there is an at most two sheeted covering v : S —^ S'•̂ >
such that S has a square integrable mod ^"'(Z) irreducible repre-
sentation. In particular Cent^V^'^Z) n Cent(S) is compact, and
hence so is Cent(S)/Z. Now it is easily seen that ^(Z) n Cent(S)
has finite index in ^(Z). Therefore the discrete series of S exist.
Suppose that S is not reductive. Then Rad S and thus Rad S are
two-step nilpotent Lie groups. Therefore it follows from Proposition<^» '"̂
3.1 that Rad S is a Heisenberg group with center Z^ , and hence
Rad S is a Heisenberg group with center Z^ = ^ (Z^ ) . Let S^ be
a maximal connected semisimple subgroup of S, and V a S^-
invariant subspace of Rad si complementing a ^ . Then i^ == 3 4- V
is plainly an ideal of 5 which is a Heisenberg algebra with center 3 .
Let H^ be the analytic subgroup of S corresponding to ^ . Then
it is obvious that Rad S/Z° is the direct product of H^/Z° and
Z^/Z 0 . Therefore HH^ is a closed normal subgroup of G. Moreover
we have C^^HHi by Lemma 2.4. Hence by replacing H by HH^
and S by Z^S^ if necessary we may assume that S is reductive.
We have thus proved:

THEOREM 3.4. - Let G be a connected unimodular Lie group
\^ith center Z. Assume that G/Rad G has finite center. Let x be
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a character of Z. Put C == — ^/- 1 d\ G 3 * . // G Aa^ ^ square
integrable mod Z irreducible ^-representation, then G may be
written as G = HS, H H S = Z° "where H is a closed normal
subgroup of G which is a H-group with center Z° such that C E % ^ ,
a^cf S is a connected reductive subgroup such that Cent(S)/Z
is compact and that S has an at most two sheeted covering with
discrete series.

COROLLARY 3.5. - Let G be the semi direct product of a
simply connected solvable unimodular Lie group R and a connected
semisimple Lie group S with finite center. Let Z be the center
of G so that Z Fl R is the direct product of Z° and a discrete
finitely generated free abelian group D. If the discrete series of
G exist then:

i) S has an at most two sheeted covering with discrete series
in the ordinary sense. In particular S has a compact Cartan subgroup.

ii) R is the semi direct product of a H-group H with center
Z° and a vector group T containing D such that T/D is compact.

More precisely, let TT be a square integrable mod Z irreducible
^-representation of G where \ E Z . Then C = — \/— 1 d\ ̂ %H .

Proof. — By Theorem 3.4 G may be written as G = HS^ ,
H ^ S^ = Z° , where H is a H-group with prescribed properties
and S^ is a reductive subgroup having at most two sheeted cover-
ing with discrete series such that Cent(S^)/Z is compact. Moreover
by replacing S^ by some conjugate we may assume that it contains
S. Let T be the connected subgroup of Cent(S^) generated by
the one-parameter subgroups passing by the elements of D. Then
S^ is clearly the direct product of Z° , T and S. Moreover T/D
is compact since dim T = rk D. Finally S has an at most two
sheeted covering with discrete series since S^ does. Note that S
also has a finite covering which is acceptable in the sense of [7].
Hence S has a compact Cartan subgroup (cf. [6]). ^r?^vj.bu

For the converse of Theorem 3.4 and Corollary 3.5 we have:

THEOREM 3.6. — Let G be the semi direct product of a H-
group H with center Z and a connected Lie group S. Assume
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that t) has a S-invariant subspace ^ complementing 5 so that
the center of G may be written as the direct product of Z and
a subgroup D lying in the center of S. Then G has an at most
two sheeted covering ^ : G == H (j) S —> G such that every member
T6 of the discrete series of H can be extended to an irreducible repre-
sentation of G denoted again by T6 . Moreover let x e (Z^'^D))^
be such that d\\ 3 == \/—1 C . Then every ^-representation of G
may be written as

7T(h, 7) = T6 (A , 7) ® a(7) \f(h, 7) E G (3.4)

where a is a ^-representation of S, x^ = X\v~l(D).

Finally TT is square integrable modZ^'^D) if and only if
a is square integrable mod ^(D).

Proof. — First note that it follows immediately from the defi-
nition of H-groups that ZS is precisely the set of those elements
of G leaving ^ invariant. Therefore the center of G is equal to
ZD as claimed. Now as in the proof of Lemma 3.3, the existence
of the subspace f) allows one to define the continuous function
Jg on S. Then the covering v is chosen so that Jg o v has con-
tinuous square roots on S. The rest of the proof is carried out
exactly as in Lemma 3.3 and Theorem 4.5 of [1].

QED

Remark. — 1) If the discrete series of G exist then S has
square integrable mod ^(D) irreducible representations. Therefore
by Theorem 3.4 S may be written as S == H^ , where H^ is a H-
group with center D° and Si is reductive. Now HH^ = (HD°) (ZH^)
is a H-group with center ZD° by Lemma 2.4. Moreover ZS^ is
reductive, and hence G satisfies the statements of Theorem 3.4
as expected.

2) Suppose that S is reductive and Cent(S)/D is compact.
Then Adi/S) is a connected reductive Lie group with compact
center and hence the subspace f) always exists. Furthermore if D
is discrete then Theorem 3.6 may be viewed as a converse of Corollary
3.5. The members of the discrete series of G are described explicitly
by (3.4).

3) Assume again that S is reductive and Cent(S)/D is compact.
Assume now that there is a (topological) isomorphism <p from Z
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onto a closed subgroup of D, and that S has a square integrable
mod D irreducible ^-representation a, where \^ E D is such
that £ = —V^TdCXi ° ̂ ^H • Let Tfi be the irreducible re-
presentation of H (s) S extending the member of the discrete
series of H corresponding to S. Let 7 be the pull back of a
to ?. Then (3.4) gives a square integrable mod Z@v~l(D) irre-
ducible representation of H (s) S which is trivial on

{(z,,z^€Z®Z:^(z,)=v(z^)}

where Z = (^"^(Z))0. Hence by passing to quotient we obtain
the following converse of Theorem 3.3:

COROLLARY 3.7. - Let G be a connected Lie group with center
Z . Suppose that G == HS, H H S = Z° where H is a H-group
with center Z° and S is a connected reductive subgroup containing
Z such that Cent(S)/Z is compact. Finally assume that S has a
square integrable mod Z irreducible -^-representation where xE Z
is such that — \J- 1 JX^^H • Then G has an at most two sheeted
covering with discrete series.

Now combining Corollary 3.5 and the remark 2) above of
Theorem 3.6 we have the following "algebraic" characterization
ofunimodular Lie groups with discrete series:

THEOREM 3.8. - Let G be a connected unimodular Lie group
with center Z. Assume that the radical of G is simply connected
and that G has a maximal connected semisimple subgroup with
finite center. Then G has a finite covering with discrete series if
and only if it may be written as the semi direct product of a H-
group with center Z° and a connected reductive subgroup which
is itself the direct product of a vector group T such that T/T H Z
is compact and a connected semisimple subgroup with compact
Carton subgroup.

Remark. - 1) The connected Lie groups with discrete series
in which the conclusion of Theorem 3.8 does not hold are necessarily
non unimodular. The "ax 4- &" group, and more generally the
group given in the example of [2] are such.

2) In view of [16], every almost connected locally compact
unimodular group with discrete series is an extension of a connected



CLASSIFICATION OF CONNECTED UNIMODULAR LIE GROUPS 187

unimodular Lie group with discrete series by a compact group.
However there is no satisfactory characterization of such groups
at the present moment.

4. On a conjecture of Wolf and Moore.

In this section we give another characterization of connected
unimodular Lie groups with discrete series which, in the case of
simply connected solvable Lie groups, solves the conjecture stated
in [15].

THEOREM 4.1. — Let G be the semidirect product of a simply
connected unimodular solvable Lie group R and a connected semi-
simple Lie group with finite center. Let Z be the center of G, and
X a character of Z. If G has a square integrable mod Z irreducible
X-representation then there exists a linear form S. on Q extend-
ing ~ \/—1 d\ such that

(4.1) Gg/Z is compact, where Gg is the centralizer of S. in G.

Conversely, let S. be a linear form on g satisfying (4.1).
Then G has a finite covering G with discrete series. In fact members
of the discrete series of G may be chosen so that their restrictions
to Z° are equivalent to multiples of the character exp(-\/-l C [ 5 )
of Z°.

Proof. — First assume that G has a square integrable mod Z
irreducible ^-representation. Then, according to Corollary 3.5, G
may be written in the form G = H © (T x S) where H is a H-
group with center Z° such that —v^Trfx^^H' T is a vector
group such that T/T H Z is compact and S is a connected semi-
simple Lie group with compact Cartan subgroup. Note that T and
S have been chosen so that ^ o Ad^(x) = J^ , Vx E T x S, where
BI is a fixed extension of —\/— 1 d\ to ^ . Let ^ be a regular
element of ^ such that its centralizer C in S is a compact Cartan
subgroup. Let £ be any extension of J^ to g such that £ | ^ is
defined by ^ via the Killing form of ^ . Then it is clear that
Gg = Z°TC and hence Gg/Z is compact.
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Conversely suppose that there is some £ in Q * satisfying
(4.1). Then by an argument similar to that in the proofs of Pro-
position 3.1 and Theorem 3.3 which is omitted here, one finds
that G = HS, H H S == Z° , where H is a H-group such that the
H-orbit of £^ = £ | I; in ()* is £^ + ( I ; / a )* and S is a connect-
ed reductive subgroup such that £^ o Ad^(x) = £^ , Vx CE S . In
particular Sg = Gg , where £^ = £ 15 and Sg is the centralizer
of £2 in S. It follows that Cent(S)/Z is compact. Hence S
may be written as S = Z ° x T x S ' where T is a vector group
such that T/T H Z is compact and S' is a connected semisimple
Lie group with finite center. Let £3 = ^ l ^ ' r ; then we have
Sg = Z ° x T x S g , where Sg is the centralizer of £3 in S\
In particular Sg is compact. Let ^ E s / be such that £3 is
defined by $ via the Killing form of 5 \ If { is not semisimple
then Sg contains unipotent elements so that it cannot be compact.
Hence $ must be semisimple. In particular Sg contains a Cartan
subgroup of S' which is of course compact. Therefore G has a<"̂ /
finite covering G with discrete series according to Theorem 3.8.
In fact members of the discrete series of G with prescribed pro-
perties may be chosen as indicated by (3.4). opn

In the case when G is a simply connected solvable Lie group
G = G, and we have the following more precise statement.

COROLLARY 4.2. — Let G be a simply connected unimodular
solvable Lie group with center Z . Let x ^ Z . Then G has a
square integrable mod Z irreducible ^-representation if and only
ifthere is an extension £ of — ^/- 1 d\ to 9 such that

(4.2) Gg/Z is compact.
Moreover if it is the case then every extension of — \/~Td\ to
g will satisfy (4.2).

Proof. — It remains to prove the last assertion. Thus assume
that — \/~Td\ has an extension £ satisfying (4.2). Then as in
the proof of Theorem 4.1, G may be written as G == H © T,
where H is a H-group with center Z° such that £ | a ^ % H anc*
T is a vector group such that T/T H Z is compact. Let £^ be
any extension of — ^/— 1 d\ to g . Then £^ belongs to the same
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orbit as f i ^ ^ g * such that C ^ ( f ) ) = 0, where I) is a fixed T-
invariant subspace of I) complementing 3 . Note that such a sub-
space exists since Ad^(T) is compact. Now it is plain that Go = Z°T
and hence Gg /Z is compact. Therefore Go /Z is also compact
since Go is conjugate to Go . ,.p^

Let G = H(s)T be as above. Then, according to Theorem
3.5, every irreducible x-representation of G may be written in the
form

-n(h,t) --= \(t) T8^, t) V A E H , V r G T (4.3)

where S. = — \/— 1 d\ and T6 is a fixed extension of the member
of the discrete series of H corresponding to £ and X is a character
of T. Moreover these representations are all square integrable mod Z
and they constitute all possible extensions of that member of the
discrete series of H to G. Thus we have:

COROLLARY 4.3. - Let G = H ©T be as above. Then for each
£ E % ^ , the irreducible representations of G whose restrictions
to Z° are equivalent to multiples of exp \/~~ 1 9. belong to the
discrete series of G. Moreover they are precisely the extensions
of the member T8 of the discrete series of H to G .

Thanks to Corollary 4.3, we can now state the following
Theorem which gives the solution to the conjecture of Wolf and
Moore stated in [ 15]:

THEOREM 4.4. — Let G be a simply connected unimodular
solvable Lie group with center Z. Then the members of the dis-
crete series of G if they exist are precisely the Auslander-Kostant's
"induced" representations associated to the integral orbits ©g such
that Go/Z is compact.

Proof. — It follows from Corollary 4.2 that the existence of
the discrete series of G is equivalent to the existence of S. in g*
such that Gg/Z is compact. Moreover if it is the case then Go
is connected and hence the corresponding orbit is integral. Therefore
the Theorem is trivial if the above equivalent conditions do not hold.
Now assume that the discrete series of G exist so that G may be
written as G = H©T as in Corollary 4.3. Let f) be a T-invariant
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subspace of f) complementing 3 . Then every S. G g * such that
£ l 3 ^ ^ H is conjugate to an C^ E Q* such that £^(^) = 0. On
the other_hand ]et C ^ ^ G Q * be such that j^| 5 = ^ 1 3 and
that Ci (^ ) = C^) =^0._Assume that £3 = J^ o MX for some
x € G . Then Ad(x) ^ C f) and hence ^eZ°T. Moreover J^ = £3
on t since T is abelian. Therefore ^ = £3 . Thus we have proved
that the set S = { C E Q*: t |g e %„ and £(^) = 0} is a cross
section of the set of integral orbits ©g such that Gg/Z is compact.

For each Ci Eg , let T?^ be the character of G^ = Z°T such
that dr?^ = v/'^TCjg^ . Let ^ be a positive strongly admissible
polarization at ^ , and ^ = ind(7^ , ^ ) be the "induced" re-
presentation constructed by Auslander and Kostant in [4]. Note
that TT, is irreducible since J^ is integral. Let X be a character
of T and let us extend it to a character of G by letting X(H) = {1}.
put £ = - ̂ /~Td\ and £3 = j^ 4- £. Then it is clear that ^ E S.
In particular G^ = Z°T = Gg^ , and hence ^ is also a polarization
at 63. Let 71̂  = ind(7^,^) be the corresponding irreducible re-
presentation of G. Let Xe^ and x^ be the characters of the
group D introduced in [4] so that their restrictions to Z°T are
77^ and 17̂  respectively. Then TT^ and TT^ are subrepresentations
of the ordinary induced representations md^^X^ and ind^cX^
respectively. Now it is clear that ^ »—> \^ sets up a unitary equi2

valence between the representations X ind^c X^ and indite Xg .
Moreover it follows immediately from the definition of TT^ ami
TT^ that this map carries the subspace of the representation space
of X ind^o Xfi^ corresponding to TT^ onto that corresponding
to TT^ . Hence we have

T T ^ X T T i . (4.4)

Finally since Z° C G^ C D we see that the restriction of
"^DIG Xfi^ to Z° and hence the restriction of TT^ to Z° is equi-
valent to a multiple of expy^T^ih). In particular 7^ is a
member of the discrete series of G. This together with (4.4) and
(4.3) show that the family of all representations TT^ associated
to £, E § is precisely the discrete series of G.

QED

Remark - In view of (4.3) and the description of the discrete
series of H in section 2, our result is more precise than Theorem 3.5
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of [10], at least for the unimodular case. Moreover in this case
Theorem 4.4 contains that Theorem strictly since our groups are
not necessary of type I (cf. example 2.5). Note also that in [17]
J.Y. Charbonnel obtained a similar result even for non unimodular
solvable groups. There is however a supplementary assumption,
namely the regular representation is of type I.
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