## Annales de l'institut Fourier

## Yitzhak Weit

## On Schwartz's theorem for the motion group

Annales de l'institut Fourier, tome 30, no 1 (1980), p. 91-107

[http://www.numdam.org/item?id=AIF_1980__30_1_91_0](http://www.numdam.org/item?id=AIF_1980__30_1_91_0)
© Annales de l'institut Fourier, 1980, tous droits réservés.
L'accès aux archives de la revue «Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

# ON SCHWARTZ'S THEOREM FOR THE MOTION GROUP 

by Yitzhak WEIT

## 1. Introduction.

Schwartz's Theorem in the theory of mean periodic functions on the real line states that every closed, translation-invariant subspace of the space of continuous functions on $\mathbf{R}$ is spanned by the poly-nomial-exponential functions it contains [5]. In particular, every translation-invariant subspace contains an exponential function.

In [2] the two-sided analogue of this result was generalized to $\mathrm{SL}_{\mathbf{2}}(\mathbf{R})$. However, since [3] it is known that Schwartz's Theorem fails to hold for $\mathbf{R}^{n}, n>1$.

Our main goal is to show that the two-sided analogue of Schwartz's Theorem holds for the motion group M(2). That is, every closed, two-sided invariant subspace of $\mathrm{C}(\mathrm{M}(2))$ contains an irreducible invariant subspace and every such subspace is spanned by a class of functions which replace the polynomial-exponentials on $\mathbf{R}$.

It seems remarkable that the analogue of Schwartz's Theorem holds for the three dimensional Lie groups $\mathrm{SL}_{2}(\mathbf{R})$ and $\mathrm{M}(2)$ while it fails to hold for $\mathbf{R}^{2}$.

In section 3 we verify the two-sided Schwartz's Theorem for the motion group. In section 4 we consider the problem of onesided spectral analysis. Finally, in section 5, we study some invariant subspaces of continuous functions on $\mathbf{R}^{2}$. It turns out that the one-sided Schwartz's Theorem for the motion group is intimately connected with a problem of Pompeiu type [1, 4, 7].

## 2. Preliminaries and Notation.

Let $\mathrm{M}(2)$ denote the Euclidean motion group consisting of the matrices $\left(\begin{array}{ll}e^{i \alpha} & z \\ 0 & 1\end{array}\right), \alpha \in \mathbf{R}, \quad z \in \mathbf{C}$.

Let $\mathrm{C}(\mathrm{M}(2))$ denote the space of all continuous functions on $\mathrm{M}(2)$ with the usual topology of uniform convergence on compact sets. Let $\mathcal{E}\left(\mathbf{R}^{n}\right)$ be the space of infinitely differentiable functions on $\mathbf{R}^{n}$ endowed with the topology of uniform convergence of functions and their derivatives on compacta. Let $\mathcal{E}^{\prime}\left(\mathbf{R}^{n}\right)$ be the dual of $\mathcal{E}\left(\mathbf{R}^{n}\right)$, the space of Schwartz distributions on $\mathbf{R}^{n}$ having compact support. The pairing between $\mathcal{E}\left(\mathbf{R}^{n}\right)$ and $\mathscr{E}^{\prime}\left(\mathbf{R}^{n}\right)$ is denoted by $\mathrm{T}(f)$ for $f \in \mathcal{E}\left(\mathbf{R}^{n}\right)$ and $\mathrm{T} \in \mathcal{E}^{\prime}\left(\mathbf{R}^{n}\right)$, and for such $f$ and T we denote by $\mathrm{T} * f$ the convolution of T and $f$. For $\mathrm{T} \in \mathcal{E}^{\prime}\left(\mathrm{R}^{n}\right)$, the Fourier transform of T is defined by $\mathrm{T}(z)=\mathrm{T}\left(e^{i z \cdot x}\right)$ where $z \in \mathbf{C}^{n}, \quad x \in \mathbf{R}^{n}$ and $z \cdot x=z_{1} x_{1}+\ldots+z_{n} x_{n}$. By Paley-WienerSchwartz Theorem, the space $\hat{\mathcal{E}}^{\prime}\left(\mathbf{R}^{n}\right)$ of Fourier transforms of elements of $\mathscr{E}^{\prime}\left(\mathbf{R}^{n}\right)$ is identified with the space of entire functions of $n$ complex variables of exponential type which have polynomial growth on the real subspace $\mathbf{R}^{n}$. The topology of $\hat{\mathscr{E}}^{\prime}\left(\mathbf{R}^{n}\right)$ is so defined as to make the Fourier transform a topological isomorphism.

Let $\Pi$ denote the group of all rotations of $\mathbf{R}^{2}$. We denote by $\mathscr{E}_{(r)}^{\prime}\left(\mathbf{R}^{2}\right)$ the space of all $\mathrm{T} \in \mathcal{E}^{\prime}\left(\mathbf{R}^{2}\right)$ which satisfy $\mathrm{T} \circ \tau=\mathrm{T}$ for every $\tau \in \Pi$. Let $\hat{\mathscr{G}}_{(r)}^{\prime}\left(\mathbf{R}^{2}\right)$ denote the space of Fourier transforms of elements of $\mathcal{E}_{(r)}^{\prime}\left(\mathbf{R}^{2}\right)$. We notice that each $f \in \hat{\mathcal{E}}_{(r)}^{\prime}\left(\mathbf{R}^{2}\right)$ is a function of $z_{1}^{2}+z_{2}^{2}$ and that for any even function $g \in \hat{\mathcal{E}}^{\prime}(\mathbf{R})$ the function $\tilde{g}$ where $\tilde{g}\left(z_{1}, z_{2}\right)=g\left(\sqrt{z_{1}^{2}+z_{2}^{2}}\right)$ belongs to $\hat{\mathcal{E}}_{(r)}^{\prime}\left(\mathbf{R}^{2}\right)$. Let $\mathscr{E}_{0}\left(\mathbf{R}^{2}\right)$ denote the space of elements of $\boldsymbol{E}\left(\mathbf{R}^{2}\right)$ having compact support and $\mathcal{E}_{0}^{(r)}\left(\mathbf{R}^{2}\right)$ the space of radial functions in $\mathscr{E}_{0}\left(\mathbf{R}^{2}\right)$.

Let $\mathbf{C}\left(\mathbf{R}^{n}\right)$ denote the space of continuous functions on $\mathbf{R}^{n}$ with the topology of uniform convergence on compacta and $C^{(r)}\left(\mathbf{R}^{2}\right)$ the radial functions in $C\left(\mathbf{R}^{2}\right)$. The dual of $\mathbf{C}\left(\mathbf{R}^{n}\right)$ is the space $M_{0}\left(\mathbf{R}^{n}\right) \subset \mathcal{E}^{\prime}\left(\mathbf{R}^{n}\right)$ of all complex-valued Radon measures having compact support. Let $M_{0}^{(r)}\left(\mathbf{R}^{2}\right)=M_{0}\left(\mathbf{R}^{2}\right) \cap \mathscr{E}_{(r)}^{\prime}\left(\mathbf{R}^{2}\right)$.

Finally, for $\lambda=\left(\lambda_{1}, \lambda_{2}\right) \in \mathbf{C}^{2}$ and $z=x+i y \in \mathbf{C}$ let $(\lambda, z)=\lambda_{1} x+\lambda_{2} y$.

## 3. Two-sided spectral synthesis.

The two-sided analogue of Schwartz's Theorem in spectral analysis for the motion group is stated in the following:

Theorem 1. - Every closed, two-sided invariant subspace of $\mathrm{C}(\mathrm{M}(2)$ ) contains either a character of $\mathrm{M}(2)$ or a function $g\left(e^{i \alpha}, z\right)=e^{i(\lambda, z)} \quad$ where $\quad \lambda=\left(\lambda_{1}, \lambda_{2}\right) \in \mathbf{C}^{2} \quad$ and $\lambda_{1}^{2}+\lambda_{2}^{2} \neq 0$. The two-sided invariant subspace generated by $e^{i(\lambda, z)}$ where $\lambda=\left(\lambda_{1}, \lambda_{2}\right), \lambda_{1}^{2}+\lambda_{2}^{2} \neq 0$, is irreducible (minimal).

Proof. - For $f \in \mathrm{C}(\mathrm{M}(2)), f \neq 0$, let $\mathrm{V}_{f}$ denote the closed subspace generated by the two-sided translates of $f$.

The subspace $\mathrm{V}_{f}$ contains all the functions $g$ where

$$
\begin{equation*}
g\left(e^{i \alpha}, z\right)=f\left(e^{i(\alpha+\beta)}, u e^{i \alpha}+e^{i \theta} z+w\right) \tag{1}
\end{equation*}
$$

for every $\theta, \beta \in \mathbf{R}$ and $u, w \in \mathbf{C}$. Let $u=\theta=w=0$ in (1).
Then, for a suitable $m \in \mathbf{Z}$ the function

$$
\begin{aligned}
& \int_{0}^{2 \pi} f\left(e^{i(\alpha+\beta)}, z\right) e^{-i m \beta} d \beta=e^{i m \alpha} \int_{0}^{2 \pi} f\left(e^{i \beta}, z\right) e^{-i m \beta} d \beta \\
&=e^{i m \alpha} g_{1}(z)
\end{aligned}
$$

is non-zero and belongs to $\mathrm{V}_{f}$. Let N denote the translation-invariant and rotation-invariant subspace of $\mathbf{C}\left(\mathbf{R}^{2}\right)$ generated by $g_{1}$.

By (1) the functions $e^{i m \alpha} g_{1}\left(e^{i \theta} z+w\right)$ belongs to $\mathrm{V}_{f}$ for every $\theta \in \mathbf{R}$ and $w \in \mathbf{C}$. That is, $\mathrm{V}_{f}$ contains all functions $e^{i m \alpha} \widetilde{g}(z)$ where $\tilde{g} \in N$. In [1] it was proved that every closed, translationinvariant and rotation-invariant subspace of $C\left(R^{2}\right)$ is spanned by the polynomial-exponential functions it contains. In particular, the subspace N contains therefore an exponential function $e^{i(\lambda, z)}, \lambda=\left(\lambda_{1}, \lambda_{2}\right) \in \mathbf{C}^{2}$ and the function $h\left(e^{i \alpha}, z\right)=e^{i m \alpha} e^{i(\lambda, z)}$ belongs to $\mathrm{V}_{f}$. If $\lambda_{1}^{2}+\lambda_{2}^{2}=0$ then the subspace N contains the constant functions and $\mathrm{V}_{f}$ contains therefore the character $e^{i m \alpha}$. Suppose that $\lambda_{1}^{2}+\lambda_{2}^{2} \neq 0$.

Let $h_{1} \in \mathscr{E}_{0}\left(\mathbf{R}^{2}\right)$ of the form $h_{1}(w)=h_{2}(r) e^{-i \theta m} \quad$ where $w=r e^{i \theta}$, and $h_{2} \in \mathscr{E}_{0}^{(r)}\left(\mathbf{R}^{2}\right)$ such that $\hat{h}_{1}\left(\lambda_{1}, \lambda_{2}\right) \neq 0$.

Then the function:

$$
\begin{equation*}
\int_{\mathbf{R}^{2}} h\left(e^{i \alpha}, z-e^{i \alpha} w\right) h_{1}(w) d w=\hat{h}_{1}\left(\lambda_{1}, \lambda_{2}\right) e^{i(\lambda, z)} \tag{2}
\end{equation*}
$$

(here $d w$ denotes Lebesgue measure on $\mathbf{R}^{2}$ ) is non-zero and belongs to $\mathrm{V}_{f}$. It follows, by (1) and the analyticity of the elements of $\hat{\mathcal{E}}_{(r)}^{\prime}\left(\mathbf{R}^{2}\right)$ that $\mathrm{V}_{f}$ contains all functions $e^{i(\mu, z)}$ where $\mu=\left(\mu_{1}, \mu_{2}\right) \in C^{2}$ such that $\mu_{1}^{2}+\mu_{2}^{2}=\lambda_{1}^{2}+\lambda_{2}^{2}$. To prove the second part of the theorem, let $g(z)=e^{i(\lambda, z)}$ where $\lambda=\left(\lambda_{1}, \lambda_{2}\right) \in \mathbf{C}^{2}$, $\lambda_{1}^{2}+\lambda_{2}^{2} \neq 0$. Firstly, we will show that $\mathrm{V}_{g}$ contains no character of $M(2)$.

Suppose that $e^{i m \alpha} \in V_{g}$ for some $m \in Z$. Let $\mu \in \mathbf{C}(\mathbf{M}(2))$, $\mu\left(e^{i \alpha}, z\right)=e^{-i m \alpha} \mu_{1}(z)$ where $\mu_{1} \in \mathcal{E}_{0}^{(r)}\left(\mathbf{R}^{2}\right)$ such that $\hat{\mu}_{1}\left(\lambda_{1}, \lambda_{2}\right)=0$ and $\hat{\mu}_{1}(0,0) \neq 0$. We have

$$
\int_{\mathbf{R}^{2}} e^{i\left(\lambda, e^{i \theta} z\right)} \mu_{1}(z) d z=0
$$

for every $\theta \in \mathbf{R}$. Consequently, we deduce

$$
\begin{aligned}
& \int_{\mathrm{M}(2)} e^{i\left(\lambda, e^{i \theta_{z+w}} e^{i \alpha}\right)} e^{-i m \alpha} \mu_{1}(z) d \alpha d z \\
&=\int_{0}^{2 \pi}\left[\int_{\mathbf{R}^{2}} e^{i\left(\lambda, e^{\left.i \theta_{z}\right)}\right.} \mu_{1}(z) d z\right] e^{i\left[\left(\lambda, w e^{i \alpha}\right)-m \alpha\right]} d \alpha=0
\end{aligned}
$$

for every $\theta \in \mathbf{R}$ and $w \in \mathbf{C}$. Namely, $\mu$ annihilates the subspace $\mathrm{V}_{g}$. On the other hand, we have

$$
\int_{\mathrm{M}(2)} e^{i m \alpha} \mu\left(e^{i \alpha}, z\right) d \alpha d z=\hat{\mu}_{1}(0,0) \neq 0, \text { a contradiction. }
$$

Suppose that $e^{i(w, z)} \in \mathrm{V}_{g}$ where $w=\left(w_{1}, w_{2}\right) \in \mathbf{C}^{2}$. If $\lambda_{1}^{2}+\lambda_{2}^{2} \neq w_{1}^{2}+w_{2}^{2}$ then for $\mu_{2} \in \mathcal{E}_{0}^{(r)}\left(\mathbf{R}^{2}\right)$ where $\hat{\mu}_{2}\left(\lambda_{1}, \lambda_{2}\right)=0$ and $\hat{\mu}_{2}\left(w_{1}, w_{2}\right) \neq 0$ we have

$$
\begin{aligned}
& \int_{0}^{2 \pi} \int_{\mathbf{R}^{2}} e^{i\left(\lambda, e^{i \theta} z+v e^{i \alpha}\right)} \mu_{2}(z) d z d \alpha \\
&=\int_{0}^{2 \pi}\left[\int_{\mathbf{R}^{2}} e^{i\left(e^{i \theta} \lambda, z\right)} \mu_{2}(z) d z\right] e^{i\left(\lambda, v e^{i \alpha}\right)} d \alpha=0
\end{aligned}
$$

for each $\theta \in \mathbf{R}$ and $v \in \mathbf{C}$. However, we have

$$
\int_{0}^{2 \pi} \int_{\mathbf{R}^{2}} e^{i(w, z)} \mu_{2}(z) d z d \alpha \neq 0
$$

which proves the irreducibility of $\mathrm{V}_{g}$. This completes the proof.
Schwartz's Theorem in spectral synthesis is described in the following:

Theorem 2. - Every closed, two-sided invariant subspace of $\mathrm{C}(\mathrm{M}(2))$ is spanned by the functions as

$$
g\left(e^{i \alpha}, z\right)=e^{i m \alpha} \mathrm{Q}(\operatorname{Re} z, \operatorname{Im} z) e^{i(\lambda, z)}
$$

that it contains. $\quad\left(\lambda \in C^{2}\right.$ and $Q$ is polynomial).
Proof. - For $f \in \mathrm{C}(\mathrm{M}(2)), f \neq 0$ let V denote the closed subspace generated by the two-sided translates of $f$. Obviously, $f$ is contained in the closed subspace generated by the functions:
$e^{i m \alpha} \mathrm{P}_{m}(z)=\int_{0}^{2 \pi} f\left(e^{i(\alpha+\beta)}, z\right) e^{-i m \beta} d \beta=e^{i m \alpha} \int_{0}^{2 \pi} f\left(e^{i \beta}, z\right) e^{-i m \beta} d \beta$ where $m \in \mathbf{Z}$.

By [1], each function $e^{i m \alpha} \mathrm{P}_{m}(z)$ is contained in the closed subspace spanned by the functions $e^{i m \alpha} \mathrm{Q}(\operatorname{Re} z, \operatorname{Im} z) e^{i(\lambda, z)}$ where $\mathrm{Q}(\operatorname{Re} z, \operatorname{Im} z) e^{i(\lambda, z)}$ is contained in the rotation-invariant and translation-invariant subspace of $C\left(R^{2}\right)$ generated by $P_{m}(z)$, and hence in the two-sided invariant subspace generated by $\mathrm{P}_{m}(z)$ which completes the proof of the theorem.

## 4. One-sided spectral analysis.

One-sided spectral analysis of bounded functions on $\mathbf{M}(2)$ was studied in [6].

Notation. - Let $\Gamma_{w}, w \in \mathbf{C}$, denote the closed subspace of $\mathbf{C}\left(\mathbf{R}^{2}\right)$ spanned by the functions $e^{i\left(\lambda_{1} x+\lambda_{2} y\right)}$ (of $(x, y) \in \mathbf{R}^{2}$ ) where $\lambda_{1}^{2}+\lambda_{2}^{2}=w^{2}$. For the characterization of right-invariant subspaces of $\mathrm{C}(\mathrm{M}(2))$ we state the following:

Theorem 3. - Every closed, right-invariant subspace of $\mathrm{C}(\mathrm{M}(2))$ contains a function as

$$
g\left(e^{i \alpha}, z\right)=e^{i m \alpha} g_{1}(z), m \in \mathbf{Z}, g_{1} \neq 0
$$

Moreover, if $g_{1} \notin \Gamma_{0}$, then the closed right-invariant subspace generated by $g$ contains a function as $h\left(e^{i \alpha}, z\right)=g_{2}(z)$.

For $g_{2} \in \Gamma_{w}$ and $g_{1} \in \Gamma_{0}$ the closed right-invariant subspaces generated by $g_{2}$ and by $e^{i m \alpha} g_{1}(z)$ are irreducible.

Proof. - Let $f \in \mathrm{~V}, f \neq 0$, where V is a closed right-invariant subspace of $\mathrm{C}(\mathrm{M}(2))$. Then V contains all functions $f^{*}$ such that $f^{*}\left(e^{i \alpha}, z\right)=f\left(e^{i(\alpha+\beta)}, z-e^{i \alpha} w\right)$ where $\beta \in \mathbf{R}$ and $w \in \mathbf{C}$. Hence, for a suitable $m \in \mathbf{Z}$ the function

$$
\int_{0}^{2 \pi} f\left(e^{i(\alpha+\beta)}, z\right) e^{-i m \beta} d \beta=e^{i m \alpha} \int_{0}^{2 \pi} f\left(e^{i \beta}, z\right) e^{-i m \beta} d \beta=e^{i m \alpha} g_{1}(z)
$$

is non-zero and belongs to V . Suppose that $g_{1} \notin \Gamma_{0}$. Then if $g_{1}$ is a polynomial (in $\operatorname{Re} z$ and $\mathrm{I}_{m} z$ ) which is harmonic on $\mathbf{R}^{2}$ there exists a function $h \in \mathscr{E}_{0}\left(\mathbf{R}^{2}\right), \quad h(w)=\mu(r) e^{i m \theta}, \mu \in \mathcal{E}_{0}^{(r)}\left(\mathbf{R}^{2}\right)$, $w=r e^{i \theta}$, such that $g_{1} * h \neq 0$.

Hence the function

$$
\begin{equation*}
e^{i m \alpha} \int_{\mathbf{R}^{2}} g_{1}\left(z-e^{i \alpha} w\right) h(w) d w=\int_{\mathbf{R}^{2}} g_{1}(z-w) h(w) d w=g_{2}(z) \tag{3}
\end{equation*}
$$ is non-zero and belongs to V .

Otherwise, the closed rotation-invariant and translationinvariant subspace generated by $g_{1}$ contains a function $e^{i(\lambda, z)}$ where $\lambda=\left(\lambda_{1}, \lambda_{2}\right) \in \mathbf{C}^{2}, \lambda_{1}^{2}+\lambda_{2}^{2} \neq 0 \quad[1]$. Let $h_{1} \in \mathcal{E}_{0}\left(\mathbf{R}^{2}\right)$, $h_{1}(w)=\mu_{1}(r) e^{i m \theta}$ where

$$
\mu_{1} \in \mathcal{E}_{0}^{(r)}\left(\mathbf{R}^{2}\right), w=r e^{i \theta}, \text { such that } \hat{h}_{1}\left(\lambda_{1}, \lambda_{2}\right) \neq 0
$$

There exists $\beta \in \mathbf{R}$ such that $h_{1, \beta} * g_{1} \neq 0$, where

$$
h_{1, \beta}(w)=h_{1}\left(e^{i \beta} w\right)=e^{i m \beta} h_{1}(w)
$$

Hence, $h_{1} * g_{1} \neq 0$ and proceeding as in (3) we complete the proof of the first part of the theorem.

Let $V_{1}$ be the closed right-invariant subspace generated by $g_{2}(z)$ where $g_{2} \in \Gamma_{w_{0}}$ for some $w_{0} \in \mathbf{C}, w_{0} \neq 0$. We may show, as in the proof of Theorem 1, that $\mathrm{V}_{1}$ contains no functions as $e^{i m \alpha} g_{1}(z)$ where $g_{1} \in \Gamma_{0}$. Suppose now that $g_{3} \in V_{1}$ where $g_{3} \in \Gamma_{w_{1}}, w_{1} \in C$. To derive the irreducibility of $V_{1}$ we will show that $g_{3}=\mathrm{C} g_{2}$ for some $\mathrm{C} \in \mathrm{C}$. Let $\left\{\Phi_{n}\right\}$ be a sequence in $\mathcal{E}_{0}\left(R^{2}\right)$ such that

$$
\int_{\mathbf{R}^{2}} g_{2}\left(z-e^{i \alpha} w\right) \Phi_{n}(w) d w \underset{\mathrm{C}(\mathrm{M}(2))}{ } g_{3}(z)
$$

Then we have

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left[\int_{\mathbf{R}^{2}} g_{2}\left(z-e^{i \alpha} w\right) \Phi_{n}(w) d w\right] d \alpha \underset{\mathrm{C}(\mathrm{M}(2))}{ } g_{3}(z)
$$

and

$$
\begin{equation*}
\int_{\mathbf{R}^{2}} g_{2}\left(z-e^{i \alpha} w\right) \Phi_{n}^{*}(|w|) d w \underset{\mathrm{C}(\mathrm{M}(2))}{ } g_{3}(z) \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\Phi_{n}^{*}(|w|)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \Phi_{n}\left(e^{-i \alpha} w\right) d \alpha, \Phi_{n}^{*} \in \mathcal{E}_{0}^{(r)}, n=1,2, \ldots \tag{6}
\end{equation*}
$$

But for every $n$ we have

$$
\int_{\mathbf{R}^{2}} g_{2}(z-w) \Phi_{n}^{*}(|w|) d w=\hat{\Phi}_{n}^{*}\left(w_{0}\right) g_{2}(z)
$$

Consequently, $g_{3}=\mathrm{C} g_{2}$, as required. Similarly, we verify the irreducibility of the closed right-invariant subspace generated by $g_{1}(z) e^{i m \alpha}$ where $g_{1} \in \Gamma_{0}$.

Remark 1. - We don't know whether Theorem 3 characterizes all the irreducible right invariant subspaces as it is not known whether the exponentials are the only functions of $\mathbf{C}\left(\mathbf{R}^{n}\right), n>1$ which generate irreducible translation-invariant subspaces. Whether every translation-invariant subspace of $C\left(\mathbf{R}^{n}\right), n>1$ contains an irreducible subspace seems to be an open question.

Remark 2. - In view of Theorem 3 the right-sided analogue of Schwartz's Theorem in spectral analysis of continuous functions may be formulated as the following question; does every closed, rightinvariant subspace of $\mathrm{C}(\mathrm{M}(2))$ contain either a funtion as $e^{i m \alpha} g_{1}(z)$ where $g_{1} \in \Gamma_{0}, g_{1} \neq 0 \quad m \in \mathbf{Z}$, or $g_{2}(z)$ where $g_{2} \in \Gamma_{w}, g_{2} \neq 0$, for some $w \in \mathbf{C}$ ?

Notation. - Let $\mu_{\mathrm{R}}, \mathrm{R} \geqslant 0$, denote the normalized Lebesgue measure of the circle $\{z:|z|=\mathrm{R}\}$. For $f \in \mathrm{C}\left(\mathbf{R}^{2}\right)$ let $\mathrm{N}_{f}^{(r)}$ denote the closed subspace spanned by $\left\{f * \mu_{\mathrm{R}}: \mathrm{R} \geqslant 0\right\}$ and $\tau(f)$ the closed translation-invariant subspace generated by $f$.

We deduce an equivalent form of the right-sided analogue of Schwartz's Theorem (as formulated in Remark 2).

It is described in

Theorem 4. - The following statements are equivalent:
(i) The right-sided analogue of Schwartz's Theorem holds for $\mathrm{M}(2)$.
(ii) Let $f \in \mathbf{C}\left(\mathbf{R}^{\mathbf{2}}\right), f \neq 0$. Then: (a) If $\tau(f) \cap \Gamma_{0}=\{0\}$ then there exists $w \in \mathbf{C}$ such that $\mathrm{N}_{f}^{(r)} \cap \Gamma_{w} \neq\{0\}$. (b) If $\tau(f) \cap \Gamma_{0} \neq\{0\}$ then, either $\mathrm{N}_{f}^{(r)} \cap \Gamma_{w} \neq\{0\}$ for some $w \in \mathbf{C}$, or, there exist $m \in \mathbf{Z}, g \in \Gamma_{0}, g \neq 0$ and a sequence $\psi_{n} \in \mathscr{g}_{0}^{(r)}\left(\mathbf{R}^{2}\right)$ such that

$$
\begin{equation*}
f * \phi_{n} \xrightarrow[\mathrm{c}\left(\mathbf{R}^{2}\right)]{ } g \tag{7}
\end{equation*}
$$

where $\phi_{n}(r, \theta)=\psi_{n}(r) e^{-i m \theta}, n=1,2, \ldots$. (Here $(r, \theta)$ are the polar coordinates in $\mathbf{R}^{\mathbf{2}}$ ).

Proof. - Suppose that the right-sided analogue of Schwartz's Theorem holds for $\mathrm{M}(2)$. Let $f \in \mathrm{C}(\mathrm{M}(2))$ where $f\left(e^{i \alpha}, z\right)=f(z)$. Suppose that $\tau(f) \cap \Gamma_{0}=\{0\}$. The closed right-invariant subspace $\mathrm{W}_{f}$ generated by $f$ contains no function as $e^{i m \alpha} g(z) \neq 0$ where $g \in \Gamma_{0}$ and $m \in \mathbf{Z}$. Since, otherwise

$$
\int_{\mathbf{R}^{2}} f\left(z-e^{i \alpha} w\right) \mu_{n}(w) d w \xrightarrow[\mathbf{C}(\mathrm{M}(2))]{ } e^{i m \alpha} g(z)
$$

implies for $\alpha=0$ that: $f * \mu_{n} \overrightarrow{\mathbf{C ( R ^ { 2 } )}} g$, a contradiction. Hence, $\mathrm{W}_{f}$ contains a function $g_{1}(z)$ where $g_{1} \in \Gamma_{w}, g_{1} \neq 0$. In other words, there exist $\Phi_{n} \in \mathcal{E}_{0}\left(\mathbf{R}^{2}\right), n=1,2, \ldots$, such that

$$
\int_{\mathbf{R}^{2}} f\left(z-e^{i \alpha} w\right) \Phi_{n}(w) d w \xrightarrow[\mathrm{C}(\mathrm{M}(2))]{ } g_{1}(z)
$$

Hence, by (5) we have:

$$
\int_{\mathbf{R}^{2}} f(z-w) \Phi_{n}^{*}(|w|) d w \xrightarrow[\mathrm{C}(\mathrm{M}(2))]{ } g_{1}(z)
$$

where $\Phi_{n}^{*}$ are defined in (6). That is, $g_{1} \in \mathrm{~N}_{f}^{(r)}$ which yields (ii) (a).
Suppose now that $\tau(f) \cap \Gamma_{0} \neq\{0\}$. If $\mathrm{W}_{f} \cap \Gamma_{v} \neq\{0\}$ for some $v \in C$ then, as proved above, $\mathrm{N}_{f}^{(r)} \cap \Gamma_{v} \neq\{0\}$ (here, the functions of $\Gamma_{v}$ are looked upon as function on $\left.\mathrm{M}(2)\right)$. Otherwise, the subspace $\mathrm{W}_{f}$ must contain a function as $e^{i m \alpha} g_{2}(z)$ where $g_{2} \in \Gamma_{0}, g_{2} \neq 0$, and $m \in \mathbf{Z}$. Namely, there exists $\phi_{n} \in \mathcal{E}_{0}\left(\mathbf{R}^{2}\right)$ such that

$$
\int_{\mathbf{R}^{2}} f\left(z-e^{i \alpha} w\right) \phi_{n}(w) d w \xrightarrow[\mathrm{C}(\mathrm{M}(2))]{ } e^{i m \alpha} g_{2}(z)
$$

Hence we have

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left[\int_{\mathbf{R}^{2}} f(z-\xi) \phi_{n}\left(e^{-i \alpha} \xi\right) d \xi\right] e^{-i m \alpha} d \alpha \longrightarrow g_{2}(z)
$$

which yields

$$
\frac{1}{2 \pi} \int_{\mathbf{R}^{2}} f(z-\xi) \tilde{\phi}_{n}(\xi) d \xi \longrightarrow g_{2}(z)
$$

where $\widetilde{\phi}_{n}(\xi)=\widetilde{\psi}_{n}(r) e^{-i m \theta}, \widetilde{\psi}_{n}(r)=\int_{0}^{2 \pi} \phi\left(e^{-i \eta} r\right) e^{-i m \eta} d \eta, \xi=r e^{i \theta}$, and we have shown that (i) implies (ii).

Suppose now that (ii) holds. By Theorem 3 we have to show that for every $f \in \mathrm{C}(\mathrm{M}(2)), f\left(e^{i \alpha}, z\right)=f(z), f \neq 0$, the subspace $\mathrm{W}_{f}$ contains either a function $g(z), g \neq 0, g \in \Gamma_{w}$, or, a function $g\left(e^{i \alpha}, z\right)=e^{i m \alpha} g_{1}(z)$ where $g_{1} \in \Gamma_{0}, g_{1} \neq 0$ and $m \in \mathbf{Z}$.

Let $f \in \mathbf{C}\left(\mathbf{R}^{2}\right), f \neq 0$ and suppose that $\mathrm{N}_{f}^{(r)} \cap \Gamma_{w} \neq\{0\}$ for some $w \in \mathbf{C}$. Then, by definition, there exist $\psi_{n} \in \mathcal{E}_{0}^{(r)}\left(\mathbf{R}^{2}\right)$ $n=1,2, \ldots$, and $g \in \Gamma_{w}$ such that

$$
\int_{\mathbf{R}^{2}} f(z-\xi) \psi_{n}(\xi) d \xi \underset{\mathrm{C}\left(\mathbf{R}^{2}\right)}{\longrightarrow} g(z) .
$$

But we have
$\int_{\mathbf{R}^{2}} f\left(z-e^{i \alpha} \xi\right) \psi_{n}(\xi) d \xi=\int_{\mathbf{R}^{2}} f(z-\xi) \psi_{n}(\xi) d \xi \quad$ for $\quad n=1,2, \ldots$, which implies (i).

Finally, suppose that $\tau(f) \cap \Gamma_{0} \neq\{0\}$ and that $\mathrm{N}_{f}^{(r)} \cap \Gamma_{w}=\{0\}$ for every $w \in C$. By (ii) (b) we have

$$
\begin{aligned}
\int_{\mathbf{R}^{2}} f\left(z-e^{i \alpha} w\right) \phi_{n}(w) d w=\int_{\mathbf{R}^{2}} f(z-\xi) & \phi_{n}\left(e^{-i \alpha} \xi\right) d \xi \\
& =e^{i m \alpha} \int_{\mathbf{R}^{2}} f(z-\xi) \phi_{n}(\xi) d \xi
\end{aligned}
$$

for $n=1,2, \ldots$, which yields, by (7)

$$
\int_{\mathbf{R}^{2}} f\left(z-e^{i \alpha} \xi\right) \psi_{n}(\xi) d \xi \xrightarrow[\mathrm{C}(\mathrm{M}(2))]{ } e^{i m \alpha} g(z)
$$

This completes the proof.

## 5. Invariant subspaces of $C\left(R^{2}\right)$.

For $f \in \mathbf{C}\left(\mathbf{R}^{2}\right)$ we say that $w \in \operatorname{Sp} p^{\text {T.R. }}(f), \quad w \in \mathbf{C}$ if the translation-invariant and rotation-invariant subspace generated by $f$ contains an exponential in $\Gamma_{w}$. Actually, the fact announced in [1] that unless $f=0$ we have $\operatorname{Sp} p^{\text {T.R. }}(f) \neq \varnothing$ implies the main
results of [1] concerning the Pompeiu problem [4, 7] . By Theorem 4, the one-sided Schwartz's Theorem for the motion group is intimately connected to the following problem:

For $f \in \mathbf{C}\left(\mathbf{R}^{2}\right)$ we say that $w \in \operatorname{Sp}^{(r)}(f), w \in \mathbf{C}, w \neq 0$, if $\underset{\underset{\sim}{\mathrm{N}}}{f}{ }^{(r)} \cap \Gamma_{w} \neq\{0\}$, and that $0 \in \operatorname{Sp}^{(r)}(f)$ if $\mathrm{N}_{f}^{(r)} \cap \widetilde{\Gamma}_{0} \neq\{0\}$, where $\widetilde{\Gamma}_{0}^{f}$ denotes the space of harmonic functions on $\mathbf{R}^{2}$. Suppose that $f \neq 0$. Does this imply that $\mathrm{S}^{(r)}(f) \neq \varnothing$ ?

Remark 3. - We notice that for $f \in \mathbf{C}\left(\mathbf{R}^{2}\right)$ we have $\mathrm{S} p^{(r)}(f) \subseteq \mathrm{Sp}^{\mathrm{T} \cdot \mathrm{R} \cdot}(f)$.

Remark 4. - This question is connected to the following problem of Pompeiu type:

Determine for which family $\mathrm{P} \subset \mathrm{M}_{0}\left(\mathbf{R}^{2}\right)$, the only continuous function $f$ on $\mathbf{R}^{2}$ such that $\mathrm{T}\left(f * \mu_{\mathrm{R}}\right)=0$ for all $\mathrm{T} \in \mathrm{P}$ and $\mathrm{R} \geqslant 0$, is the zero function.

Let $\mathrm{J}_{n}$ denote the nth Bessel function of the first kind. By definition, we deduce

$$
\mathrm{J}_{n}(r) e^{i n \theta}=\frac{1}{2 \pi i^{n}} \int_{0}^{2 \pi} e^{i r \cos (\phi-\theta)} e^{i n \phi} d \phi
$$

Hence we have $\mathrm{J}_{n}(w r) e^{i n \theta} \in \Gamma_{w}, \mathrm{Sp}^{(r)}\left(\mathrm{J}_{n}(w r) e^{i n \theta}\right)=\{w\}$ for $w \in \mathbf{C}, w \neq 0$ and $\mathrm{N}_{\mathrm{I}_{n}}^{(r)}$ is one-dimensional where $\mathrm{I}_{n}(r, \theta)=\mathrm{J}_{n}(w r) e^{i n \theta}$.

A partial answer to the above question is provided by the following result:

Theorem 5. - Let $f \in \mathrm{C}\left(\mathbf{R}^{\mathbf{2}}\right), f \neq 0$ where

$$
f(r, \theta)=\sum_{m=0}^{\mathrm{N}} g_{m}(r) e^{i m \theta}, g_{m} \in \mathrm{C}^{(r)}\left(\mathbf{R}^{2}\right) \quad(m=0,1, \ldots, \mathrm{~N})
$$

Then $\quad \mathrm{Sp}^{(r)}(f) \neq \varnothing$. If $0 \notin \mathrm{Sp}^{(r)}(f)$ there exist $\lambda, a_{m} \in \mathbf{C}$ $(m=0,1, \ldots, \mathrm{~N}), \lambda \neq 0$, where $\sum_{m=0}^{\mathrm{N}}\left|a_{m}\right|>0$ such that $\sum_{m=0}^{\mathrm{N}} a_{m} \mathrm{~J}_{m}(\lambda r) e^{i m \theta}$ belongs to $\mathrm{N}_{f}^{(r)}$. Moreover, we have

$$
\mathrm{S} p^{(r)}(f)=\bigcup_{m=0}^{\mathrm{N}} \mathrm{~S} p^{(r)}\left(g_{m}(r) e^{i m \theta}\right)
$$

The proof will be accomplished in several lemmas.
Lemma 6. - Every proper closed ideal in $\hat{\mathcal{E}}_{(r)}^{\prime}\left(\mathbf{R}^{2}\right)$ has a common zero in $\mathbf{C}^{2}$.

Proof. - Let J be a proper closed ideal in $\hat{\mathcal{E}}_{(r)}^{\prime}\left(\mathbf{R}^{2}\right)$ and suppose that the functions in $\mathbf{J}$ have no common zeroes. Every $f \in \mathbf{J}$ is a function of $z_{1}^{2}+z_{2}^{2}$. That is, there exists an even entire function $\mathrm{Q}_{f}$ of one complex variable such that

$$
f\left(z_{1}, z_{2}\right)=\mathrm{Q}_{f}\left(\sqrt{z_{1}^{2}+z_{2}^{2}}\right) \quad \text { and } \quad \mathrm{Q}_{f} \in \hat{\delta}^{\prime}(\mathbf{R})
$$

Let $\mathrm{J}^{*}$ be the ideal in $\hat{\mathscr{E}}^{\prime}(\mathbf{R})$ generated by $\left\{\mathrm{Q}_{f}: f \in \mathrm{~J}\right\}$.
Obviously, the functions in $\mathrm{J}^{*}$ have no common zeroes. Thus, applying Schwartz's Theorem [5] we deduce that $J^{*}=\hat{\mathscr{E}}^{\prime}(\mathbf{R})$. That is, there exists a sequence $\left\{\mathrm{P}_{n}\right\}$ in $\mathrm{J}^{*}$ converging to 1 in $\hat{\mathcal{E}}^{\prime}(\mathbf{R})$. Each $\mathrm{P}_{n}$ must be of the form $\sum_{j=1}^{k} \mathrm{~T}_{j}(w) \mathrm{S}_{j}(w)$ where each $\mathrm{T}_{j} \in \hat{\mathcal{E}}^{\prime}(\mathbf{R})$ and $\mathrm{S}_{j} \in \mathrm{~J}$. But then the function $\sum_{j=1}^{k} \mathrm{~T}_{j}(w) \mathrm{S}_{j}(w)+\sum_{j=1}^{k} \mathrm{~T}_{j}(-w) \mathrm{S}_{j}(-w)=\sum_{j=1}^{k}\left(\mathrm{~T}_{j}(w)+\mathrm{T}_{j}(-w)\right) \mathrm{S}_{j}(w)$ belongs to J since each $\mathrm{T}_{j}(w)+\mathrm{T}_{j}(-w)$ belongs to $\hat{\mathcal{E}}_{(r)}^{\prime}\left(\mathbf{R}^{2}\right)$. Hence, $\mathrm{Q}_{n}(w)=\frac{1}{2}\left(\mathrm{P}_{n}(w)+\mathrm{P}_{n}(-w)\right.$ ) belongs to J and $\mathrm{Q}_{n} \longrightarrow 1$ in $\hat{\mathscr{E}}_{(r)}^{\prime}\left(\mathbf{R}^{2}\right)$, a contradiction.

Lemma 7. - Let $f \in \mathbf{C}\left(\mathbf{R}^{2}\right)$ where $f(r, \theta)=g(r) e^{i m \theta}$, $g \in \mathrm{C}^{(r)}\left(\mathbf{R}^{2}\right), \quad g \neq 0, m \in \mathbf{Z}$. Then $\mathrm{S}^{(r)}(f) \neq \varnothing$. If $0 \notin \mathrm{~S}^{(r)}(f)$ there exists $\lambda \in \mathbf{C}, \lambda \neq 0$, such that $\mathrm{H} \in \mathrm{N}_{f}^{(r)}$ where

$$
\mathrm{H}(r, \theta)=\mathrm{J}_{m}(\lambda r) e^{i m \theta}
$$

Proof. - We may assume that $f \in \mathcal{E}\left(\mathbf{R}^{2}\right)$. Let $\mathrm{M}_{f}^{(r)}$ denote the closed subspace of $\boldsymbol{E}\left(\mathbf{R}^{2}\right)$ spanned by $\left\{f_{*} \mu_{\mathrm{R}}: \mathbf{R} \geqslant 0\right\}$. For $m \in \mathbf{Z}$ let $\mathcal{E}_{m}\left(\mathbf{R}^{\mathbf{2}}\right)$ denote the closed subspace of functions $s \in \mathscr{E}\left(\mathbf{R}^{\mathbf{2}}\right)$ sucht that $s(r, \theta)=h(r) e^{i m \theta}$. We have $\mathrm{M}_{f}^{(r)} \subseteq \mathcal{E}_{m}\left(\mathbf{R}^{2}\right)$.

Let $\mathscr{E}_{m}^{\prime}\left(\mathbf{R}^{2}\right) \subset \mathscr{E}^{\prime}\left(\mathbf{R}^{2}\right)$ denote the dual of $\boldsymbol{E}_{m}\left(\mathbf{R}^{\mathbf{2}}\right)$.
Let $\mathbf{M}_{f}^{(r) \perp}=\left\{T \in \boldsymbol{\Xi}_{m}^{\prime}\left(\mathbf{R}^{2}\right): T(f)=0, f \in M_{f}^{(r)}\right\}$.

Every element of $\hat{\mathscr{E}}_{m}^{\prime}\left(\mathbf{R}^{2}\right)$ is of the form $p(r) e^{i m \theta}$ (as a function on $\left.\mathbf{R}^{2}\right)$. Let $\mathbf{P}=\left\{p: \hat{\mathrm{T}}(r, \theta)=p(r) e^{i m \theta}, \mathrm{~T} \in \mathrm{M}_{f}^{(r) \perp}\right\}$.

We notice that all functions of P are even or odd depending on $m$.

Let $k$ be the larger integer such that 0 is a zero of order $k$ for each $p \in \mathbf{P}$. It follows that $\frac{p(w)}{w^{k}}, p \in \mathbf{P}$, is an even entire function of $w$ and by complexification of $\frac{p(r)}{r^{k}}$

$$
p^{*}\left(z_{1}, z_{2}\right)=\frac{p\left(\sqrt{z_{1}^{2}+z_{2}^{2}}\right)}{\left(z_{1}^{2}+z_{2}^{2}\right)^{k / 2}}
$$

is an entire function on $\mathbf{C}^{2}$. The space

$$
\mathrm{J}^{*}=\left\{p^{*}: p^{*}\left(z_{1}, z_{2}\right)=\frac{p\left(\sqrt{z_{1}^{2}+z_{2}^{2}}\right)}{\left(z_{1}^{2}+z_{2}^{2}\right)^{k / 2}}, p \in \mathrm{P}\right\}
$$

is therefore a closed ideal in $\hat{\mathscr{E}}_{(r)}^{\prime}\left(\mathbf{R}^{2}\right)$. If $0 \notin \mathrm{Sp}^{(r)}(f) \mathrm{J}^{*}$ is a proper ideal.

Hence, by Lemma 6, there exists

$$
\lambda^{*}=\left(\lambda_{1}, \lambda_{2}\right) \in \mathbf{C}^{2}, \lambda_{1}^{2}+\lambda_{1}^{2}=\lambda^{2} \neq 0
$$

which is a common zero of $\mathrm{J}^{*}$. Consequently, for each $\mathrm{T} \in \mathrm{M}_{f}^{(r) \perp}$ we have $\hat{\mathrm{T}}(w)=0$ where $w=\left(w_{1}, w_{2}\right) \in \mathbf{C}^{2}, w_{1}^{2}+w_{2}^{2}=\lambda^{2}$. It follows that $\mathrm{T}(\mathrm{Q})=0$ for $\mathrm{T} \in \mathrm{M}_{f}^{(r) \perp}$ where

$$
\mathrm{Q}(x, y)=\frac{1}{2 \pi i^{m}} \int_{0}^{2 \pi} e^{i \lambda_{1}(x \cos \phi+y \sin \phi)} e^{i m \phi} d \phi
$$

But we have

$$
\mathrm{Q}(r, \theta)=\frac{1}{2 \pi i^{m}} \int_{0}^{2 \pi} e^{i \lambda r \cos (\phi-\theta)} e^{i m \phi} d \phi=\mathrm{J}_{m}(w r) e^{i m \theta}
$$

Consequently, $\mathrm{Q} \in \mathrm{M}_{f}^{(r)} \cap \Gamma_{\lambda}$ which completes the proof.
Notation. - Let $\mathbf{C}\left(\mathbf{R}^{\mathbf{2}}, \mathbf{C}^{\mathbf{N}}\right)$ denote the space of all continuous functions on $R^{2}$ which take values in $C^{\mathbf{N}}$, with the usual topology. Let $\mathbf{M}_{0}\left(\mathbf{R}^{2}, \mathbf{C}^{\mathbf{N}}\right)$ be the dual of $\mathbf{C}\left(\mathbf{R}^{\mathbf{2}}, \mathbf{C}^{\mathbf{N}}\right)$, the space of vectorvalued measures having compact support. For $f \in \mathbf{C}\left(\mathbf{R}^{2}, \mathbf{C}^{\mathbf{N}}\right)$, (resp. $\mu \in \mathrm{M}_{0}\left(\mathbf{R}^{2}, \mathbf{C}^{\mathrm{N}}\right)$ ) let $(f)_{n}$ (resp. $\left.(\mu)_{n}\right)$ denote the nth coordinate of $f$ (resp. $\mu$ ). For $m=\left(m_{1}, m_{2}, \ldots, m_{\mathrm{N}}\right) \in \mathbf{Z}^{\mathrm{N}}$ let $\mathrm{B}_{(m)}$ denote
the closed subspace of $C\left(\mathbf{R}^{2}, \mathbf{C}^{\mathbf{N}}\right)$ which consists of all functions $f$ where

$$
(f)_{n}(r, \theta)=h_{n}(r) e^{i m_{n} \theta} \quad n=1,2, \ldots, \mathrm{~N}
$$

Let $\mathrm{B}_{(m)}^{\prime}$ be the dual of $\mathrm{B}_{(m)}$, the space of all $\eta \in \mathrm{M}_{0}\left(\mathbf{R}^{2}, \mathbf{C}^{\mathbf{N}}\right)$ such that $(\eta)_{n}=\mu_{n} e^{-i m_{n} \theta}$ where $\mu_{n} \in \mathrm{M}_{0}^{(r)}\left(\mathbf{R}^{2}\right), n=1,2, \ldots, \mathrm{~N}$. We will use the following equality:

$$
\begin{equation*}
\left(\mathrm{J}_{k}\left(w r^{\prime}\right) e^{i k \theta^{\prime}}\right) *\left(\mu\left(r^{\prime}\right) e^{i m \theta^{\prime}}\right)(r, \theta)=\phi(w) \mathrm{J}_{k+m}(w r) e^{i(k+m) \theta} \tag{8}
\end{equation*}
$$

where $\mu \in \mathbf{M}_{0}^{(r)}\left(\mathbf{R}^{2}\right), w \in \mathbf{C}, \quad$ and $\quad \widehat{\mu\left(r^{\prime}\right) e^{i m \theta^{\prime}}}(r, \theta)=\phi(r) e^{i m \theta}$. Finally, we notice that $M_{0}^{(r)}\left(\mathbf{R}^{2}\right)$ acts on $\mathrm{B}_{(m)}$ by convolution. Namely, $f \in \mathrm{~B}_{(m)}$ and $\mu \in \mathrm{M}_{0}^{(r)}\left(\mathbf{R}^{2}\right)$ imply that $f * \mu \in \mathrm{~B}_{(m)}$.

Lemma 8. - Every closed non-trivial subspace of $\mathrm{B}_{(m)}$, invariant under $\mathbf{M}_{0}^{(r)}\left(\mathbf{R}^{2}\right)$ contains an invariant one-dimensional subspace. Moreover, if $f \in \mathrm{~B}_{(m)}$ such that $\lambda \in \mathrm{Sp}^{(r)}\left((f)_{n}\right), \lambda \neq 0$, for some $n, 1 \leqslant n \leqslant \mathrm{~N}$, then the closed subspace spanned by $\left\{f * \mu_{\mathrm{R}}: \mathrm{R} \geqslant 0\right\}$ contains a function $g \neq 0$, such that

$$
(g)_{n}(r, \theta)=a_{n} \mathrm{~J}_{m_{n}}(\lambda r) e^{i m_{n} \theta} \quad n=1,2, \ldots, \mathrm{~N}
$$

Proof. - By induction on N where the case $\mathrm{N}=1$ is provided by Lemma 7. Let $f \in \mathrm{~B}_{(m)}$ and suppose that $0 \neq \lambda \in \mathrm{Sp}^{(r)}\left((f)_{1}\right)$. Let $\mathrm{V}_{f}$ denote the closed subspace of $\mathrm{B}_{(m)}$ spanned by $\left\{f * \mu_{\mathrm{R}}: \mathrm{R} \geqslant 0\right\}$ and $\mathrm{V}_{f}^{\perp}=\left\{\eta \in \mathrm{B}_{(m)}^{\prime}: \eta(g)=0, g \in \mathrm{~V}_{f}\right\}$. We notice that for $\eta \in \mathrm{V}_{f}^{\perp}$ we have:

$$
\begin{equation*}
\sum_{n=1}^{\mathrm{N}}\left(g_{n}(r) e^{i m_{n} \theta}\right) *\left(\mu_{n} e^{-i m_{n} \theta}\right)=0 \tag{9}
\end{equation*}
$$

where $(\eta)_{n}=\mu_{n} e^{-i m_{n} \theta}$ and $(f)_{n}=g_{n}(r) e^{i m_{n} \theta}, n=1,2, \ldots, \mathrm{~N}$.
Thus we may assume that there exists $\eta \in \mathrm{V}_{f}^{1}$ such that

$$
\begin{equation*}
\left(\mathrm{J}_{m_{\mathrm{N}}}(\lambda r) e^{i m_{\mathrm{N}} \theta}\right) *\left(\mu_{\mathrm{N}} e^{-i m_{\mathrm{N}} \theta}\right) \neq 0 \tag{10}
\end{equation*}
$$

Otherwise, the subspace $\mathrm{V}_{f}$ contains a function $g^{*}$ such that $\left(g^{*}\right)_{n}=0$ for $n=1,2, \ldots, \mathrm{~N}-1$, and $\left(g^{*}\right)_{\mathrm{N}}=\mathrm{J}_{m_{\mathrm{N}}}(\lambda r) e^{i m_{\mathrm{N}^{\theta}}}$ which completes the proof. To this end, let $h \in \mathrm{~B}_{\left(m^{\prime}\right)}$ where $(h)_{n}=(f)_{n} \quad$ for $\quad n=1,2, \ldots, \mathrm{~N}-1, \quad m^{\prime}=\left(m_{1}, m_{2}, \ldots, m_{\mathrm{N}-1}\right)$ and $\mathrm{B}_{(m)} \subset \mathrm{C}\left(\mathbf{R}^{2}, \mathbf{C}^{\mathrm{N}-1}\right)$. By the induction hypothesis the subspace $\mathrm{V}_{h}$ contains a function $h^{*} \neq 0$ such that

$$
\left(h^{*}\right)_{n}=b_{n} \mathrm{~J}_{m_{n}}(\lambda r) e^{i m_{n} \theta} \quad \text { for } \quad n=1,2, \ldots, \mathrm{~N}-1
$$

That is, there exists a sequence $\left\{\phi_{k}\right\}, \phi_{k} \in M_{0}^{(r)}\left(\mathbf{R}^{2}\right)$, such that

$$
\begin{equation*}
\left(g_{n}\left(r^{\prime}\right) e^{i m_{n} \theta^{\prime}} * \phi_{k}\right)(r, \theta) \xrightarrow[k \rightarrow \infty]{\mathrm{C}\left(\mathbf{R}^{2}\right)} b_{n} \mathrm{~J}_{m_{n}}(\lambda r) e^{i m_{n} \theta} \tag{11}
\end{equation*}
$$

for $n=1,2, \ldots, \mathrm{~N}-1$, where $\sum_{n=1}^{\mathrm{N}-1}\left|b_{n}\right|>0$. Let $\psi_{k} \in \mathrm{M}_{0}^{(r)}\left(\mathbf{R}^{2}\right)$
where

$$
\psi_{k}=\phi_{k} * \mu_{\mathrm{N}} e^{-i m_{\mathrm{N}} \theta} * \mu_{\mathrm{N}} e^{i m_{\mathrm{N}} \theta} \quad k=1,2, \ldots,
$$

Then by (8), (10) and (11) we obtain:

$$
\begin{aligned}
g_{n}(r)^{i m_{n} \theta} * \psi_{k} \xrightarrow[k \rightarrow \infty]{\mathrm{C}\left(\mathbf{R}^{2}\right)} b_{n} \mathrm{~J}_{m_{n}}(\lambda r) e^{i m_{n} \theta} * \mu_{\mathrm{N}} e^{-i m_{\mathrm{N}} \theta} & * \mu_{\mathrm{N}} e^{i m_{\mathrm{N}} \theta} \\
& =b_{n} \mathrm{C}_{1} \mathrm{~J}_{m_{n}}(\lambda r) e^{i m_{n} \theta}
\end{aligned}
$$

for $n=1,2, \ldots, N-1$ where $\mathrm{C}_{1} \in \mathbf{C}, \mathrm{C}_{1} \neq 0$.
For $n=\mathrm{N}$ we have by (9) and (8):

$$
\begin{aligned}
g_{\mathrm{N}}(r) e^{i m_{\mathrm{N}}{ }^{\theta}} * \psi_{k} & =g_{\mathrm{N}}(r) e^{i m_{\mathrm{N}} \theta} * \mu_{\mathrm{N}} e^{-i m_{\mathrm{N}} \theta} * \phi_{k} * \mu_{\mathrm{N}} e^{i m_{\mathrm{N}} \theta} \\
& =-\left[\sum_{n=1}^{\mathrm{N}-1} g_{n}(r) e^{i m_{n} \theta} * \mu_{n} e^{-i m_{n} \theta}\right] * \phi_{k} * \mu_{\mathrm{N}} e^{i m_{\mathrm{N}} \theta}
\end{aligned}
$$

Hence we obtain

$$
\begin{aligned}
& g_{n}(r) e^{i m_{\mathrm{N}} \theta} * \psi_{k} \xrightarrow[k \rightarrow \infty]{\mathrm{C}\left(\mathbf{R}^{2}\right)}- {\left[\sum_{n=1}^{\mathrm{N}-1} b_{n} \mathrm{~J}_{m_{n}}(\lambda r) e^{i m_{n} \theta} * \mu_{n} e^{-i m_{n} \theta}\right] * \mu_{\mathrm{N}} e^{i m_{\mathrm{N}} \theta} } \\
&=\mathrm{C} \mathrm{~J}_{0}(\lambda r) * \mu_{\mathrm{N}} e^{i m_{\mathrm{N}} \theta}=\mathrm{C}^{\prime} \mathrm{J}_{\mathrm{N}}(\lambda r) e^{i m_{\mathrm{N}} \theta}
\end{aligned}
$$

Similarly, we may prove that if $0 \in \operatorname{Sp}^{(r)}\left((f)_{n}\right)$ for some $n$, $1 \leqslant n \leqslant \mathrm{~N}$, then $\mathrm{V}_{f}$ contains a function $g \neq 0$ such that:

$$
(g)_{n}(r, \theta)=a_{n} r^{m_{n}} e^{i m_{n} \theta} \quad n=1,2, \ldots, \mathrm{~N}
$$

Proof of Theorem 5. - Let $h \in \mathrm{~B}_{(m)}, \mathrm{B}_{(m)} \subset \mathbf{C}\left(\mathbf{R}^{2}, \mathbf{C}^{\mathrm{N}+1}\right)$ where $\quad m=(0,1, \ldots, \mathrm{~N})$ and $(h)_{n}(r, \theta)=g_{n-1}(r) e^{i(n-1) \theta}$, $n=1,2, \ldots, \mathrm{~N}+1$, and suppose that $\lambda \in \mathrm{Sp}^{(r)}\left((h)_{k_{0}}\right), \lambda \neq 0$, for some $k_{0}, 1 \leqslant k_{0} \leqslant \mathrm{~N}+1$. Then by Lemma 8 , there exists a sequence $\left\{\phi_{k}\right\}, \phi_{k} \in \mathrm{M}_{0}^{(r)}\left(\mathbf{R}^{2}\right) k=1,2, \ldots$, such that

$$
\left(g_{n-1}\left(r^{\prime}\right) e^{i(n-1) \theta^{\prime}} * \phi_{k}\right)(r, \theta) \xrightarrow[k \rightarrow \infty]{\mathrm{C}\left(\mathbf{R}^{2}\right)} a_{n-1} \mathrm{~J}_{n-1}(\lambda r) e^{i(n-1) \theta}
$$

for $n=1,2, \ldots, \mathrm{~N}+1$ where $\sum_{n=0}^{\mathrm{N}}\left|a_{n}\right|>0$. Hence, we have

$$
\left[\left(\sum_{n=0}^{\mathrm{N}} g_{n}\left(r^{\prime}\right) e^{i n \theta^{\prime}}\right) * \phi_{k}\right](r, \theta) \xrightarrow[k \rightarrow \infty]{\mathrm{C}\left(\mathrm{R}^{2}\right)} \sum_{n=0}^{\mathrm{N},+1} a_{n} \mathrm{~J}_{n}(\lambda r) e^{i n \theta}
$$

If $0 \in \mathrm{Sp}^{(r)}\left((h)_{k_{0}}\right)$ then, similarly, $\mathrm{N}_{f}^{(r)}$ contains $g \in \widetilde{\Gamma}_{0}$, $g \neq 0$, where $g(r, \theta)=\sum_{n=0}^{\mathrm{N}} b_{n} r^{n} e^{i n \theta}$. Finally, we may easily prove that $\mathrm{S} p^{(r)}(f) \subseteq \bigcup_{m=0}^{\mathrm{N}} \mathrm{Sp}^{(r)}\left(g_{m} e^{i m \theta}\right)$ and the result follows.

Corollary 6. - Let $f \in \mathbf{C}\left(\mathbf{R}^{2}\right), f \neq 0$ where

$$
f(r, \theta)=\sum_{m=0}^{\mathrm{N}} g_{m}(r) e^{i m \theta}, g_{m} \in \mathrm{C}^{(r)}\left(\mathbf{R}^{2}\right) \quad(m=0,1, \ldots, \mathrm{~N})
$$

Then the translation-invariant closed subspace $\tau(f)$ generated by $f$ contains an exponential function.

Proof. - If $0 \in \mathrm{~N}_{f}^{(r)}$ then $\tau(f)$ contains a polynomial and hence $1 \in \tau(f)$. Otherwise, by Theorem 5, $g \in \tau(f), g \neq 0$ where:

$$
g(r, \theta)=\sum_{m=0}^{\mathrm{N}} a_{m} \mathrm{~J}_{m}(\lambda r) e^{i m \theta}
$$

for some $\lambda, a_{m} \in \mathbf{C}, \lambda \neq 0,(m=0,1, \ldots, N)$.
The subspace $\tau(f)$ contains therefore all the functions $h$ where

$$
\begin{aligned}
h(x, y) & =(g * \mu)(x, y) \\
& =\mathrm{C} \sum_{m=0}^{\mathrm{N}} a_{m} \int_{\mathbf{R}^{2}}\left[\int_{0}^{2 \pi} e^{i \lambda[(x-\alpha) \cos \phi+(y-\beta) \sin \phi]} e^{i m \phi}\right] d \mu(\alpha, \beta) \\
& =\mathrm{C} \sum_{m=0}^{\mathrm{N}} a_{m} \int_{0}^{2 \pi} \hat{\mu}(\lambda \cos \phi, \lambda \sin \phi) e^{i \lambda(x \cos \phi+y \sin \phi)} e^{i m \phi} d \phi
\end{aligned}
$$

for every $\mu \in M_{0}\left(R^{2}\right)$ where $C \in C, C \neq 0$.
Thus $\tau(f)$ contains all the functions $u$ where

$$
u(x, y)=\sum_{m=0}^{\mathrm{N}} a_{m} \int_{0}^{2 \pi} s(\phi) e^{i \lambda(x \cos \phi+y \sin \phi)} e^{i m \phi} d \phi
$$

for every $s \in \mathrm{C}[0,2 \pi], s(0)=s(2 \pi)$. For a sequence $\left\{s_{n}\right\}$ converg-
ing to the Dirac mass $\delta_{\phi_{0}}$ concentrated in $\phi_{0}$ where $\sum_{m=0}^{N} a_{m} e^{i m \phi_{0}} \neq 0$, we obtain, by passing to the limit, that $v \in \tau(f)$ where

$$
v(x, y)=\left(\sum_{m=0}^{N} a_{m} e^{i m \phi_{0}}\right) e^{i\left(x \lambda \cos \phi_{0}+y \lambda \sin \phi_{0}\right)}
$$

which completes the proof.
Remark 5. - To this end we may introduce the following proof to the fact that every translation-invariant and rotation-invariant closed subspace of $\mathbf{C}\left(\mathbf{R}^{2}\right)$ contains an exponential function [1]. Let $\mathrm{R}_{f}$ denote the closed translation-invariant and rotation invariant subspace generated by $f \neq 0$. Then, for a suitable $m \in \mathbf{Z}$ the function $g$ where

$$
\begin{array}{r}
g(r, \theta)=\int_{0}^{2 \pi} f(r, \theta+\beta) e^{-i m \beta} d \beta=e^{i m \theta} \int_{0}^{2 \pi} f(r, \beta) e^{-i m \beta} d \beta \\
=e^{i m \theta} f_{1}(r)
\end{array}
$$

is non-zero and belongs to $\mathrm{R}_{f}$. Let $\mu \in \mathrm{M}_{0}^{(r)}\left(\mathbf{R}^{2}\right)$ where $\mu\left(f_{1}\right) \neq 0$. Hence the function $g_{1}=g_{*}\left(\mu e^{-i m \theta}\right)$ is non-zero and belongs to $\mathrm{R}_{f} \cap \mathrm{C}^{(r)}\left(\mathbf{R}^{2}\right)$.

By Lemma 6, or by Lemma 7 for $m=0$, there exists $\lambda \in \mathbf{C}$ such that $\mathrm{J}_{0}(\lambda r) \in \mathrm{R}_{f}$. Arguing as in the proof of Corollary 6, we deduce that $\mathrm{R}_{f}$ contains the exponentials $e^{i(x \lambda \cos \phi+y \lambda \sin \phi)}$ for every $\phi \in \mathbf{R}$ and the result follows.

## BIBLIOGRAPHY

[1] L. Brown, B.M. Schreiber, and B.A. Taylor, Spectral synthesis and the Pompeiu problem, Ann. Inst. Fourier, Grenoble, 23 (1973), 125-154.
[2] L. Ehrenpreis, and F. Mautner, Some properties of the Fourier transform on semi-simple Lie groups II., Trans. Amer. Math. Soc., 84 (1957), 1-55.
[3] D.I. Gurevich, Counterexamples to a problem of L. Schwartz, Funct. Anal. Appl., 197 (1975), 116-120.
[4] D. Pompeiu, Sur une propriété intégrale des fonctions de deux variables réelles, Bull. Sci. Acad. Royale Belgique (5), 15 (1929), 265-269.
[5] L. Schwartz, Théorie générale des fonctions moyenne-périodiques, Ann. of Math., 48 (1947), 857-928.
[6] Y. Weit, On the one-sided Wiener's theorem for the motion group, to appear in Ann. of Math.
[7] L. Zalcman. Analyticity and the Pompeiu problem, Arch. Rational Mech. Anal., 47 (1972), 237-254.

Manuscrit reçu le 7 septembre 1979.

Yitzhak Weit,<br>University of Haïfa<br>Department of Mathematics<br>Mount Carmel<br>Haïfa (Israël).

